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Hydrogenic impurity states in quantum-well wires
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The binding energies for the bound states of a hydrogenic impurity placed on the axis of a
quantum-well wire are calculated with the use of variational solutions to the effective-mass equa-
tion. The quantum-well wire is assumed to be a cylinder of GaAs surrounded by Ga~ „Al„As. In a
very small wire the electrons leak out of the wire and behave as three-dimensional electrons in

Ga~ „Al„As. An abrupt crossover to one-dimensional behavior occurs when the wire radius be-
comes greater than the radial spread of the bound state. In a very large wire the bound electrons no
longer interact with the wire boundary and they behave as three-dimensional electrons in GaAs. In
the quasi-one-dimensional regime, the binding energies are greatly enhanced and the wave functions
are squeezed radially to fit the wire. In a small wire surrounded by an infinite barrier well, the elec-
trons always behave as quasi-one-dimensional electrons and the binding energy of the 1s state be-
comes infinite when the wire radius vanishes. For a GaAs wire surrounded by Ga06A)04As, the
maximum 1s binding energy is 6 times greater than the 1s binding energy in bulk GaAs and 2—3

times greater than those in comparable two-dimensional quantum wells. The implications of this
enhanced binding for recent calculations of the effect of ionized impurity scattering on electron mo-

bility in quantum-well wires are considered. Although scattering by charged impurities effectively
limits the mobility in quasi-one-dimensional systems, the enhanced binding substantially reduces the
number of available scattering centers.

I. INTRODUCTION

Stimulated by the interest in the physics and technolog-
ical applications of two-dimensional quantum-well semi-
conductor structures and superlattices, researchers are
now beginning to fabricate and investigate quasi-one-
dimensional semiconductor structures. Quantum-well
wires (QWW's) of GaAs surrounded by Ga& „Al„As with
dimensions as small as 20 nm&10 nm in cross section
have been made by Petroff et al. , using molecular-beam
epitaxy and photolithography. ' Fowler, Hartstein, and
Webb reduced the dimensionality of a two-dimensional
quantum well by using a novel electrode configuration to
constrict the electrons in the accumulation layer of a
metal-oxide —silicon field-effect transistor to a quasi-one-
dimensional channel. In theoretical studies, ' the trans-
port properties of GaAs quantum-well wires have been
considered to determine whether quasi-one-dimensional
wires have the high mobilities characteristic of the layered
structures, and to assess the importance of size quantiza-
tion. In this paper a theoretical description of the
bound states and the energy spectrum of a hydrogenic
donor in a QWW that is made of GaAs, has a circular
cross section, and is surrounded by Ga~ „Al„As, is
presented. This calculation is the first to be done for a
quantum-well wire, although similar studies have been
performed for impurity states and exciton levels in quasi-
two-dimensional quantum wells and superlattices.

An understanding of the nature of the impurity states
in semiconductor structures is one of the crucial problems
in semiconductor physics, and thus motivates this study
for QWW structures. However, the problem is intrinsical-
ly appealing for the following reasons as well.

The QWW is an exciting system to study because the
effective dimensionality of the wire can be changed by
changing the wire radius. An electron bound to an impur-
ity at the center of a QWW never encounters the boun-
dary in a very large wire and behaves as a three-
dimensional electron bound to an impurity in GaAs. For
a wire with an intermediate radius, the electron confine-
ment due to the potential well of the conduction-band
discontinuity is greater than the confinement due to the
impurity, and the electron behaves as a quasi-one-
dimensional electron. For very small wires, the well can-
not effectively confine the bound electrons, which leak out
of the wire and behave as three-dimensional electrons in
Ga~ „Al As bound to the impurities and weakly per-
turbed by the potential well. Comparable changes in
dimensionality occur in two-dimensional quantum wells
when the thickness is varied. ' '

Moreover, the effective strength of the Coulomb in-
teraction depends on the dimensionality of the problem
and is greatly enhanced when the dimensionality is re-
duced. The binding energy for the ground state of a hy-
drogenic impurity in a three-dimensional semiconductor is

R, =Em, /e

where &= I Ry, m, is the electron effective mass (in units
of the electron mass), and e is the static dielectric con-
stant. In a strictly two-dimensional system the binding
energy increases to 4R„while in a quasi-two-dimensional
quantum well with finite thickness the binding energy is
between R, and 4A, . ' In quasi-one-dimensional sys-
tems, ' ' such as the long-chain organic semiconductor
polyacetylene' ' and hydrogen atoms in high magnetic
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fields, ' ' the binding energies can be much larger. For
example, the donor states due to a point charge near a
polyacetylene chain are bound by 10R,. Thus in QWW's
the effective strength of the Coulomb interaction can be
changed by varying the wire radius and changing the
dimensionality of the wire. Conversely, dramatic changes
in the binding energies serve as a blatant signature for
changes in the dimensionality of the QWW. Similar ef-
fects occur in two-dimensional quantum wells. However,
the effects are more striking in QWW's because the
enhancement of the Coulomb interaction is much greater
when the dimensionality is reduced from three to one,
than when it is reduced from three to two.

This large enhancement of the effective Coulomb in-
teraction that results from a reduction of the dimensional-
ity can be understood with the following argument. In a
quasi-one-dimensional system such as a QWW, the elec-
tron can move only a short distance in the other dimen-
sions, and every path that takes an electron past the im-
purity must bring it close to the potential singularity. In a
higher-dimensional system the electron has more paths
that allow it to move around the impurity without passing
close to it. Thus the binding of localized electrons should
be much greater in lower-dimensional systems. In fact,
when a quasi-one-dimensional system approaches the
strictly one-dimensional limit, the binding energy of the
lowest eigenstate approaches infinity and the state be-
comes very localized. ' ' Formally, the strictly one-
dimensional Coulomb problem can be solved by realizing
that the one-dimensional Schrodinger equation is the same
as the three-dimensional radial Schrodinger equation for
an s state. Consequently, the binding energies of states in
the strictly one-dimensional Coulomb problem should
start at R, and follow the Balmer series of the three-
dimensional problem. This result is misleading. ' ' The
infinitely bound state, which occurs as a limit when the
strictly one-dimensional case is approached from the
quasi-one-dimensional case, is not a formal solution for
the strictly one-dimensional case because infinitely bound
states do not exist. However, this ambiguity does not
change the results for quasi-one-dimensional systems:
The binding energy of the lowest state is greatly enhanced
and the other states occur at energies close to those of the
Balmer series. Figure 1 shows the energy levels of the
Coulomb problem and how they shift as the dimensionali-
ty is changed.

In this paper GaAs quantum-well wires surrounded by
Gai „Al„As are considered. Petroff et al. made wires by
using these materials, and most of the calculations for the
two-dimensional layers have been done for this pair of
materials. The binding energies and the spatial spread of
donor states with different symmetry are calculated as
a function of the wire size and the surrounding
Gal „Al„As alloy composition. The results provide a
useful indicator of the effective dimension of the QWW
and of the onset of size quantization. For wires that are
quasi-one-dimensional, the binding energies are enhanced
and can be 2 to 3 times greater than those in comparable
two-dimensional wells.

The consequences of the high binding energies in the
quasi-one-dimensional regime should be apparent in the
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FIG. 1. Energy levels of the Coulomb problem for strictly
one-dimensional (1D), quasi-one-dimensional, two-dimensional
(2D), and three-dimensional (3D) systems. The arrows indicate
how the levels shift as the dimensionality changes.

optical spectra of donors in QWW. Moreover, the high
binding energies should affect the transport properties of
QWW. Recent predictions suggest that scattering from
charged impurities inside the QWW will substantially
reduce the electron mobility. However, the binding ener-
gies are sufficiently high that there may be too few
charged impurities to have an effect.

In Sec. II the model for the QWW and the methods
used to find the eigenstates are presented, and the details
of the numerical calculations that provide useful insight
are discussed. The results are presented in Sec. III, and
their relevance to the optical and transport properties of
Q&~'s are discussed briefly in Sec. IV.

II. THEORY

Many choices could be made for the geometry and the
composition of the QWW. Wires with rectangular and
circular cross sections have been considered in transport
calculations. Petroff et al. made wires with triangular
cross sections. ' For the calculations described here, the
wires are assumed to have circular cross sections, are
made of GaAs, and are surrounded by Gai „Al„As. The
choice of cylindrical symmetry was made because the cal-
culations are much easier for that geometry. Other
choices and the effect of geometry on the binding energies
will be considered in future work.

The donor impurity is modeled as a point-charge im-
purity. For these calculations, the charge is located on the
axis of the wire. Again, this assumption was made to
simplify the calculation. Even so, a two-dimensional
Schrodinger equation with a nonseparable Coulomb po-
tential must be solved. To describe the dielectric screen-
ing of the point charge, the simplest approach was chosen.
The example of the transport calculations ' and most of
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where d is the wire radius, Vp is the discontinuity in the
conduction-band edge, m

&
is the electron effective mass in

GaAs, and mz is the effective mass in Ga, „Al„As (mo
is the electron mass):

and

Vp ——I.06x eV,

m ) ——0.067mp, (4b)

m2 ——(0.067+0.083x)mo . (4c)

Equations (3a) and (3b) are solved for bound states subject
to the boundary conditions at r =d, that the envelope

the calculations for the binding energies of point charges
and excitons in two-dimensional layers ' was followed,
and it was assumed that the point charge is screened by
the bulk static dielectric constant of GaAs. To date, only
Mailhiot, Chang, and McGill have correctly treated the
screening in a two-dimensional quantum well. The as-
sumption made for the screening is motivated by the ar-
guments that the electron is normally well confined to the
GaAs wire and that, in any case, the static dielectric con-
stant of GaAs (e = 13.1) is not very different from that of
Ga~ „Al„As [@=13.1(1—x)+10.1x]. This choice was
made because the screened potential retains a simple form
which can be treated analytically to simplify the ultimate
numerical calculations. The effects of using a better
model for the screening and of moving the impurity off
the wire axis will also be considered later.

The electron bound states and their binding energies are
found by solving the effective-mass equation. ' Nor-
mally, the effective-mass equation is reliable only for
weakly bound states, and one might worry that the
effective-mass equation is inappropriate when the binding
energy is greatly enhanced in quasi-one-dimensional sys-
tems. However, the band gap of GaAs is 1.4 eV, while
the effective Rydberg R, =5.3 meV. Thus roughly a hun-
dredfold enhancement of the binding energy is necessary
before the effective-mass equation becomes inapplicable.
This difference is much greater than the enhancement
seen in the cases considered here.

The solutions of the Schrodinger equation will be
cylindrically symmetric because the point charge is on the
wire axis. Thus the envelope wave function is an eigen-
function of the angular momentum L, along the wire
axis, and the wave function can be written as a product

'P„L, (r,z, 8) =Q„I.(r,z)e px(i LO),

where r, z, and 0 are the cylindrical coordinates. The
Schrodinger equation to be solved is

g I(ij ~H ~st) E„L (i—j ~st) jC,'," '=0. (6)

The energies are minimized by adjusting the parameters
that describe the basis functions and by increasing the
number of functions used. The binding energies are found
by taking the difference between E„L and the subband en-

ergy when no impurity is present. For a given symmetry
only the eigenstate with the lowest energy is reliably deter-
rnined because the variational approach is used to obtain a
best estimate for the energies.

The z-basis functions gj (z) were chosen to be Gaussian,

gj (z) =z'texp( ——,
'

gjz ), (7)

where q=0 or 1 determines the parity of the state relative
to the point charge. Calculations were done, typically,
with five Gaussian functions for even states (q =0) and
seven for odd states. A reliable set of gJ was determined
by solving the strictly one-dimensional Coulomb problem
using the even-parity Gaussian functions. The binding
energy could be predicted with less than 0.1% error using
the set Isa, j = [0.17,0.47, 1.4,5.6,39.0j, where a,
=e(mo/m, )ao is a scale factor, the effective Bohr radius,
which accounts for the dielectric response e and the effec-
tive mass of the material m, /mp, and ap is the Bohr ra-
dius. For bulk GaAs, a, =196ap ——10.3 nm. Solutions
with odd z parity have lower binding energy and are more
extended along the wire. For these eigenstates the basis
set was augmented to include /~a, =0.02 and 0.1, which
provide more extended basis functions. Most of the re-
sults presented here were found with the use of these pa-
rarneters. Not much additional minimization was ob-
tained by varying them.

Two basis sets were used for the radial basis functions,
with each choice best suited for different ranges of the
wire radius. For large wires (d & 100ao), radial solutions
for the free electron in the quantum well were used as
basis functions. These solutions are oscillatory Bessel
functions of integer order L inside the wire matched at
the boundary to decaying Bessel functions of order L.

wave function and the radial particle current (velocity
operator in the radial direction) be continuous. This
choice ensures that the Hamiltonian defined by Eqs. (3a)
and (3b) is Hermitian on the space of functions which
satisfy the boundary conditions.

Equations (3a) and (3b) are solved by expanding the en-

velope function in terms of products of basis functions of
zand r,

P„L(r,z)= g&,'J" 'f '(r)g, (z) . (5)
l,J

The basis set If 'j is chosen so that each function satis-
fies the boundary conditions. However, neither the basis
set of radial functions If 'j nor the set of z-basis func-
tions [gj j is necessarily an orthonormal set. Eigenstates
with different symmetries are investigated by using basis
sets with different symmetries. With these basis functions
the Hamitonian matrix (ij

~

H
~

st ) and the overlap
matrix (ij

~

st ) are determined [where (r,z
~
ij )

f '(r)g&—(z)] and the generalized eigenvalue problem is
solved for the energies E„t ..
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Typically, qualitatively accurate binding energies could be
obtained by using only the lowest subband state. Other
subband states were included to obtain more accurate
binding energies.

In a small wire with a finite well constraining the elec-
trons to the wire, the electrons leak sufficiently far from
the wire that their behavior becomes three dimensional.
In these small wires the Bessel function basis set is inap-
propriate either because only one subband level exists and
it cannot accurately describe the three-dimensional nature
of the bound state, or because no subband state exists. In-
stead, for small wires, Gaussian functions were used for
the radial basis functions,

f '(r)=r exp( ——,'a'; 'r ) (r &d),

=dr~exp( —,'P;''r') —(r&d) . (Sb)

A was chosen to make f ' continuous at the wire boun-
dary, and a,' ' and P'; ' were chosen to make the particle
current continuous,

m2 —m&

772 z

III. RESULTS

The results for the binding energies and for the root-
mean-square spread of the bound states both parallel and
perpendicular to the wire are discussed in this section.
Calculations were made for three choices of the alloy
composition of Ga) „Al„As (x=0.1, 0.2, or 0.4) to illus-
trate how the changeover in dimensionality is affected by
the well depth. Calculations were also performed with the
assumption that an infinite barrier prevents the electron

(L) p(&) (Sc)
m2

In practice, P'; ' takes on values comparable to those
used for the z basis set and a,' ' is determined by Eq. (Sc).
This procedure ensures that the basis functions are chosen
to best describe the three-dimensional Coulomb problem
outside the wire when the wire is small and the potential
well is a weak perturbation to the Coulomb problem. The
calculated binding energies are sensitive to the choices
made for the PI '. Thus the P'; ' were varied extensively,
and the size of the basis set was increased to nine or ten
functions to obtain accurate results. For most cases the
IP,' ') used for the radial basis functions was the set of
used for the z-basis functions augmented with larger 13,' '

to properly describe the extra confinement due to the po-
tential well. Gaussian functions were not used for large
radius wires because too many were needed to describe the
effects of the potential well even with no impurity present.
For large wires the Bessel function basis was better be-
cause it already contained the effects of the potential well
on the eigenstate.

The overlap integrals and the matrix elements for the
kinetic energy and potential well can be evaluated analyti-
cally with these basis functions. The z integration for the
Coulomb matrix elements can also be done analytically,
but the remaining radial integration must be obtained nu-
merically. Attempts to perform the radial integration
analytically were frustrated because the radial basis func-
tions change form at the wire boundary.

from leaving the wire. The difference between the re-
sults for the infinite- and finite-well wires is striking when
the wires become small and the finite-well wire changes
from being one dimensional to being three dimensional.
A similar dimensional crossover and similar differences
between results for infinite and finite wells occur when the
wells are two dimensional. ' ' A comparison of these re-
sults for QWW's points out the limitations of the
infinite-barrier model and the danger of using the model
for small wires to which it no longer applies.

When the impurity is on the wire axis, the symmetry of
a bound state is defined by its even or odd z parity (q=0
or 1) and its angular momentum L in the z direction. The
lowest-energy states with the symmetries L=O, q=O;
L =0, q=1; L=1, q=O; and L=1, q=1 were studied.
They correspond, respectively, to 1s, 2p„2p~ and 2p~,
and 3d and 3d„, states. The excited states with these
symmetries (e.g. , the 2s, 3p„, 3p„and 3p~ states) are
determined less reliably by the variational method, and
will not be discussed.

One of the features apparent in all the results to be
presented is the changeover in the effective dimension of
the wire as the wire radius changes. This crossover from
one-dimensional to three-dimensional behavior, when the
wire radius becomes small, is made more obvious when
the results for finite-well wires are compared with those
for an infinite-well model. In the latter case, the wires
remain quasi-one-dimensional no matter how small the
wire. A similar result occurs for two-dimensional wells
with infinite barriers. ' Moreover, the binding energy
of the 1s state in the infinite-well model approaches infin-
ity as the wire radius becomes very small, while the bind-
ing energy in a finite-well QWW approaches that of the
1s state in bulk Ga~ „Al,As.

The results for the infinite-barrier wire are shown in
Fig. 2. The binding energies increase monotonically and
the wire becomes more strictly one dimensional as the ra-
dius decreases. The centrifugal potential lowers the bind-
ing energy when the wire has a finite radius. However, as
the wire becomes more strictly one dimensional, the bind-
ing energies become insensitive to the angular momentum
L. The binding energy of the lowest-energy even-parity
state for each L approaches infinity while that of the
lowest odd state for each L approaches 8, At large d
the behavior should be three dimensional. Although this
conclusion is not completely obvious in Fig. 2, the binding
energy of the 2p„state does drop below R, when
d &600a0 and begins to approach that of the 2p, state.
Also, for large d the 2p, and 3', states have different en-
ergies. However, even at 1000a0 the binding energy of
the Is state is 1.158, and the binding energy of the 2p„
state is 50% greater than that of the 2p, state. Thus
quasi-one-dimensional effects persist to large radii.

For realistic GaAs/Ga) „Al„As QWW's, the binding
energies of the Is and 2p„states are shown in Fig. 3, and
the binding energies of the 2p„and 3d~ states are shown
in Fig. 4. The enhancement of the binding energy by the
one-dimensional confinement is clearly the dominant ef-
fect. The finite-well results closely follow those for the
quasi-one-dimensional infinite-well wire, except for small
wires. The bound states in the finite-well wires have
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dashed), 0.2 (dashed-double dotted) and 0.4 (dotted).

FIG. 2. Binding energy Ez of an electron bound to a hydro-
gcnlc 1mpur1ty on thc axis of an 1nflnltc-barr1er GaAS w11c of
radius d. The radius is normalized by the Bohr radius uo, and
Es is normalized by the effective Rydberg R, in GaAs [see Eq.
(1)]. The binding energies for the lowest-energy states with even
and odd z parity and with I.=0 (solid curve) and I.= 1 (dashed)
arc shown.
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bound states for GaAs wires of radius d surrounded by an infin-
ite barrier (solid curve) and by GaI „Al„As with x=0.1

(dotted-dashed), 0.2 (dashed-double dotted), and 0.4 (dotted).

slightly lower binding energies because the finite-well
wires are less one dimensional. Only the 2p, binding ener-

gy in an x=0.4 well wire of radius d -25ao is larger than
the corresponding binding energy in the infinite-well wire.
The reason for this is not clear. Electrons in realistic
QWW's should behave as three-dimensional electrons for
d ) 1000ao, because the results for finite- and infinite-well
wires are nearly identical at these d. For all wires the
binding energy increases as the Al content x increases.
This change occurs because the confining well depth in-

creases as x increases, making the wires more one-
dimensional, and because the electron effective mass in
Ga1 „Al„As increases as x increases, making the elec-
trons easier to bind.

For a small finite-well QWW the electron behaves as a
three-dimensional electron in Ga1 Al„As. The cross-
over from three-dimensional to one-dimensional behavior
at small d is dramatic and rapid. The crossover occurs as
d changes by (10—25)ao when 1.=0. When L is finite,
the electron is pushed partly out of the wire and this
crossover occurs as d changes by only 5ao, corresponding
to one-half of an atomic layer. One would expect the
crossover to be broader if an atomistic model were used
for the calculations. When this crossover occurs and the
electrons can leak out of the wire, the binding energies be-
come more sensitive to the composition of the
Gai „Al„As. For very small wires the binding energy in-
creases proportionally to the area of the wire (d j, as
predicted by lowest-order perturbation theory, because the
confining potential is a weak perturbation to the three-
dimensional impurity problem. The limiting value of the
binding energy for small d is that for bulk Gai „Al„As.

A comparison of the binding energies for the ls, 2p„,
2p„and 3d», states for one alloy composition is shown in
Fig. 5. The crossover from three-dimensional to one-
dimensional behavior is obvious in a comparison of the
2p„and 2p, binding energies. %'hen d is large or small
the results for the two states are similar. When the wires
are quasi-one-dimensional the results are very different.
The 2p~ state is much more tightly bound than the 2p,
state because the 2p„state has even z parity while the 2p,
state has odd parity, This increase in binding occurs even
though the 2p„state has finite angular momentum and
the centrifugal potential tries to push the state from the
wire. The centrifugal potential is able to expel the elec-
tron only from very small wires, for which the 2p, state
has a lower binding energy.

Also shown in Fig. 5 are the results found by assuming
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FIG. 8. Spread of the 3d state for GaAs surrounded by
GR06A104AS. The arrows indicate the d=O and d very large
(radial spread only) limits. The limit for the z spread for large d
is 1440ao.

The crossover from three-dimensional to one-
dimensional behavior of the wire is directly correlated to
the abrupt change in the way the radial spread varies with
the wire radius. This crossover occurs for each of the
states when the radial spread equals the wire radius. The
wire is one dimensional when the radial spread is less than
d and the electrons are confined to the wire, and three di-
mensional when the radial spread is greater than d.

IV. MSCUSSION AND SUMMARY

The binding energies for the bound states of a hydro-
genic impurity placed on the axis of a quantum-well wire
llavc bccn calculated. Tllc 'QWW ls a cylllldcl of GRAs
surrounded by Gai „Al„As. For very small wires, the
electrons leak out of the wire and behave as three-
dimensional electrons in Ga& Al„As. As the wire size
increases, an abrupt crossover from three-dimensional to
one-dimensional behavior occurs when the radial spread
of the wave function becomes smaller than the wire radius
and the electron no longer leaks out of the wire. The
strong enhancement of the binding energy is a dramatic
signature of this crossover. Moreover, the wire remains
quasi-one-dimensional out to the largest radii (1000ao)
studied here. Similar effects occur in two-dimensional
wells.

This strong enhancement of the binding energy should
have important consequences for optical studies and for

transport measurements on QWW's. For example, Petr-
off' has observed cathodoluminescence in QWW's which
he attributes to transitions involving exciton states. The
observed transitions occur at (8—10)-meV higher binding
energy than those in two-dimensional quantum wells, and
the lines are much broader. These results for excitons are
consistent with the results for hydrogenic impurities. The
ls binding energies of hydrogenic impurities in QW'W's

can be 10 meV greater than those in comparable two-
dimensional wells. Thus the increased binding observed
by Petroff et al. is consistent with the enhancement of the
Coulomb interaction expected when the system is quasi-
one-dimensional. Moreover, one might expect broader
luminescence for QWW's than for two-dimensional wells.
The binding energy is more enhanced in quasi-one-
dimensional systems and is more sensitive to the location
of the impurity or exciton relative to the well boundary.

Recent calculations of the carrier mobility in QWW's
11Rvc coIlsidcrcd, tllc contrlbuf1ons of cllargcd lmpurlf y
scattering by impurities outside ' and inside the wire. It
was suggested that the enhanced scattering by charged
impurities inside the quasi-one-dimensional wire should
greatly reduce the electron mobility in small wires. The
results presented here show that the binding energy also
increases rapidly as the QWW becomes smaller, thus
reducing the number of ionized impurities. In addition,
for very small wires the crossover to three-dimensional
behavior occurs and the scattering is no longer enhanced
by one-dimensional confinement. Thus a large reduction
in mobility from scattering by impurities inside the wire
need not occur.

Boundary effects should have a major influence on the
physics of electrons in small structures any time that the
electron wavelength is comparable to the device dimen-
sion. The quasi-one-dimensional nature of the impurity
levels in QWW's and the abrupt crossover behavior are
dramatic evidence of the importance of boundary effects
in QWW structures. These results have been illustrated
qualitatively using the specific example of a cylindrical
wire and an impurity on the wire axis. In small semicon-
ductor structures the actual shape of the wire and the lo-
cation of the impurity should strongly influence the quan-
titative results because the influence of the boundary is so
important.
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Continuity of the envelope function and the particle current. is
not the only set of boundary conditions that can be chosen

[see T. Ando and S. Mori, Surf. Sci. 113, 124 (1982)]. They

suggest boundary conditions for GaAs/GaI „Al„As inter-
faces with small discontinuities in the envelope function and
the particle current. The discontinuities are chosen so that
the Hamiltonian remains Hermitian. I have also performed
calculations for QWW's by assuming that the envelope func-
tion and its derivative are continuous. However, in this case
the boundary conditions do not guarantee that the Hamiltoni-
an is Hermitian. The binding energies can be found only after
the Hamiltonian is forced to be Hermitian by arbitrarily ad-
justing the off-diagonal elements below the main diagonal to
satisfy the Hermitian condition. The binding energies found
by using these boundary conditions are qualitatively similar to
those found by assuming that the particle current is continu-
ous. The results should be insensitive to other possible
choices of similar boundary conditions. This is understand-
able, since a first-order change in a variational wave function
causes a second-order change in the energy.
For an infinite-barrier well a basis set of Bessel functions can
be used for each wire radius because a complete set of sub-
band states exists for each wire radius.


