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Attenuation and dispersion of surface polaritons on gratings
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%'e px'esent theoretical studies of the influence of a diffraction grating on the dispersion relation
and lifetime of surface polaritons which propagate on a periodic metallic grating. Several issues are
addressed. %e compare the predictions of a perturbation-theoretic analysis with the results of a
nonperturbative approach based on use of the extinction theorem. The grating-induced attenuation
arises from radiative decay of the surface polariton; the radiative width of the mode is compared
with the magnitude of the minigaps in the dispersion relation induced by the grating. We also com-
pare grating-induced frequency shifts and damping xates calculated directly from the implicit
dispersion relation with the width and position of reAectivity dips, as calculated from a nonpertur-
bative treatment of the coupling of an incident photon to the grating. The effects of introducing
asymmetry in the grating profile are also explored quantitatively.

I. INTRODUCTION

There is considerable current interest in the study of the
interaction of electromagnetic radiation with a metal sur-

face upon which a diffraction grating is ruled. For many
years, it has been known that a grating may lead to
resonant coupling of an incident photon to surface polari-
tons which propagate on the metal, if the geometry is
chosen so certain kinematical conditions are met. The re-
cent interest in the topic stems from the observation that
when an incident photon is coupled to a surface polariton,
the strength of the electromagnetic fields near the metal
surface is enhanced very substantially, when compared to
those realized near a perfectly smooth surface of the same
material. A consequence is that a variety of optical in-
teractions which occur on or near the surface proceed
with cross sections very much larger than can be realized
on a smooth surface. An example is provided by the Ra-
man spectroscopy of adsorbates, where it is argued that
the cross section scales as the fourth power of the field at
the site of the molecule of interest. Very similar field
enhancements may occur near protruslons on rough sur-
faces. The diffraction grating allows the experimental
study of optical interactions on surfaces of nonplanar
form, under conditions where the surface profile is well
characterized, and at thc same time thc pcriodlc structure
may more easily be subjected to theoretical analysis than a
rough surface, which may contain features of substantial
size and of random character.

Since it is the surface polariton which plays the key role
as an intermediate state in enhanced optical couplings
mediated by gI'atlngs, its lntrins1c plopcrtlcs arc clcaI'ly of
fundamental interest. This paper is devoted to a study of
thc 111flucIlcc of R glat111g oI1 tllc pl'opcItlcs of surface po-
laritons. Several issues provide motivation for the
analysis. First of all, in recent theoretical studies of
enhanced flelds near a model grating, we found that as
the groove depth is increased, the strength of the field
first increases, but then saturates and finally decreases
with increasing depth. Similar results were found by Nu-

mata, and by Neviere and Reinisch, who examined the
theory of enhanced fields near gratings with either the
profile or the spatial period different from that explored
in our work. %e suggested in Ref. 5 that the saturation
phenomenon has its origin in grating-induced radiative
damping of the surface polariton. It is seen in these
theoretical studies that as one increases the grating ampli-
tude, the peak in field intensity (as a function of incidence
angle or frequency), which coincides with the reflectivity
dip, illcrcascs 111 strcilgtli Rs 'tlic 1cflcctivity dip dccIcRscs,
reaches its maximum value when the reflectivity dip
reaches its minimum value, and then dcclcascs as thc lc-
flectivity becomes shallower and broader. Some years
ago, the behavior of the reflectivity dip as a function of
grating amplitude h was itself carefully studied experi-
rnentally by Pockrand, Raether, and others. ' These
authors showed how the width of the reflectivity dip in-
creases proportionally to h, due to the increase in the
grating-induced radiative damping of the surface polari-
ton, to which the incident light couples (in quantitative
agreement with the perturbation theory of Kroger and
Kretschmann and the exact method of Maystre, in the
case of Ag, and with the method of Rosengart and Pock-
rand' for Au). Poakrand and Raether' pointed out that
the reflectivity dip reaches its smallest value for that value
of h Rt whicll tllc I'RdlRtlvc dRIIlplIig IIiatchcs tllc diss1pR-
tive losses in the material. The grating-induced radiative
damping of the surface polariton should thus play a cru-
cial role in the enhancement phenomena: the matching
condition provides the optimum coupling of incident hght
and hence the maximum in the surface field. We should
therefore hke to explore the grating-dampmg of surface
polaritons and, of course, their frequencies and wave vec-
tors as shifted by the grating. We wish to do this directly
from an exactly derived dispersion relation (whose solu-
tion for complex wave vector or complex frequency yields
the damping from its imaginary part), and not just in-
directly from calculated reflectivity dips nor from pertur-
bation theory. The method that we employ is based on
Green's theorem in its extinction theorem form.
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Previous theoretical analyses have tended to focus on
the properties of the surface polaritons at a few fixed fre-
quencies m and wave vectors k, corresponding to those
realized in certain experiments (e.g., Refs. 10 and 12).
These have been at positions (co, k) in the Brillouin zone
(introduced by the grating periodicity) that are not close
to the zone boundaries. We now wish to explore a larger
portion of the surface-polariton dispersion curve, across
scvclal Brillouin zones, and ln partlcula1 to cxploI'c thc r'c-

gions around the frequency gaps at the zone boundaries
themselves.

These so-called "minigap" regions are of fundamental
lntcfcst because thc coupling betwccn the gI'atlng and suf-
face polariton is particularly strong there and the disper-
sion curves are moI'e severely perturbed. Such band gaps
are also of some technological interest because of their
wave-slowing and filtering properties. A recent experi-
mental study of surface polariton minigaps for Ag grat-
ings was made by Chen et al. ' Here we examine not
only the absolute magnitude of the minigaps generated by
a grating, but also their size relative to the widths of the
surface polaritons. If radiative damping is sufficiently
severe that the width in frequency of the surface polariton
fcsonancc ls compaI'able to of la'gcI' than thc minigap,
then the latter may not be observable.

En implementing the theory numerically we have chosen
to study gratings with sawtooth profiles. We are thus able
to consider easily the effect, on the surface polariton fre-
quencies and damping, of skewing the profile continuous-
ly from symmetric to asymmetric. This change in profile
is seen to have a great effect on the minigap widths.

Throughout the course of the analysis presented here,
we have compared the complex solutions of the dispersion
relation to the calculated positions and widths of the re-
Aectivity dips. It is the latter, in the case of fixed fre-
quency and varying angle of incidence, for example, that
the experimentalist uses as a measure of the wave vector
and inverse attenuation length of the mode. It is not,
however, obvious a priori that this procedure is valid: to
employ language used in other contexts, one is in a regime
where multiple scattering can lead to a variety of interfer-
ence effects, which would shift the reflectivity minimum
away from the renormalized frequency of the surface
mode. For the example we have explored, however, we
find that the solutions of the dispersion relation coincide
fairly well with the reflectivity minima and widths
(though this procedure is not without ambiguity, at the
zone boundaries, where solutions of the dispersion relation
depend on whether one uses complex co and real k or com-
plex k and real co).

Finally, we have explored the range of validity of per-
turbation theory as a means of describing the grating-
induced frequency shifts and radiative damping rates.
Despite the success of Pockrand and Raether, ' ' for ex-
ample, in applying the Kroger-Kfetschmann perturbation
theory to their experimental reflectivity data on the shift
and broadening of the dips, with Ag gratings, it is not ob-
vious that a perturbation approach will work, even for
shallow corrugations, in all circumstances, e.g., every-
where on the surface-polariton dispersion curve, including
the zone boundary regions, or for different materials, or

different grating profiles like the asymmetric sawtooth.
For example, Raether showed that the Kroger-
Kretschmann theory works much less well for Au than
for Ag. It is clear, moreover, that perturbation theory
can fail to describe properly both the reflectivity dips and
the enhanced fields near resonance, even for extremely
small grating amplitudes: It is inappropriate for calculat-
ing these quantities in the observed cases for which the re-
flectivity fmm Ag gratings fall from over 90% to near
zero and the field intensities reach enhancements as
great as 500 (Refs. 5—7 and 18) for corrugation strengths
(one-half the peak-to-valley distance divided by the
period) of only 0.02—0.04. On the other hand, the in-
stances in which perturbation theory has worked well are
thos, where the perturbed quantities being calculated are
very small, like the wave-vector shift, far from any
Brillouin-zone boundaries and for small amplitude
sinusoidal gI'atlngs. Wc can thus, legitimately, qucstlon
the validity of the perturbation theory for calculating the
shifts and the damping of surface polaritons near zone
boundaries, for asymmetric sawtooth gratings, and for
corrugation strengths greater than those previously con-
sidered. We have cast the perturbation theoretic formulas
into a simple and useable expression for the (complex) fre-
quency, which is valid both at and away from the zone
boundaries; and we have compared the numerical results
of this expression to those of the exact methods (which it-
self is valid for a certain range of groove depths for which
convergent results obtain).

The paper is organized as follows. In Sec. II we present
a brief summary of the extinction theorem approach to
deriving the dispersion relation and we outline how per-
turbatlon theory leads from this exact dispersion relation
to R simple, lowest-order, cxpI'csslon. In Scc. IEI wc
present the results of our numerical studies and discuss
their implications.

A. The exact, extinction-theorem,
formulations

The physical system that we consider (Fig. 1) consists
of an isotropic dielectric medium that fills the lower half-
space x3 g g(x & ) and is characterized by a complex dielec-
tric constant e'(co). The upper half-space x3~$(xt) is
vacuum. The surface profile function g(x, ) is periodic in
x~ with a period a (i.e., forming a classical grating).
Later, in the numerical implementation of the theory, we
shall focus our attention on the sawtooth profile.

A theory of the scattering of p-polarized light (i.e.,
transverse magnetic with respect to the plane of
incidence —here x~x3) incident upon such a grating sur-
face was presented by Toigo et al. ' using the extinction
theorem. When the incident wave amplitude in this
theory ls sct equal to zero~ thcIl R homogeneous equation
results, for which the solvability condition yields the
dispersion relation. The theory has been described now in
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complete detail in several articles, ' ' ' and will not be
reproduced here. A brief outline of the theory will, how-
ever, help to define the notation.

The only nonvanishing component of the magnetic

field, the x2 component, is a function of x I and XI and is
written as H2 (x l,x3

I
(o)e ' ' in the vacuum and

H2 (XI,XI
I
co) '"' in the medium. Green's theorem may

be written as

f G(-+ -+p) 2 H (-+&) BG(x&x )BH (x ') H2(x), xe V

0, xKV
(2.1a)

{2.1b)

where the surface X bounds the volume V. We first
choose V to coincide with the vacuum region x3 & g(x I );
then 6 is the well-known electromagnetic Green's func-
tion for an infinite vacuum (with radiation boundary con-
ditions at infinity), H2 is H2, and the surface integral
reduces to an integral over just the interface x3 ——g(x I ),
with 8/Bn' being the normal derivative (directed into the
medium) at the interface. We choose the field point x
with xs & g;„, so that the right-hand side is zero (extinc-
tion theorem). Next we choose V to be the dielectric
medium; then 6 is the Green's function for the medium,
H i H, ad g' the' tg 1 d t oeo th
interface (and 8/Bn' changes sign). Using the boundary
conditions at the interface, we can replace H» by H~
and e 'BH2» /Bn by 8Hz~ /Bn We cho. ose xs &g,„and
get the extinction theorem. At this point we have two
homogeneous integral equations for the two unknown
functions

(2.2a)

' 2 —I /2

1+
Bx I

ag a a
Clx I Bx I BX2

(2.3)

H(xl Iso)= g e " 'H„(k, ep), (2.4a)

L(xl Ico)= g e " 'L„(k,ep),

(2.5)

in order to project out a set of algebraic equations:

OO k k„—(o /cI „{a (k, co)) H„(k,co)
5= —cc (x opNl

The integral equations are solved by expanding the un-
kllowll fllllctlolls 111 Fourlel se11es,

2 1/2

L (x I I
(o)= 1+

Bx( Bn

+ L„(k,ro) =0, (2.6a)

XH2 (x»X3
I
eP)

I x3 ——g(x) ) i (2.2b)

CC k k„—e((o)co /cI „(—P (k,co)) H„(k,co)
n = —oe m

(2.6b)

Here we have used the following definitions:

1 ~/2 i(2xn/u)x—)
—a' (k,a))gx()

e
(I —a /2

(2.7)

a~(k, Io) = .
{2.8a)(k —(o /c )'/ for k ~op /c

I'(co /c k~—)'/ for k—~ &(o /c, (2.8b)

I

I I

I I

I I

I I

FIG. l. Asymmetric sawtooth grating on a semi-infinite
silver mediuln, characterized by dielectric constant e(co), with
vacuum in the upper half-space. The grating period is a and
amplitude h; the asymmetry parameter is y.

P (k,Io)=[k —e(co)(o /c ]'/2, ImP (k,co)&0.
(2.9)

The doubly infinite set of homogeneous linear equations
for H„(k,eI) and L„(k,(o) will have solutions provided
that the determinant of the coefficients vanishes. This



determinantal equation for k and co provides the disper-
sion relation for the surface polaritons in the presence of a
grating.

By solving Eqs. (2.6) to obtain the field and its normal
derivative on the interface and by using these results in
Eq. (2.1a), one can calculate the field. In the vacuum,
above the selvedge region, the field is properly given by
the Rayleigh sum

H;(x„x3 ~co)= g &„(k,co)e " '

It is interesting to note that the Rayleigh method, where-
by the Rayleigh sums for H2~ and Hz~ are continued into
the selvedge region to satisfy the boundary conditions,
yields a set of algebraic equations for which the matrix of
coefficients (for symmetric profiles) is just the transpose
of that in Eqs. (2.6).' ' lt therefore gives the same deter-
minantal equation for the dispersion relation.

In that part of the kco plane where k~ &co /c for all
m, all a are real and positive, so that the field is local-
ized to the surface. The surface polariton on a grating is
here a well-defined, infinitely long-lived, excitation. The
dispersion curves resulting from Eqs. (2.6), for this so-
called nonradiative region, were explored by Laks et al. '

In the present work, we explore the radiative region of the
kco plane, where k &co /c for one or more values of m.
In this case we see from Eq. (2.8b) that one or more com-
ponent waves in Eq. (2.10) represent outward radiation
into the vacuum. Since energy is thus leaving the surface
wave, the surface polariton is no longer a well-defined
eigenmode, but instead has a finite lifetime. This leaky
surface polariton should hence be described by a complex
co and/or k: we should search for zeros of the deter-
minantal equation in the complex plane.

With complex k or co, we must be careful about how we
define the square root in Eq. (2.8) for the complex decay
constant a . This point has been discussed in the litera-
ture for various kinds of leaky surface waves and leaky
wave-guide modes. A full discussion for leaky surface
elastic waves, for example, is given in Ref. 23, which we
summarize here for the analogous case of surface elec-
tromagetic waves.

Consider first the case of complex co:

(2.11)

where coa &0 and where we must have col &0 to have a
surface wave that decays in time. From Eqs. (2.11) and
(2.8) we have

cz~ =[(k+2mmla) —(cog co—i)/c ]+i(2coacol/c ),
(2.12)

so that cz~ must be in either the first or second quadrant
of the complex plane. If we were to choose the branch-
cut on the negative real axis, then n would always be in
the first quadrant. Then a has a positive imaginary
part, which means that the component wave ( m) is travel-
ing inward from the vacuum to the surface, opposite in
direction from what is required. On the other hand, if we
choose the branch-cut along the positive imaginary axis,
then whenever k &(co+ —coq)/c, putting a in the
second qURdI ant» thc A~ w111 bc 1n thc third qUadl ant.
The negative imaginary part of a means that the wave is
now correctly radiating outwardly from the surface; the
negative real part means that it is growing exponentially
with distance from the surface, a necessary condition for
leaky waves. That leaky waves must always have a seem-
ing divergence at x3 ——{x) was discussed by Ingebrigtsen
and Tonning, who pointed out that the usual radiation
boundary condition of finite amplitudes at x3 ——ao is not
applicable. A divergence at x3 ——oo at time t can develop
only for a wave that leaves the surface at t = —ao (since
the wave needs infinite time to reach x3= ao), but then
the surface wave itself has an infinite amplitude, due to its
exponential form e '. Thus there is a divergence at
x3 ——+ Oo because of the built-in divergence at t =—00:
leaky waves are not normalizable. In a real physical situa-
tion, the surface excitation is begun at some time, say
t=0, and then after a finite time t, the wave leaking out
from the surface cannot have traveled farther than ct; so
that for x3 & ct there is no wave and hence no divergence.
That an exponential increase with distance into the vacu-
um is physically correct, a necessary consequence of the
finite speed of propagation, can be seen clearly by writing
a component of H2~ [from the sum in Eq. (2.10)] for
which k~2 & (co~2 co,')/c', —and hence am ——

I
a—i

~
ai ~, namely,

[H2 (xi x3 I co)] e
'" '=expI —col[to —x3/(col/

~
cz«

~ )]j& exp[i(k xi+
~
al

~
x, coato)]—

~&,„~(t=to —x3/F)A exp[i(k x, + ~ccl ~x3 —co+go)], (2.13)

where c=coi/
~ czar ~

. At time to, this component wavelet
Pl rcplcscnts Rn outgo1ng plane wave with RIl RQ1p11tUdc
that is proportional to the amplitude on the surface at the
retarded time t =to x3/c when the w—avelet left the sur-
face.

In the case of complex k,

(2.14)

kg may bc pos1t1vc 01 ncgRt1vc, Rnd kI must have thc

same sign as the group velocity (in an extended zone
scheme, ki will have the same sign as ka ). Then we have

a =[(ka+2n.m/a) kg co2/c ]- —
+i [2(kg +2mm/a)kl] . (2.15)

From Eq. (2.15), it can be seen that only the choice of
branch-cut along the positive imaginary axis will lead to
outgoing radiated waves in the vacuum, with nonzero am-



N. E. GLASS, M. O'EBER, AND D. L. MILLS

plitude at x3 ——ao. Again, there is an exponential increase
with distance into the vacuum, and that this is phy-ically
correct 18 shown by an argument analogous to the one )ust
presented for complex co (see Ref. 23).

Before turning to a discussion of the numerical results
of the exact dispersion relation, arising from Eqs. (2.6), we
first show how perturbation theory applied to that set of
equations leads to a simple and useful expression.

I~ n(&~{k ~))=~m-.,o
—0~-.~~ (2.16a)

B. Perturbation theory

Various formulations of perturbation theory have been
presented, to treat the scattering of light from rough
(especially randomly rough) planar surfaces, in the limit
that the roughness amplitude is small. These theories
have also been applied to gratings and to the properties of
surface polaritons on gratings. In particular, the work of
Kroger and Kretschmann' was employed by Pockrand
and Raether' and by Raether' in a comparison to their
experimental work on light scattering from gratings. The
positions and widths of the measured reflectivity
minimum, as a function of grating amplitude, correspond-
ing to two points cok within a Brillouin zone (defined by
the grating periodicity) were compared to the theory
(quite successfully for Ag, and somewhat less so for Au}.
Toigo et al. ,

' by expanding Eq. (2.7) to first order in ag,
showed how the extinction theorem result leads to a
dispersion relation; then, in the case of a grating, they
solved for the dispersion relation at a Brillouin-zone boun-
dary in the two beam approximation (i.e., keeping only the
terms with k =+nm/a}. At about the same time, one of
us explored the minigaps as a function of the angle be-
tween the wave vector of the surface polariton, and the
grating grooves. This was also done within the two-beam
approximation, and with use of the Rayleigh hypothesis.
One may demonstrate that the results of Ref. 25 and those
in Ref. 19 are in agreement.

In the perturbation theory described here, we begin with
the extinction theorem results and derive a simple algebra-
ic expression for the dispersion relation, keeping a/i terms
to first order in ag. We take into account the effect of the
nonresonant terms in Eq. (2.6) by solving for the corre-
sponding I.„and 8„ in terms of all of the grating modes.
Since the contribution from the resonant terms will be
most important, we can thus write the nonresonant L„
and H„ in terms of the resonant modes. This procedure
leads to a simple eigenvalue equation which yields the
dispersion relation valid to first order in the grating
height.

We begin by expanding the integral in Eq. (2.7) to first
order in g,

I „(—P (k,co))=5 „0+/ „P (2.16b)

1 ~~z
d

i—(zw/~Nm n—
)x&~(

g —a/2
(2.17)

Thus g~ is the mth Fourier component of the surface
profile function g(xi). Note that go

——0 by construction.
Inserting into Eq. (2.6) we find an expression relating one
mode to all the rest:

These equations can be solved for L and H to yield

L = g [Aii(m, n)L„+Aiz(m, n)H„], (2.19a)
pg

~+IPl + lit

H = g [Azi(m, n}L„+Azz(m, n)H„]
0m-n

&~m+ m

(2.19b)

Aii{m,n)=u P {1—e),

Aiz(m, n)=(a +P )k k„(Ea +—P )
ez '

Azi(m, n)=e(a +P ),
Azz(m, n)=k k„(e—1) .

(2.20)

I.et co~, ,k~ correspond to a surface polariton in the ab-

sence of the grating. Now, suppose that we examine a
mode with wave vector k~ near a zone boundary. There

will exist a mode with wave vector k =k,
—(m, —mz)2m/a which will be coupled strongly by the
grating to the k~ mode. This coupling will manifest it-

self through the vanishing of the denominators, to zeroth
order, of the form ea, +p, and «,+p, , thereby

causing I~, H, L~, and H~ to become large.

We can rewrite the above equations for m =m i, pulling
the large resonant terms out of the sum:

00 H„ 2

L+aH =+/„aL+kk„—
g = O'm

(2.18a)

PFl )
—Ptl'2

L = [A,i(m„mz)L +Aiz(mi, mz)H ]+ g [Aii(mi, n)L„+Aiz(mi, n)H„],
&izm, + m, yg (~yygz) e~m)+~mi

(2.21a)

Nl (
—Ply ltd )

—5
H, = [Azi(mi, mz)L, +Azz(mi, mz)H, ]+ g [Azi(mi, n)L„+Azz(mi, n)H„] .

&&m, + m, , (~pg, ) ~izm, +Pm,
(2.21b)



Similar expressions can be written foi Lm alid Hm ~

Now, ere can approximate the A' s, when m =m& or m

=mz, by their zeroth-order values where ea, ,+P „
=O.

[V,(m „n)H„+V (m„n)L„], (2.25a)
n (~m2)

A(i(m, n) =s(e —1)a

Aiz(m, n)= —(e—1)amk k„,

Azi(m, n) = —e(e—l)a

Az2(m, n)=k k„(e—1) .
Inserting these expressions in Eq. (2.21), we see that

L,= a,H—
, and L,= a,H—,. Putting the above

relationship for the resonant terms into Eq. (2.21) and into
the related equations for L, and H, , we find

where we have substituted

6(mi, m2}=2c~a,(k,k, +@a,a, )g .
V~(mi, n}=2c2am km kng

Vs(mi, n) = 2c2ea—

(2.26)

f V, (m2, n)H„+ Vs(m2, n)L„], (2.25b)
lt (+Ptt I )

e&m, + m,

„(e—1)

n (~m2) m)+ m& L„= g V, (n, m;),n +p c (2.29a)

Now, we can approximate the nonresonant L„and H„ in
Eq. (2.25) by only the resonant contribution from Eq.
(2.19); that is, by

A similar expression holds for H, , with mi and mz in-

terchanged. If we multiply the H equation by
e am, —Pm, , then we will be able to obtain an eigenvalue

equation for co. Note that

H„= g ' Vg(nm),
(=),2 &~n+Pn

V, (n, m;)=g„. (a +P„)k„k .+(e—l)a„P„a

(2.24)

is just the unperturbed frequency of a surface polariton of
wave vector k, . The equation for H, becomes, after
setting @am, +P, =O on the right-hand side and rear-

ranging~

V~(n, m;) =g„,[k„k .(e—1)—e(a, +P„)a,] . (2.31)

We insert Eq. (2.29) into Eq. (2.25) to obtain

(2.32a}

(2.32b)

b (m;, mj )=d(m;, mJ )+ V, (m;, n) V~(n, mj )+Vb(m;, n) V, (n, mj )

&n+Pn
(2.33)

are the effective coupling constants, renormalized by the grating, and

V, (m;, n) Vd(n, m;)+ Vs(m;, n) V, (n, m;)
Q) ~.=6)~.—

n (+m;, mj) &n+Pn

are the renormalized versions of the unperturbed frequen-
cies. By inspection, one can pick out the eigenvalues from
(2.32) to be

+ —,
'

f(70m, —tom, ) +4K(mi„m2)Z(mi, m, )]'~z (2.35)

This simple algebraic expression is to first order in the

grating height the dispersion relation for surface polari-
tons on a grating. It can be used away from the gaps to
give the dispersion curve in the near vicinity of the
Brillouin-zone boundary. As one moves aways from the
zone boundary, to the point where ) a),—a)

& 4Z(m i,mz )Z(m z, m i ), then the square root in Eq.
(2.35) may be expanded. Then if in the term

~( m, im)&z( m, zm)/i(Fo ', ro ', ) gener—ated by this
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procedure one retains only the lowest-ordex contribution
in the grating amplitude (replace 6 by 5 and co by co), one
may show that the renormalized frequencies are then
given by RI, and co, as defined in Eq. (2.34), with the

restriction n+mj removed. Now when the restriction
n&mj is removed from the right-hand side of Eq. (2.34),
the resulting form is precisely the expression for the com-
plex frequency shift of the mode provided by second-order
perturbation theory. Recall that the imaginary part has
its origin in radiation-induced radiation damping. Thus,
as we move away from the gap, Eq. (2.35) evolves into an
expression identical to that produced by second-order per-
turbation theory, applied away from the zone boundary.
This equivalence holds so long as one does not stray too
far from the zone boundary.

By using the nonresonant terms to renormalizc the un-
perturbed frequencies, of the interacting waves ml and
m I, as described in Eq. (2.34), we obtain, at the
Brillouin-zone boundaries, shifts in the gap-center fre-
quencies which are not present in the two-beam approxi-
mation. Moreover, since the nonresonant terms include
the modes which radiate into the vacuum, their presence
is required to provide a description of the leaky surface
polariton lifetime.

In this section we shall consider the numerical solution,
in the complex plane, of the exact dispersion relation from
Eq. (2.6) and of the perturbation theory relation, Eq.
(2.35). The surface profile function chosen is the
sawtooth profile, of amplitude h (one-half the peak-to-
valley distance) and with deviation from a symmetric pro-
file measured by y (see Fig. 1):

g(xi )= .

4xih/a +(1—y)h

1+7
—4x lb /a + (1+y)h

which is repeated in every cell. For this profile we have
that

4al e i(n/2)yn—
I„(a)=

Ir n +(2ah +irony)

sinh(ah +iIryn/2), n even
X

cosh(ah —+in.yn/2), n odd .

Most of the work reported here is for Ag, in which case
the grating period is a=8000 A; and the values of the
complex didectric constant e(I0) are taken or extrapolated
from the table in Ref. 26. We have also briefly considered
the case of Au, for which we have taken a =4417 A and
e= —6.8 + i1.81 to conform with the work of Raether.

The zeros of the infinite dimensional determinant of the
coefficients of the unknowns in Eq. (2.6) are found by
solving the W-dimensional determinantal equation
[m, n = (N/2 1)/2, . . . , —0, . . . ,—(N/2 1)/2 in Eq. —
(2.6)] and then searching for convergence as X is in-
creased. The convergence of the results is much faster for

y=0 (symmetric grating) than for y~0, and is progres-
sively slowcl' Rs tllc corrugation stl'cIlgth ( li /0 ) is 111-

crcascd. It is gcncrRlly slowcI' Rs wc D1ovc up thc disper-
sion curve i.c. Rs k Rnd 6P RIc incI'cased Rnd is also 111uch

slower in the case of Au than Ag.
For Ag (a=8000 A) at h=300 A (h/a=0. 0375) con-

vergence is very rapid, even for quite large values of y:
for example, at y =0.35 for k up to 1.5(2m. /a), four-figure
accuracy in r0II and in F01 is achieved with %=26. It is
only for y & 0.9 that convergence becomes difficult at this
amplitude. At a =800 A, for y =0, convergence to within
a few meV or better can be achieved [with %=20 at
k=1.5(2m/a), but with %=62 at other nearby values of
k]. For y&0 and this same h, however, the convergence
achieved is poorer. For y =0, we have gone up to
h=1600 A (lI/a=0. 2), for which we find, at the zone
boundary k=1.5(2Ir/a), that four-figure accuracy for coII

and about three figures for col is achieved at %=66.
Convergence in the case of Au is more difficult: even

with just 5 =300 A (a=4417 A), there are oscillations in
the fourth figure of kII until N)82, and not until
N = 102 do we approach four-figure accuracy.

For the symmetric Ag grating, we show a comparison
in Table I of the results of the exact theory with the per-
turbation theory, for the two complex frequencies

Rnd +g —~$1 Rt tbc Bflllou]IQ-zone bouQ-( —) ~ ( —) (+) ~ (+) 0 4

dary k= 1 5(2n/a. ) E.ven .for the largest value of iI (1600
A), thc pcrtulbatloll theory ls wlthl11 1% of tllc exact
theory for the real parts of the frequency. Agreement is
fairly good for the imaginary part of the upper-branch
mode, col, at least up to 800 A. It is only for coi
the damping of the lower-branch zone-boundary mode
(the mode most strongly perturbed, as seen by the bending
of the dispersion curve) that the results begin to agree
poorly already at h=800 A. But on moving away from
thc zolic boundary to 8111Rllcr values of k, wllllc 1'cInR111111g

on the same branch of the dispersion curve, the agreement
in col immediately improves [15% error in col at
k=1.3(2p/a) rather than the 26% at 1.5(2Ir/a), for
h=800 A]. Table I also shows the width in frequency of
the boundary modes as a percentage of the gap width,
indicating that this gap should be observable at 5 =300 A
but not at h=800 A.

In Fig. 2, for the symmetric sawtooth grating with
h=300 A, we have plotted the dispersion curve, from
k (2Ir/a to k) 1.5(2m/a), as obtained from the exact
dispersion relation for complex ~ and real k and also for
complex k and real co, the perturbation theory, and the re-
flcctlvl'ty II111111nR. Tllc colTcspolldlllg Imaginary parts of
the solutions, col and kI, and the reflectivity widths are
shown in Fig. 3. The reflectivity calculations (using the
method of Ref. 5), for the widths in Fig. 3, are of two
kinds. (1) We fix the incident photon frequency co and
vary the angle of incidcncc 8 Rnd hcncc vary
ko ——(co/c)sin8; this corresponds to solving the dispersion
relation for complex k, where ki should give the half-
width at half maximum of the dip in reflectivity versus
ko. (2) We vary the incident frequency co with fixed in-
cidence angle, In this case both ra and ko are simultane-
ously changing, so that the correspondence between ~1
and the half-. width of reflectivity versus co is not exact; the



ATTENUATION AND DISPERSION OP SURFACE POI.ARITONS ON GRATINGS 6555

TABLE I. CoIIlplcx frcqucncy Solutions (6)g '—I,'QPI Rnd QPg —l6Py ) of thc dlspcrsion relation for thc two modes Rt thc zone
boundary k=1.5(2m. /a) [and one mode at k=1.3(2m/a)] —exact and perturbation (pert. ) theory compared. For symmetric sawtooth

giatings (period Q=8000 A) on Ag, with amplitudes A.

k= 1.5(2m/u)
100 CXRCt

PCIt.
% diff.

0.003 65
0,00364
0.27

2.241
2.245
0.18

0.003 50
0.003 40
2.9

300 exact
pert.

d1ff.

2.249
2.253
0.18

0.00835
0.00851
1.9

CXRCt

pert.
diff.

0.065 6
0.048 8

25.6

2.251
2.256
0.22

0.043 5
0.0446
2.5

exact
pert.

diff.

0.190
0.171

10.0

k = 1.3{2+/u)
800 exact

pert.
% diff.

1.934
1.928
0.31

0.039 2
0.0334

14.8

a (to+crn ')
IO I I

I I

—(IOO crn )
O. OO ((2 w/aQ)

I I tl6—

II- I4—
h = 3OOA
0 ™BOOOA

I.2 l.3
k /(2 m.lc)

I.4 l.s

FIG. 2. Dispersion relation for surface polaritons on a sym-
metric sawtooth grating (amplitude A=300 A, period a=8000
A) on Ag. The solid and dashed lines are calculated by the ex-
act extinction-tbcoI'cnl method; w1th complex frcqucncy (I'cal

wave vector) and with complex wave vector {real frequency),
respectively. Open circles are solutions from perturbation
tlMory foI' complex f1cqucncy. TriaQglcs Shows tlM frcqucncy of
calculated reAectivity minima (on varying the incident photon
frcqucncy with f1xcd 1nc1dcncc angle).

FIG. 3. IIQag1nary part of thc coIQplcx wave-vcctoI' solution,
ki, and imaginary part of the complex frequency solution, coi,
both vs real (or real part of) k, for surface polaritons on a sym-
metric sawtooth grating (amplitude A=300 A) on Ag. The solid
Rnd dashed liiMS show the exact extinction-theorem solutions,
for kI and mI, respectively. Open circles show ~i from pertur-
bation theory. Closed circles indicate the calculated width of
thc dip 1Q rcflcctivity-versus-incidcncc-frequency (fixed 8);
squaI"cs show the correspondillg width 111 rcflectiv1ty-vcI'sus-
k =(u/e)sin8, on varying 8 (fixed u).
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resonant surface polariton here has wave vector
@i ——(co/c)sin8+2m /a; on varying co by her, we have

2.250'

I O Y I

2.225

and hence the correspondence between col and half-width
is not bad.

The four methods are in agreement on the dispersion
curve in Fig. 2, except that right near the zone boundary
k=1.5(2m/a), the exact solution for complex k deviates
slightly from the other solutions. For complex k there are
solutions (heavily damped} right across the frequency gap.
Correspondingly, the reflectivity with constant co shows a
very shallow dip, as a function of 0, in this "gap" region.
Nevertheless, the reflectivity calculation for constant 8
does give two completely distinct dips at k=1.5(2'/a),
i.e., the gap is observable in that sense.

The agreement between perturbation theory and the ex-
act theory for col (Fig. 3) is good. The agreement between
the exact theory for co& or kI and the corresponding half-
widths of reflectivity-versus-co (constant 8) or
reflectivity-versus-8 (constant e) is just slightly poorer
(better for kI than col, as expected).

Note that since the reflectivity curves are sometimes
broad and shallow, the frequency, wave vector, and damp-
ing obtained from their positions and widths are not al-

ways as precisely determined as they are from the other
calculations. Moreover, in the present case, a surface po-
lariton with k =2m/a is at .a point on the dispersion curve
near the light line, so that the corresponding reflectivity
dip at I9=0' is very close to a Wood's threshold anomaly,
which we have seen can severely distort the shape of the
resonance dip. Then it is impossible to determine the po-
lariton lifetime from the width of the reflectivity dip.

Between the two zone boundaries, 1.0 & k/(2m. /a) & 1.5,
we see fuel vary between approximately 3 and 10 meV
(while ficoR varies between about 1.5 and 2.2 eV), corre-
sponding to lifetimes from 1.38X10 ' sec down to
0.416)& 10 ' sec. Here kr is about 120 cm ' at
kR ——1.0(2~/a) and then sharply peaks up past 1200 cm
at kit ——1.5(2n /a )—corresponding to an attenuation
length, 1/2kI, of 4.2X10 to 42X10 cm.

As the zone boundary at k= 1 0(2'/a) is ap. proached
along the upper branch of the dispersion curve, i.e., from
larger to smaller k, the frequency width col of the mode
turns upward and increases rapidly (see Fig. 3), up to 5.53
meV. As the gap there is only 1.5 meV, it is totally
washed out by the width of the upper mode. Notice that
this gap at k=1.0(2m/a} is much narrower than that at
k = 1.5(2m /a). In fact, there is no gap at all at
k=1.0(2m/a) in the two-beam approximation of lowest-
order perturbation theory, for the symmetric sawtooth
grating (or for any profile that is symmetric about x=O
and at the same time antisymmetric about x =a/4), be-
cause (~2——0. This being the case, it is interesting to con-
sider the effect, on this "forbidden gap" at k=1.0(2m /a),
of increasing y from 0 to 1, that is, of making the grating
asymmetrical. In Fig. 4 (again for h=300 A) we have
plotted the real parts of the frequencies of the upper and
lower zone-boundary modes, as a function of y, for

2.200

2. I 75

0
2. l 50

2. 130
I.540

l.550

I.520

l.5 I 0

l.500

I.490

0.0 0.2 04 0.6 0.8 I.O

k= 1(2m/a) and also k=1.5(2m/a). In Fig. 5 are the cor-
responding imaginary parts col. Note that the perturba-
tion theory works well, except for the

lardier
values of y,

e.g., y &0.8. For y &0.9 the values of co+
' and of col

both begin to increase in a divergent manner as y~1.0.
In this same range of y, the convergence of the results, as
a function of matrix size N, becomes more and more dif-
ficult, and we stop calculating co' ' at y=0.96.

We see from Fig. 6, for k=1.0(2n/a), that the gap
width increases continually with increasing y: the gap in-
creases from 1.5 meV to about 50 meV at y=0.9. At the
same time, as also seen in Fig. 6, the sum of the half-
widths of the two modes, col '+col+', is fairly constant
with changing y: the sum just decreases from 5.89 to 5.08
meV, as y goes from 0.0 to 0.8, and then increases slightly
to 5.85 meV, as y reaches 0.9 (before beginning its diver-
gence as y~l). Thus the ratio of gap width to mode
linewidth is continuously increasing with y. The gap is
already wider than the sum of the mode half-widths when

y reaches 0.1 and is almost nine times wider when y =0.8.
The situation for the gap at k= 1 5(2n/a) is dif. ferent.

Here the gap width is seen (Figs. 4. and 6) to decrease at
first with increasing y (y=O —0.3} and then to increase
(for y&0.4). A.gain, the sum col '+col+' is fairly con-
stant out to near y=0.9. It is only between y=0.2 and

FIG. 4. Real parts of the complex frequencies for the two
surface-polariton modes (co~ ' and co~+') at the zone boundary
k =1(2m/a) (bottom) and at the boundary k=1.5(2m. /a) (top),
plotted vs the asymmetry parameter y, for a sawtooth grating
(h =300 A, a=8000 A) on Ag. The solid line is from the exact
extinction-theorem method; the circles are from perturbation
theory.
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FIG. 5. IInaginary parts of the complex frequencies for the
two surface-polariton modes (col

' and col+') at the zone boun-
dary k =1(2m/a) (bottom) and at the boundary k=1.S(2m. /a)
(top), plotted vs the asymmetry parameter y, for a sawtooth
gl'atlIlg ( II =300 A, a =8000 A) oil Ag.

FIG. 6. Frequency gap mg and also the sum of the imaginary
parts of the frequencies of the two surface polaritons
(col '+col+') at the zone boundary k = l(2n. /a) (bottom) and at
the boundary k=1.5(2m. /a) (top), plotted vs the asymmetry pa-
rameter y, for a sawtooth grating (II=300 A, a=8000 A)
on Ag.

OA6 where the gap width is smaller than the sum of the
two line half-widths.

In Fig. 7 we show the surface polariton dispersion curve
for a symmetric grating of amphtude h=800 A and
period a=8000 A on Ag, as determined from solving the
exact dispersion relation for complex co. The correspond-
ing imaginary part of the solution, col, is plotted in Fig. 8
as a function of the real frequency alz. The grating am-
plitude at this point is beyond where the extinction
theorem method of Ref. 5 for the reflectivity gives con-
vergent results. Notice that, even in this y=0 case, the
gap at k=1.5(2m. /a) is now over 100 meV wide, and even
the "forbidden gap" at k= 1.0(2m/a) is 25 meV wide.

IV. CONCI. USIONS

We have shown that numerical solutions of the disper-
sion relation, which result from application of the extinc-
tion theorem, may be found in the complex plane for
leaky surface polaritons on a metallic grating surface.
Thus we are able to calculate both the dispersion and at-
tellllatloll (llfetllllc ol attelluatloll length) of sllrface polar-
itons in the radiative region of the (k,al) plane. Conver-
gence of the solutions is found for symmetric gratings of
large amplitude (far beyond where the Rayleigh hy-
pothesis is suppose to break down, even though the extinc-
tion theorem leads to the same dispersion relation for

symmetric gratings as does the Rayleigh method), and
convergence is also found for asymmetric gratings. We
have carried out most of our calculations for Ag gratings;
we have also explored gratings of Au, and found tile con-
vergence more difficult to achieve fo«u than f«Ag.

These solutions provide a more direct indication of the
dispersion and lifetime of the surface modes than does the
position and width of the reflectivity dip, the latter possi-
bly being subject to interference effects. Although there is
generally good agreement betweell oui solutlolls of the
dispersion relation and the results from our calculations
of the reflectivity dips, we llave Indeed seen cases whe~~
the latter are difficult to decipher: where there is heavy
damping of the surface polariton and the reflectivity
minimum becomes broad and shallow and where, in the
case of a nearby Wood's threshold anomaly, the refiectivi-
ty dip is highly asymmetric and distorted. Furthermore,
we can obtain convergent results for the solutions of the
dispersion relation far beyond where convergence breaks
down (h =600 A and a=8000 A for Ag) in the corre-
sponding extinction-theorem calculation of the reflectivi-

A perturbation theory applied to the dispersion relation,
in which we keep the nonresonant as well as resonant
terms, yields a simple dispersion relation vahd in the radi-
ative region, at—as well as away from —the Brillouin-
zone boundaries. Its complex solutions, in the case of Ag,
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PIG. 8. Imaginary part vs the real part of the complex fre-
quency, calculated by the exact extinction-theorem method, for
surface polaritons on a symmetric sawtooth grating (III =800 A,
a =8000 A) on Ag. Shaded regions are the band gaps.

FIG. 7, Dispersion relation foI surface polaritons on R sym-
metric sawtooth grating (h =800 A, a=8000 A) on Ag. Calcu-
lated by the exact extinction-theorem method, with complex fre-
quency Rnd real wave vector.

agree well with those of the exact theory, for asymmetric
as well as symmetric profiles, and for large corrugation
strengths (far beyond those at which the reflectivity dip
reaches its minimum value and the field enhancements
reach their maximum): even at A=1600 A, there is less
than 1% deviation in the real parts, i.e., in the dispersion.
In fact, we stopped our comparative calculation of the
dispersion at h=1600 A because of convergence difficu-
ltie (i.e., larger and larger necessary matrix size} in the ex-
act theory and not because of breakdown in the perturba-
tion theory. This points out an important conclusion of
this work, namely, the advantage of using the perturba-
tion theory over the exact theory, for a broad range of
physical parameters. The exact theory, involving a search
in the complex plane for the solution of a complex, large-
diGMnsional, deteITD1nantal equation, 1s highly consuIMng
in both human and computer time. Complex root finding
subroutines are not capable of zeroing in on these solu-
tions without a good initial guess (to almost. three figures
in the real and imaginary parts) and thus a tedious on-line
search is necessary to begin the procedure. Furthermore,
convergence of the exact solutions is a problem; it must be

checked at almost every point (k,co), for every set of pa-
rameters (h, a, y}: Too small a matrix and the results os-
cillate with N, too big a matrix and divergences set in.
On the other hand, the perturbation theory can be imple-
mented on a hand calculator.

As for the physical results, we have seen how the
grating-induced radiative damping of the surface polari-
tons can totally obscure a zone-boundary minigap or may
have little effect on the gap depending on which zone
boundary is involved and on, of course, the grating ampli-
tude. Both the gap width and the damping widths of the
zone-boundary modes are very strongly affected by the de-
gree of asymmetry (measured by our parameter y) in the
surface profile. The properties of a minigap can, in prin-
cipal, be controlled.

As remarked in Sec. I, Raether found it difficult to ac-
count for his measured grating-induced dispersion relation
shifts on Au gratings, ' while the perturbation theory
proved quantitatively adequate for Ag. We have been un-
able to locate the origin of the discrepancy.
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