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Dynamical screening effects on Auger CVV line shapes of solids
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The current theory of Auger CVV spectra of solids takes sohd-state polarization effects into ac-
count by a statically screened hole-hole repulsion parameter U. Here we include dynamical screen-
ing effects by considering a plasmon field coupled to final-state holes interacting through the bare
repulsion Uo. %'e sum the series of diagrams that dominate the two-hole Green's function when the
plasma frequency co& is large compared with the hopping parameter V between nearest neighbors.
Moreover, we show that in this case the theory reduces to a Cini model or a Sawatzky model plus
the interaction with a single effective plasmon. This is solved exactly and provides an understanding
of various features of the system. Split-off two-hole resonances occur at higher kinetic energies than
predicted by the statically screened theory, and under certain resonance conditions they are
broadened duc to thc presence of a pI'cfcicntial decay channel. Bandlikc spcctIR alc also significant-
ly modified and the transition between bandlike and atomiclike behavior is characterized by the oc-
currence of broadened. resonances within the band continuum.

I. INTRODUCTION

The current theory of Auger CVV spectra of solids suc-
cessfully explains the occurrence of atomiclike and band-
like features and also gives a fairly good description of the
lines hapes of several d-band metals. Essentially the
theory reduces to the calculation of the density of states
N, (to) of the final-state holes in a tight-binding solid with
the inclusion of hole-hole interaction effects. The sim-
plest formulation of the theory' applies to a completely
occupied s valence band. Assuming that the Auger tran-
sition occurs at site 0 in the solid, the Cini model includes
the hole-hole repulsion by adding to the tight-binding
Hamiltonian an interaction term of the form

as Uno+n—o

where n;~ is the occupation number operator for a hole at
site i with spin tr. The model is then solved exactly for
the two-hole Green*s function. Sawatzky has shown that
the model is also solved exactly if an identical repulsion
between the holes is allowed for on all sites, and the in-
teraction Hamiltonian is taken to be

Hs Ug nt+n;——

The form (1) appears to be more suitable for an adsorbate
or an impurity atom, while the alternative (2) should
better describe a perfectly periodic solid. However,
Samatzky and I.eselink have found that even in the latter
case the results of the two theories are close to each other,
apart from a small dispersion broadening of quasiatomic
peaks that is absent in the Cini theory.

The extension of the above models to degenerate orbi-
tals and bands is still solved exactly, but the results are
obviously much more complicated. However, in many
cases the one-particle density matrix pII is approximately
diagonal in angular momentum space and each multiplet

component can be treated as an independent s band with a
different repulsion parameter U. Using this simplified
form of the Cini theory, Weightman and Andrews
analyzed their high-resolution spectra of a series of transi-
tion metals and alloys. In this vray they obtained a good
representation of the line shapes and extracted empirical
values of the repulsion parameters U.

Even if the theory works rather well, it has the obvious
shortcoming that the U parameters can only be obtained
by comparing theory and experiment, as Madden et al.
did in the case of Cu. Since they represent repulsion ener-
gies in the solid it is clear that they differ from the "bare"
repulsion Uo measured in gas-phase atomic Auger spectra
by a relaxation contribution due to solid-stRte screening.
In the case of core spectra the Auger electron kinetic ener-

gy is expressed through one- and two-hole extra-atomic
relaxation energies that can be obtained by static screen-
ing calculations. However, it is not obvious that a static
screening calculation is adequate to describe relaxation
around a quasiatomic two-hole resonance which is cen-
tered around an atom but is not structureless. Qn the oth-
er hand, delocalized bandlike states should test the dielec-
tric response of the solid at frequencies of the order of the
bandwidth W, not just the static response. Moreover, the
density of states is expected to show intrinsic plasmon sat-
ellites that are not borne out by the current theories.

A more general theory including the dynamics of
extra-atomic screening explicitly should give a significant-
ly improved hne shape expressed directly in terms of the
bare repulsion Uo. It is natural to approach this difficult
problem by using the Cini or the Sawatzky theory with a
bare interaction Uo as the unperturbed model and adding
further terms to the Hamiltonian to represent the cou-
phng of the holes to the elementary excitations of the
solid. These are conveniently represented as a field of bo-
sons (plasmons, phonons, or bosonized electron-hole
pairs), and here we wish to consider the case when
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plasmons dominate the dielectric response. Since the
dynamics of the interacting holes are essentia11y more
complicated in the case of open bands, 'o we confine this
preliminary investigation to the case when the valence
band is completely occupied in the ground state. Thus the
present theory is directly relevant to the spectra of insula-
tors, semiconductors, and transition metals with filled d
bands, when the plasmons are mainly due to the conduc-
tion sp band.

In Sec. II we propose an extended model that is basical-
ly a Cini or Sawatzky model with the addition of a
plasmon field. We perform a diagrammatic analysis of
the perturbation expansion. Commonly, the plasmon en-

ergy co~ is much larger than the tight-binding hopping pa-
rameter V, and we select the class of diagrams that dom-
inates the perturbation series in this case. Hence we show
that we can replace the plasmon field by a single effective
boson mode. In Sec. III we solve the one-boson model ex-
actly. Then we are in a position to discuss the effects of
dynamical screening. and we do so in Sec. IV, where we il-
lustrate a rich phenomenology by selected examples. The
physical conclusions are summarized in Sec. V.

II. FORMULATION

ab ——a,b+a, , (3)

where a,b is a tight-binding model for a solid with an s
band and nearest-neighbor hopping parameter V, and HI
is a hole-hole repulsion term appropriate to the Cini or
the Sawatzky model but with the bare, gas-phase repul-
sion parameter Uo in place of the statically screened U.
The plasmon field and its interaction with the holes is
then described within the tight-binding approach by

a'=ap+ap p,
where the free-plasmon term is

~~ = X~»b»b»

and the coupling term is linear in the plasmon operators,

H~z ——gg» +exp(iq R;)n; b»+H. c.
q i,a

Here n;~ is the occupation-number operator for a valence

hole at site i with spin o., and g»exp(i q.R;) is its coupling
with a plasmon of wave vector q, fre uency coq, and
creation operator b». We may take"' g» =(2~co»/q 0),
where 0 is a normalization volume independent'3 of the
atomic (core or valence) state of the hole. The q summa-
tions have an upper cutoff q, of the order of the inverse
of the static screening length. In the models of Cini and
Sawatzky and also in the bare Hamiltonian (3) the two
valence holes interact only when they belong to the same
atom. To be physically consistent we must assume a large
q„which implies that in the core limit of the theory
(V~O) the static screening is short ranged. To express

A. Extended Cini and Sawatzky models

Let the Hamiltonian for the two bare interacting
valence holes be

this mathematically we consider two core holes at sites i

and j. The relaxation shift is

b, E(i,j )= ggq ~
exP(iq R;)+exP(iq R'J)

~
/coq (7)

q

and when q, is large this becomes simply

b E(i,j ) = g gq (2+25,q )/coq . (8)
q

In other words, the two holes are screened as a double
charge if they belong to the same atom, otherwise they are
screened independently.

If the primary ionization produces a core hole at site 0
with occupation number operator n„ this is coupled to
the plasmon field by a further term of the form

H, = ggq(bq+bq)n, . (9)

Dynamical interference effects between the primary
hole and the Auger holes can only be described in a "one-
step"' ' formulation of the theory. For the case of
valence holes this work is currently under way; here we
restrict our attention to the case when the core-hole life-
time is long and the Auger spectrum can be studied in the
two-step model. Therefore, we consider the evolution of
the system with the "extended Hamiltonian"
HEM Hb+IJ', wh——ile the effect of H, is to prepare a ful-
ly relaxed, coherent plasmon state

~
c) as the initial state

for the Auger transition. The coherent state
~

c) is ob-
tained from the vacuum

~

u ) by applying the operator'

X=exp gg»(b» b»)/—coq (10)

We denote by ~i,j ) the configuration with the up-spin
hole at site i and the down-spin hole at site j in the ab-
sence of the boson degrees of freedom and

~
ij U ) the same

hole configuration with the plasmon vacuum. The two-
hole density of states Xq(co) including dynamical screen-
ing effects is ( n) ' times the i—maginary part of the
Green's function

G(0,0;0,0;co)= (O, O, U
i
X (co HEM ) 'X

i
O,—O, U ),

where co has a vanishingly small positive imaginary part.
It is apparent on physical grounds, and we shall prove

below that in the limit cuq~ oo, when the solid-state
screening may be regarded as instantaneous, this formula-
tion should return a statically screened model of the Cini
or Sawatzky form. When we want to include the plasmon
dynamics explicitly the problem looks very complicated,
since there is a huge number of plasmon variables. Even
if at the present stage there is ample justification in
neglecting plasmon dispersion in energy (co»=co&) we
must necessarily deal with the spatial dispersion. This
means that for each q value there is an independent har-
monic oscillator that can be in any of its allowed states,
and it is difficult to keep track of all these degrees of free-
dom. Physical reasoning is useful to proceed and an im-
portant indication comes from the core limit of the
theory, when the n; are good quantum numbers. Then
the density of states associated with the sudden switching
of an arbitrary charge distribution can also be obtained by
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replacing the plasmon field with a single plasmon mode
with an effective coupling constant g, as is obvious from
Langreth's treatment. ' We stress here that the single
mode gives quite a poor description of the dynamics of
the plasmon field, yet it allows the description of the
dynamics of the core holes correctly, and the resulting
density of states is exact.

Here we cannot content ourselves with the core limit
because the valence degrees of freedom are essential to us,
however, we want to know whether a similar simplifica-
tion arises in the valence case when A, = V/co& is small.
This is the case of practical interest since most often the
plasmon energy is larger than the bandwidth W, and W is
many times the hopping parameter V in the three-
dimensional lattices. '7 Therefore we set up the diagram-
matic analysis of the perturbation series for G in powers
of the g9 coupling, then select the class of diagrams that
are dominant for A, « 1 and sum them to infinite order.

Using the operator identity

tion 00. Then, we draw plasmon lines joining two config-
urations, or a configuration and one of the circles. Lines
joining the two circles directly are also admitted. Every
intermediate configuration has one plasmon line entering
or leaving it, but m lines come out of the left-hand circle
and n lines end at the right circle.

Since at every interaction the sum of the frequencies of
the two-hole line and the boson lines is conserved, to every
segment of the straight line there corresponds a factor
G (i,j; k, l; co —scud), where G is the bare Green's func-
tion, ij and kl are the left and right configurations, and s
is the number of plasmon lines present in the prescribed
interval. Every plasmon line joining the two circles
directly brings a factor a = g g& /cuz. Every plas-
mon line connecting two configurations ij and k, l brings
a factor

F(i,j;k,l) = ggz[exp( —iq.R;)+exp( —iq R~)]
q

exp(A +B)=exp(A)exp(B)exp( —1/2[A, B]), X [exp(l q.Rk )+exp(i q R& ) ] . (16)

valid when [A,B] is a c number, we develop the X opera-
tor and obtain

A plasmon line connecting the point labeled i,j with the
left-hand circle brings a factor

G(0,0;0,0;co)= exp( —a)(0,0, u
~
exp —ggzb&lcoz f(i,j )= g gq [exp( i q R; ) +'exp(i q 'RJ ) ]/co& .

q

(17)

X(co—H) 'exp —Qgqbq/cop
~
0,0,u),

with a= g gq/cup.
Then expanding the resolvent operator we cast the for-

mal series for G in the form

G =exp( —a ) g g it('"„'/m!n!,
k m, n

where

(13)

1(' „' = (0,0, u
~

—g g b /
q

(14)

Since the problem involves two holes of opposite spin in
a closed band, the diagrammatic analysis is made easier if
we have Hi, ~ in the equivalent two-body form:

H&~ ——Pg& P [exp(iq R;)+exp(iq RI)]n;+nJ bz+H. c.
(o,o) (o,o)

C
(o,o)

/
/

I /
r i

C 0
(i, j) (o,o) (o,o) (i, j) (k, l) (o,o)

Equation (17) becomes f'(i,j ) if the plasmon line reaches
the right-hand circle instead. Every diagram is multiplied
by ( —1) ". Finally, each diagram carries a combina-
torial factor m!n!/r!, where r is the number of plasmon
lines joining the two circles directly.

For example, Fig. 1(a) contributes to Pzz' and yields

2G (0,0;0,0;cu —2coz)a

Fig. 1(b) contributes to QI2' and yields

2G (0,0;c,j;—cu co&)G (i,j;0,—0;cu 2cu~)af*(i,j )—, (19)

and Fig. 1(c) contributes to 1(tI&' by

uG (0,0;i j;co cop)G (i,j;k—, l;cu 2' )—
X G (k, &;0,0;cu cuz)F(ij;k, l) —. (20)

After summing over intermediate two-hole configura-
tions, the sum of all diagrams with k internal points gives

Then, G is obtained from Eq. (13). From the com-
plete perturbation series we now select the diagrams of

and note that n;+n~ is a projection operator that selects
one hole configuration. The diagrams are drawn as 'fol-
lows. The propagation of two holes interacting with the
bare repulsion Uo can be represented as a single straight
line spanning the space of two-hole configurations. We
then draw a straight line connecting two circles, choose k
points along it, and label each of them by a two-hole con-
figuration ij The two end poi.nts belong to the configura-

FIG. 1. Typical diagrams for the Green's function of two in-
teracting holes screened by a plasmon field. The straight line
represents the bare Green's function 6; the dots along it stand
for two-hole configurations where plasmons t', dotted lines) are
emitted or absorbed. The two end circles allow for plasmon ex-
citations due to the primary core hole. The explicit contribu-
tions of (a), (b), and (c) are given in Eqs. {18), (19), and {20),
respectively.
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lowest order in A, =V/co&. We are interested in G(co)
when u is in the band region. Then we note that 6 is
essentially configuration diagonal when calculated at large
frequencies of order co& » V (or several times co&), or, in
other words,

G (i,j;m, n;co s—co~)=5;~5~„G (i,j;i,j;co s—co~) s&0.
(21)

Off-diagonal terms are smaller than the diagonal ones by
a factor of order (A, /s)i', where p is the minimum number
of hops needed to reach the i,j hole configuration starting
from the m, n configuration. Therefore, the dominant di-
agrams for A, « 1 are those where the bare Green's func-
tions of argument co —scoz with s & 0 are diagonal in hole
configuration, while off-diagonal Green's functions of ar-
gument co are of course allowed. Physically, this reflects
our assumption that plasmons are much faster variables
than the holes. A virtual plasmon can exist for times of
the order co~ ', and it is unlikely that the hole configura-
tion changes on this time scale.

Therefore if A, « 1, G reduces to the sum (to all orders)
of the dominant class of diagrams obtained by inserting
the restriction (21) into the full perturbation series. Here
we shall show how this summation is performed. Howev-

erth, e main use of the above analysis is to achieve a sub-
stantial physical simplification of the theory that is justi-
fied for A, «1. We wish to show that we can indeed re-
place the plasmon field by a single effective boson, in
analogy with the core case. The resulting one-boson
model is a close approximation to the extended model for
small A, because the dominant diagrams of the two models
are the same, and we can solve it exactly. Therefore it
shares the distinct advantages of exactly solved theories
including a more direct interpretation of the physical as-
sumptions than approximate treatments allow and a wider
applicability to different contents. As a by-product of its
solution we shall also find the sum of the partial series for
the extended model.

At this point we may take the hole-hole bare interaction
to be local in real space (Cini theory) or in the lattice
Fourier-transform k space (Sawatzky theory). The two
alternatives can be developed in parallel and to avoid du-
plication of most of the formalism we adopt the latter
choice in the following section. The limit when the two-
hole dispersion vanishes will be given in Sec. IV.

B. Fast-plasmon limit and the one-boson model

Let the model Hamiltonian be Hop Kp+Hp+HI, p,
where Hb is a Hubbard model with the bare interaction
Uo, while the boson-dependent terms are replaced by

we may write HoB in the form

HQB —Hth+P[ Up+co&b b +2gp(b +b )]

+Q[oiqb "b+gpV 2(bt+b)] .

The effective Hamiltonian for the holes is then

(26)

~.fr= IIt +P(Up+oip&btb &, +2gp&bt+b & )

+Q(~p&b b&g+gp~&(b +b&g), (27)

where ( )z denotes the expectation value over the vacuum
of the operator bp+2gp/oi~, and the same for ( )~ of the
operator bp+gpv 2/co&. Hence,

operator X(1),where

X(p) =exp[pgp(b —b t)/co, ], (24)

and the dressed two-hole Green's function is of the form
(11) with X(1) in place of X and IIoB in place of IIEM.
The diagrams for the Green's function are the same as for
the extended model and the class of leading diagrams for
A, =V/co& «1 also remains unaltered. Moreover, each
leading diagram has exactly the same value in the two
theories if the effective coupling g is chosen such that

gp/co& ——a. Indeed in the leading diagrams only the con-
figuration diagonal factors F(ij,ij ) and f(0,0) appear, and
in view of Eqs. (7) and (8), these are the same for the two
models.

Therefore the one-boson model coincides with the ex-

tended model to leading order in A, and contains the most
important coherence effects on the motion of the two
holes (in real and in frequency space) that are induced by
plasmon dispersion. The main effect is that the holes are
screened independently if they are on different atoms but
as a double charge if they are on the same site. However,
what we have obtained is much more than the core limit
of the theory, and the final results still depend on the full

6 matrix,
Here we wish to compare the results of the dynamical

theory with those of the "statically screened" theory that
corresponds to the liinit A, =O. The "static" theory as-
sumes instantaneous screening and can be obtained by ap-
plying the Born-Oppenheimer principle in reverse, ' the
fast variables being boson rather than electron coordi-
nates. The two-hole motion in the average potential due
to the plasmons is described by an effective bosonless
Hamiltonian H, ff and the mean plasmon potential is ob-
tained by averaging the boson operators over the com-
pletely relaxed, coherent state that corresponds to the in-
stantaneous holes configuration. If we let

P= gn;+n;, Q=l P, —

Hp ——a)pb b,
r

a„,= 2gpgn, +n, +gpv2 1 —yn, ,n,

(22) H, ff
——H,b+ U, P —5, (28)

where 5=2gp/co& is a general shift of all the eigenvalues,
and the statically screened repulsion

x(b+b') . (23)
U, = Up —2gp/co& (29)

The coherent initial state due to the primary core hole
is obtained from the plasmon vacuum by applying the

can be identified with the U parameter of the current
theories.

Before proceeding with the solution we wish to point
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out that a nontrivial distortion of the line shapes due to
plasmon dynamics was predicted by one of us' in a
theory of core-core-valence Auger spectra. Up to now
those results have not been tested against experiment,
essentially because intensity problems make it difficult to
obtain experimental line shapes of adequate quality. The
case of core-valence-valence spectra that we are consider-
ing here should definitely be much more favorable in this
respect. On the other hand, the theory is obviously more
complex and requires a substantial development of the
mathematical technique introduced in Ref. 19, as will be
apparent in the next section.

III. SOLUTION

To evaluate the two-hole local Green's function

G(0,0;0,0;co)= (0,0, v
i
X (1)(co HoB)—'X(1) 0,0, v ),

Therefore we may write

G(0,0;0,0;m) = exp( —y2/NP)

x
m=On=O P

' m+n

mfnf

(40)

where we have introduced the quantities

P „(i,co)=(i,i, v ib (co H) —'(b )" i0,0,v) .

Consider the expectation value over
i
0,0, v ) of the opera-

tor identity

bm( H )
—1(b t)n b m( H )

—1(b t)n

+b (co Hp) —'H
i (co H) '—(b t)"

we find it convenient to introduce the canonically
transformed Hamiltonian

with Hp =Hy +H+ and HI ——H& &. Using

b Hp (Hp+m——co )b (43)

H =X (V 2)HoBX(V 2) =Hb+Hq+HI, p .

According to the definition of Eq. (24) one finds

Hb ——H,b+ Ud g ni+n( —5,

where Ud is given by

Ud = Up —4( V 2—1)gp /cg

(31)

(32)

(33)

and the commutation rule for the boson operators we
readily derive the recurrence relations

P „(Q,co)= m!5~„D (0,0;0,0;co—mco~)

+g gD (0,0;i,i;co mcus)—

&&[%~+i.(i ~)+m0~ i.(i,~)], (44)

and differs from the statically screened repulsion U, of
Eq. (29), while the shift is the same as in Eq. (28), namely,

5= —2g p /co~

The transformed hole-plasmon interaction term reads

where D is the Green's function for g =Q. Note that, Dp

is computed from Hb and should not be confused with
the bare Green's function G . In terms of the lattice
Fourier transforms

H„p gran, +n, (b+b—t),

with

g=(2 —V»gp

Also, let

(35)

(36)

D (K,co)= gD (0,0;i,i;co)exp(iK R;),

and with the shorthand notation

D~ =D (K;co mco&), —

the recurrence relations become

(46)

(47)

) =gp(V2 1). —

Since obviously Xt(V2)X(1)=Xt(V2—1), we may cast
the Green's function in the form

P „(K,co) =D [m!5 „+g[P +i„(K,co)

+mP i„(K,co)] J .

(48)

G(0,0;0,0;~)= (T,
i

(co H)— (38)

For m )0 let us introduce the finite continued fractions

=gD i/[1 —(m —&. )g D &D ~/(1 —. )] (49)

with

a)=X (v 2—1)
i
0,0,v)

that terminate after m —1 denominators. Also we need
the infinite continued fractions

"(bt)n
=exp( —y /2coi) g i

0,0,v) .
nf

8~=(m+1)gD +i/[1 —(m+2)g D +i
xD" 2/(1 — )].

Solving Eqs. (48) one finds that

P „(K,co)=A +&A +2 . A„P„„(K,ca),

(50)

(51)
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P~„(K,co) =B~ iB~ 2 B„P„„(K,a) ),

whj]e the diagonal elements are given by

n!D„
„„(K,co) =

(52)

(53)

Thus the P matrix is expressed in terms of D (K,co)
and in view of Eq. (40) this is what we need to solve the
one-boson model. If instead we wish to solve the extended
model for A, «1 the above results should first be ex-
pressed in terms of the bare Green's function G, which is
achieved through the relation

D(K )
G ( Kyoto +5 }

(54)
1 —b, UG (K,co+6)

where b, U=Ud —Ue and G (K,co) is the lattice Fourier
transform of Ge analogous to Eq. (46). The class of dom-
inant diagrams for A, «1 is selected by the restriction
(21), which leads to the following when inserted into Eq.
(54):

D =D (0,0;0,0;co men~), m—&0, (55)

IV. DISCUSSION

The Auger line shapes predicted by the dynamically
screened theory differ significantly and sometimes even
qualitatively from those of the "static" theory and we
wish to illustrate the main effects here by selected numeri-
cal examples. In practice, we can avoid the laborious E
summation of Eq. (56). As in the static Cini model, we
may neglect the dispersion of the two-hole bound state,
which amounts to dropping the E indices in Eqs.
(47)—(53) and referring all quantities to site 0, where the
Auger decay occurs. As discussed in the Introduction,
this is a natural approach to impurity problems where no
translational symmetry exists and is a very convenient ap-
proximation when applied to crystals. With this simplifi-
cation, the algorithm of Sec. III proved to be fast and effi-
cient and we never met convergence troubles with the con-
tinued fractions nor with the double infinite summations
of Eq. (40).

The dynamical effects we are interested in are under-
stood more readily if the noninteracting one-particle den-
sity of states p(co) is taken to be simple and symmetric.
As in previous work we exemplify the results with a rec-
tangular level shape

p(co) =e(a —
~

co
~
)/2a, (57)

where the right-hand side is E independent.
Since, as shown in Sec. II, both theories have the same

dominant diagrams and values, if we adopt the ansatz (55)
in the solution of the one-boson model, we solve the ex-
tended model for A, « 1. In the rest of this paper we shall
deal exclusively with the exact solution of the one-boson
model. In any case, the solution for both models is com-
pleted by an inverse Fourier transformation

P „(O,co)=—gP „(K,co} .1

which allows computation of the two-hole Green's func-
tion D of Eq. (44) in closed analytical form.

In order to substantiate the dynamical effects we wish
to contrast the two-hole density of states N~(ro) of the
one-boson model with its static screening limit N, (co).
We have shown in Sec. IIIB that the theory does have a
well-defined static limit, with a Hamiltonian (28) of the
Cini or Sawatzky form where the repulsion parameter
should be identified with the statically screened U, of Eq.
(29). Then we know that if y = U, /a is well above a crit-
ical value y, a split-off quasiatomic peak dominates
N, (co). For the rectangular p(co), y, =1.44. This is the
quasiatomic situation common in narrow-band materials.
For example, by using the "typical" values a=3.5 eV and
U, =7 eV, then y=2 and the splitoff resonance is as
shown in Fig. 2 (curve S). The resonance has a finite
width because the imaginary part of co was given a finite
value I' for numerical convenience, the dotted line
represents the density of states in the independent particle
limit, while the residual bandlike part of the spectrum is
weak and is not shown.

Since the quasiatomic peak represents a spatially local-
ized bound state, one could perhaps argue that dynamical
screening effects are no more important here than in the
case of core spectra. However, this conclusion is correct
only in the limit cuz —+ oo. Consider the case when U, =7
eV arises from the physically reasonable set of parameters
Uo ——15 eV, AE=ge/co& ——4 eV, and co& ——15 eV, then the
one-boson model yields the split off state labeled D in Fig.
2. The lower intensity of the peak is mostly due to the
presence of plasmon satellites outside the energy range of
the figure. It is remarkable, however, that the static
theory predicts the position of the peak with an error of
about 1 eV, and of course the error increases if co& is re-
duced. Yet if co~ is sufficiently large one can still manage
to fit the spectrum within the static theory by using U, as
an adjustable parameter. However, if ~~ is decreased to
the point that the resonance condition co&-U, is met, the

0 S

I 1 i T-- —i

-6 -4 -2 0 2 4 6 8
co (eV)

FIG. 2. Comparison of static and dynamical theories in a
quasiatomic case. The dotted-dashed line is the self-convolution
of the bare, rectangular one-particle density of states, while
curve D shows the quasiatomic peak as calculated by the
dynamical theory with the input parameters Uo ——15 eV,
go/co~=4 eV, W=7 eV, I =0.05 eV, and co& ——15 eV. Curve R
has the same input parameters, except co~=7.5 eV. Curve S
shows the results of the static theory.
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With the present values of the parameters this is 0.78 eV,
in excellent agreement with the exact solution of the one-
boson model (i)=0.75 eV). Thus, dynamical effects are
important for a quantitative understanding of quasiatomic
spectra, and can also change them qualitatively when

21

When y is well below y„say y=0. 8, N, has a broad
and deformed bandlike appearence, shown in the curve S
of Fig. 3. With Uo ——15 eV, bE =go/co& ——4 eV, co~ =15
eV, y=0. 8 is reached when 8'=2a=17.5 eV. The one-
boson model with this set of parameters generates the line
shape labeled D in the same figure, which is different in
several important details. There is an "intrinsic" plasmon
satellite centered at about co=25 eV that does not repro-
duce the shape of the main peak, the positions of the max-
ima of the D and S curves differ by as much as 1.4 eV,
and the D line shape is significantly sharper. While ex-
trinsic processes contribute heavily to the intensity of the
experimentally observed satellites, the distortion of the
band continuum is an essentially intrinsic effect. By com-
paring theoretical and experimental line shapes in princi-

0.09—

fitting procedure fails completely. For example, if we
change the plasmon energy to co& ——7.5 eV, while keeping
W, Uo, and &R' fixed, the dynamically screened peak
(curve R) broadens dramatically.

This phenomenon is due to the opening of a decay
channel for the two-hole bound state that can delocalize
into the band continuum by emitting a plasmon. In a re-
cent paper the extended model was solved to second or-
der in go and an estimate was given of the width at half
maximum of the quasiatomic peak in the resonant case.
Also, we have provided evidence that the resonant mecha-
nism makes an important contribution to the observed
width in the case of silver. The approximate treatment of
the extended model and exact solution of the one-boson
model support each other. For instance, in case of a sim-
ple cubic crystal we estimated the full width at half
maximum in the resonant case to be

1.0— s„

0.5

0—
6

+- ~ «.L

8 10
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FIG. 4. Two-hole density of states in an intermediate case.
Curves D and S~ show the results of the dynamical and static
theories, respectively, with Uo ——15 eV, go/co~=4 eV, 8'=10
eV, I'=0.05 eV, and co~ =15 eV. If we reduce the Uo parame-
ter of the static theory [see Eqs. (28) and (29)] to approach the
dynamical result we obtain curves S2 (for Uo ——14 eV) and S3
(for Uo =13 eV). When the peak positions agree, the static line
shape is essentially bandlike.

V. CONCLUSIONS

pie we can obtain an independent estimate of the hole-
plasrnon coupling go.

The case when y=y, is also of interest. One such situ-
ation is represented in Fig. 4, where 8'=10 eV, U, =7.0
eV, and therefore y =1.4. The origin of energies is at the
center of the triangular, independent particle line shape,
and the spectral region of two-hole resonances is shown.
Compare the line shape Si resulting from the static
theory with the exact result D of the dynamical model.
The energy difference between the maxima is very large
and the dynamical peak is essentially syrnrnetric. Evi-
dently it represents a true resonance within the continu-
um, rather than a deformed continuum as in the static
theory. The curve D cannot even be approximated by
reducing the repulsion parameter in the static theory, be-
cause then the line shape tends to become bandlike (curve
$2) and when the maxima are brought in coincidence
(curve S3), the two line shapes are completely different.
Thus, if y is close to y, the static theory is inadequate
even if U is used as a fit parameter.
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FIG. 3. Two-hole density of states in a bandlike case. The
input parameters are Uo ——15 eV, go/co~=4 eV, S"=17.5 eV,
1 =0.05 eV, and co~=15 eV. Curves D and S are the line
shapes calculated by the dynamical and static theories, respec-
tively.

Since in most solids the plasmon frequency co& is much
larger than the hopping frequency between nearest neigh-
bors, we could justify the adoption of a one-boson model
to discuss dynamical screening effects on Auger CVV
spectra. Imposing the restriction of completely occupied
valence bands, we solved the model exactly for the two-
hole Green's function. The current theories of Auger line
shapes that assume static screening are recovered in the
limit m&

—+ ao.
For the purpose of illustration, we have taken a rec-

tangular one-hole density of states as the noninteracting
limit and we have compared the results of static and
dynamical theories. The line shapes predicted by the
dynamical calculation differ qualitatively from their static
counterparts when the spectrum is intermediate between
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bandlike and atomiclike. Also, the dynamical theory
leads to the prediction of a resonant broadening of quasi-
atomic splitoff states when co~=U, and to the interesting
possibility that different multiplet components have dif-
ferent widths. Apart from these two cases, the current
theory is found to be qualitatively correct, but dynamical
effects are generally important. For bandlike and atomic-
like spectra as well, the peak positions calculated with the
dynamical theory differ significantly and systematically
from those of the static theory, where the U, parameter is
expressed in terms of the gas-phase repulsion Uo and a
statical extra-atomic relaxation energy. Even if we use the
static theory with U, as an adjustable parameter we can-

not optimize simultaneously the position of the maximum
and the width of bandlike features. We stress that the dis-
tortion of bandlike line shapes by the plasmons is a purely
intrinsic effect, while the analysis of plasmon satellites is
complicated by the presence of extrinsic contributions.
Therefore, by comparing calculated and experimental
spectra we could deduce the strength of the hole-plasmon
coupling, a quantity that is not readily accessible by other
means. In conclusion, the static theory is a useful first
approximation to the overall line shape in most cases, but
the dynamical theory is needed if we wish to reach a more
advanced, quantitative stage.
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