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Derivations of formulas for the efficiency of single-electron exritation from deep core levels to the
continuum are presented. Permitting the exrited electron to backscatter at most once from the
neighboring atoms yields tractable equations that are useful at any energy above threshold and
which reduce to the conventional theory of extended fine structure far above threshold.

I. INTRODUCTION II. X-RAY ABSORPTION

In a recent report, ' Muller and Schaich presented a sim-
ple single-particIe theory of x-ray absorption which repro-
duced well the results of more sophisticated single-particle
calculations. The purpose of this paper is to present a full
derivation of the formula they used as well as some gen-
eralizations of it. Since similar information is contained
in high-energy electron-loss experiments, the theory is also
extended to treat such spectra. The formulas obtained
provide a relatively simple scheme for calculating gross
single-particle features at all energies above a core-level
threshold.

The focus of the theory is on producing tractable ex-
pressions for the final states of such excitations. The
scattering of the excited electron from the absorbing atom
is treated exactly while the influence of neighboring atoms
is approximated by retaining only single backscattering
events. Thus the theory is similar in spirit to that used in
extended x-ray-absorption fine structure ' (EXAFS) and
in fact reduces to the conventional version of EXAFS for
energies well above threshold. However, the theory may
also be applied close to threshold and has a reasonable
success there, too. '~

In Sec. II I develop the appropriate formulas for x-ray
absorption, outhning their derivation and discussing their
justification. Considerable simplification results if one
may average over the direction of the incident x-ray's po-
larization or over the orientation of the absorbing atom's
environment. Then in Sec. III I extend the theory to
high-energy electron-loss spectroscopy, where similar for-
mulas arc obta1ncd. Two appcnd1xcs contain d1scuss1ons
of more technical points.

To end this introduction I make two remarks that help
place this work in context. First, the concern of this pa-
per is with the efficient evaluation of single-electron-
excitation strengths. I do not discuss how the effective
single-particle potential is to be determined nor- do I con-
sldcl IDUltlple-electron cxc1tatlons. Second, formulas
equivalent to mine have been used before in x-ray absorp-
tion at energies well above threshold (see references cited
in Ref. 1) and the spirit of iny approach has been applied
to high-energy electron-loss spectra. However, to the
best of my knowledge, the particularly simple form of my
resUlts has not been presented before.

I begin with the standard single-particle theory of x-ray
absorption which derives p„ the contribution to the x-ray
absorption coefficient due to the excitation of a deep core
level. One writes p, =n, cr„where n, is the density of
atoms with the core level of concern and o, is the absorp-
tion cross section for this level on a single atom. o, is
found from the golden-rule transition rate per unit photon
flux. Using the dipole approximation yields

p, =Aificog I (i
I
r EIf}Iz5(e;+%co ef), — (1)

i,f
where the x-ray frequency (polarization) is co (E) and the
initial (fina) electron states have energy e; (ef). One
sums over all degenerate states at the core level and over
all final states above the Fermi level. The factor
Ai —4n n, (e /tie). —

The task of determining the final-state sum with the
energy-conserving 5 function is aided by the introduction
of the Green's function
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where r(v) describe an electron's position (spin orienta-
tion) and Ii is the effective single-particle Hamiltonian of
the final states. I assume that h may be satisfactorily
represented by a sum of nonoverlapping muffin-tin poten-
tials, each of which is spherically symmetric. This ap-
proximation has the considerable advantage that it allows
an exact solution for G+. Since this has been shown
several times before both in EXAFS theories and more
generally, I simply write down the answer in my nota-
tion:
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Here A2 ——2m 31, Im denotes "imaginary part, " and
No ——mk/m i' is the free-electron density of states, with
k determined by the final-state kinetic energy
e=irPk /2m. The interesting structure in p, comes from
the matrix elements. Within the muffin tin of the absorb-
ing atom the final-state wave function is written as a
linear combination of products of radial, angular, and
spin- —, eigenfunctions, Rid Z, which are indexed by
(and to be summed over) the quantum numbers i for orbi-
tal angular momentum, I. for (i,m) where m is the pro-
jection of the orbital angular momentum on a particular
axis, and cr for the projection of the spin angular momen-
tum on the same axis. The Rt are regular solutions of the
radial Schrodinger equation at energy e in the central

I

muffin tin. They are normalized so that beyond this po-
tential

~&t) jt(k )cos5'+n (k )siii5',

where the ji and nt are spherical Bessel functions' and 5t
is the l-wave phase shift of the absorbing atom—
distinguished from that of its neighbors by a prime. The
matrix XL~ L, '~'=5~ ~'XL, L, ~ is diagonal iil splii indices by
my assumption of no spin-dependent scattering in the fi-
nal state. Although one can write an exact equation for

I show only the result that includes all scattering
from the absorbing (central) atom plus one backscattering
from each neighbor,

+L L i5L——
L +g g [e '( )t'C - t~+(R)C ( —i)'e ']+

LO I R
' LR I'0

R(+0)
(5)

where i =v' —1. The (isolated) absorbing atom contribu-
tion comes from the Kronecker 5L, I. while the effect of
the neighbors located at various R is described by the di-
mensionless t matrices

tt+(R)=e 'sin5&,

I

another way in which the n«effect of »gh powers « tC
may be neglected. This arises from the need to energy
average the sing1e-particle calcu1ation in order. to approxi-
mately account for various decay processes. In essence
one replaces in (2)

where the phase shifts may depend on R, and by the di-
mcnslonlcss pl opagators

C -, , =4m g(i) hi+(kr)Y~ (r)(1't
~

I'I .I'I ),L R,L, 'R '
L"

+ 4

where r=R —R', ht is an outgoing spherical Bessel
function, and the matrix element is an angular integral
of three spherical harmonics.

The muffin-tin approximation to the effective single-
particle potential that I used above is reasonable in close-
packed systems, but is less so in open systems. One way
to remove some of its deficiencies is to include a sur-
rounding sphere that encloses all of the scattering atoms
in the cluster or molecule. " Then Eq. (5) must be aug-
mented by a term XL, I ~ to represent the single backscatter-
ing of an outgoing wave from the absorbing atom by the

surrounding sphere. Foimulas for this extra contribution
are derived in Appendix 8, but are not discussed further
in thc text.

The higher-order terms omitted in (5) contain further
powers of tC, representing multiple-scattering paths. Nu-
merical work' has shown that the truncated, single-
scattering expression of (5) reproduces well in close-
packed systems the results for p, from the complete XL I,
when both are sufficiently (and identically) broadened in
energy. I briefly consider here some a priori arguments
for this success. The multiple-scattering terms omitted
from (5) are negligible if tC is small compared to unity.
Far above threshold the scattering is weak so one can jus-
tify the neglect of such terms. Indeed„with some further
approximations noted below, the standard EXAFS formu-
las follow from (5). Near threshold, however, the scatter-
ing is quite strong so this argument fails. Yet there is

=(e—h+i I /2)

where I may be energy dependent bui is typically severa1
electron volts. The consequence for the free-space Green's
function is that the dependence

so that in effect the electron amplitude is continuously
damped as it propagates from one scattering center to
another. This leads to the suggestion that the energy
average of higher powers of tC may be small due to the
accumulated decay of the C's over a long multiple-
scattering path. The above qualitative argument also im-
plies that even single scattering from distant shells may be
suppressed by energy averaging. Thus as I in (8) is in-
creased, the average of the exact p, should become a
smoother function of energy whose remnant structure is
due to atomic variations (e.g., white lines) and to single
backscatterings from the nearest neighbors. This trend is
apparent in the calculations. Note that a similar idea has
been explored in low-energy electron-diffraction theory,
but with 1ess justification.

To complete this section I show some simplifications of
my formulas that are possible when sufficient symmetry
exists. I also exhibit their relation to the standard EX-
AFS formulas. Begin by assuming that the absorbing
atom 1s in a cubic cnv1ronmcnt or that onc has a polycrys-
talline sample. For these cases p, is independent of x-ray

polarization and an average of' (3) over the direction of E
yields
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where 2 =(16m. /3)n, (e /Ac) and

1 Im+Xr r, .2l+1 (16)

(10)

where A3 ——8m 2 &/9. If I further assume that the initial-
state wave functions can be written as

Equation (15) has a simple generalization when spin-
orbit scattering is important for the initial core level, but
negligible for the final states. One replaces (11) with

I
I &

=
I RI, Yr.,Z., &

—=
I RI,l-orro&, Ii &=

I
Rr JoMo&, (17)

with the R~ (r) real valued, then the matrix elements in

(10) may be separated into

Io
p, =2A3ficoNolm g M(, , (Br.,r. '(lo 1)Xr.,r. 'W, , j'

where Rr (r) is again real valued and
I
JoMo & is an eigen-

0

state of the total angular momentum. Using standard
equations' for the addition of orbital and spin angular
momenta, I find in place of (15)

L,L'

(12)

1

Jo Jo +
P, '=AfuuNo [loMz, , i, AX!,

where the factor of 2 comes from the sum on oo and the

M~, I are radial matrix elements:

M~, I= J dr r RI,(r)rRl(r) (13)

with the integration limited to the central muffin tin by
the presumed short range of the initial state R~ . The ma-

0

trix B is defined by

BL,L'(il i2)= g & Yr. I Yr.
) YLp

& & Yr, Yr, I
Yr &

m&, m2

and is in fact diagonal in I.,I. . This and some other
properties are derived in Appendix A. Using these I ob-
tain

+(lo+1)Mr ( +)XI +(], (18)

where for each core level, except those with lo =0 there
are two values of Jo. lo+ —,'. The details of this deriva-

tion are also in Appendix A. Equation (18) allows one to
give the proper weight to the absorption structure of core
levels split by the spin-orbit interaction.

The structure in p, due to the neighboring atoms rests
in the XI since replacing XI—+1 gives only the contribution
of an isolated (muffin-tin) atom. Using the single-
scattering approximation for Xr r, Eq. (5), I obtain with
the help of (7) and simple properties of spherical harmon-
ics"

2 T

XI —=
2i 1

Im g e ' (i)'h~+(kR)Yr' ( R) g t&+(R—)Br r (i l) (i)' h~+(kR)Yr, -(R)21 +1 ~

R(+0)
L',L"

(19)

Then with (6) and the results of Appendix A for the diagonal matrix B I find

1+rm e ' g(21+1)e 'sin5~H(l, l;kR)
R(~0)

(20)

where

l I I'
H(/, Tp) =g (2l'+1) h(+(p)

1'
(21)

with the first factor in the square brackets being a 3j symbol. ' Explicit formulas for these are given in Appendix A. If
the neighboring atoms can be arranged in shells of Nr identical atoms all at distance RI, then (20) may be rewritten as a
sum over shells:

~ r

XI ——I+QNrlm e ' g(2l+1)e "sin5TH(l, l;kRr)
J T

(22)
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which further simplifies its calculation.
Indeed Eq. (22} is close to the standard EXAFS result,

which approximates Xl by

d cTq
2

&
—iK ~ r

+

=M,NOIm z (i
i
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X]=1+(—1)'QX~Im e '
2 fj(~)
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where f~(m. ) is the backscattering amplitude of a plane
wave off a single atom in the jth shell:

i K-r
X Rl YLZ~ i, 27E

f(m)= —g(2l+1)( —1)e sin5&.
k

(24)

To pass from (22) to (23} requires only the additional ap-
proximation of replacing

(i)'h]+(p) e'~-/p, (25)

which is its asymptotic dependence for p» l. Thus the
only difference between the exact single-scattering theory
and the conventional EXAFS theory rests in the former's
proper treatment of the scattered wavelets. I remark that
Lee and Pendry have suggested an approximate formula
for the analog of X] whose validity depends on a "small
atom" limit. Since the exact single-scattering theory for a
muffin-tin model, Eqs. (5), (20), or (22), has no reference
to atom size except for the implicit constraint that
muffin-tin potentials do not overlap, I feel that their inter-
mediate formula is ad hoc. Their exact and EXAFS re-
sults are, however, equivalent to mine. The point I em-
phasize is that invoking (25) alone takes one from (22) to
(23).

III. HIGH-ENERGY ELECTRON LOSS

2

~
—i K'r

xg (i & f) 5(e;+E—eii,
i,f

(26)

wlmre up (u, ) is the probe electron s initial (final) speed,
ap is the Bohr radius, and d 0 describes the range of solid
angle into which the probe electron is scattered. The oth-
er notation in (26) is the same as in (1). Comparing these
two formulas reveals that the only difference, aside from
slowly varying prefactors, is the absence in (26) of a dipole
selection rule. Even this distinction is essentially removed
if one considers near-forward scattering where K ap-
proaches (but never reaches) zero. Hence it is clear that
the theory developed for x-ray absorption will have a
straightforward analog for high-energy electron-loss spec-
tra. I briefiy summarize these equations here.

If I define M] ——4(u, /up)/(Kap), the analog of (3) is

Excitation of core-level electrons into the continuum
can be accomplished by both photons and electrons. If
the latter are at sufficiently high energy, their impact
scattering may be satisfactorily treated in first Born ap-
proximation which yields the following differential cross
section for the probe electron to lose energy E and

momentum hK via a Coulomb interaction with a single
atom:

Oq Vg/Vp—4
dQ dE (Kap }2

where &2——2aM]. If again one ignores spin-dependent
scattering in the final state and retains only a single back-
scattering contribution from the neighbors, Eq. (5) for the
matrix X will result, subject to the same justifying re-
marks given before.

The formulas can be simplified when sufficient symme-
try is present to justify an average over' the direction of K.
Then I find as the analog of (12) for excitation of the lp
core level

2 lo
d a'q =~No m g M], ,](I)&r.,l. (Io,I )XL„L,M], ] (I )

L,L'

where 8 is defined in (14), M3 =(4~)~~], and

M], ,](I) =f «r'R], (r)[jT(Kr)/K]R](r),

(28)

(29)

with M=16m(v, /up)/(Kao) and
'2

lo l l'
M] 1-=y(zl'+I) 0 0 0 M] Pl') .

p& p&
(31)

Together (30) and (31) are the analog of (15). Note that in
the formal limit

0I
@~0,Mi l-

p~ 3

2
1 1

2
0 0 M

which yields in turn

lp

Xo[4M] ] ]X] ]

+(Io+1}W',,],+]X],+]1 (32)

a result identical in content to (15).
One may also derive an analog of (18) when spin-orbit

coupling is important in the core level:

Jp

=W(Jo+ z )No g (2l+1)Xp~g p.
r

The proof is outlined in Appendix A.

(33)

which reduces to 5I]M], ]!3when K~O if R] and R]
are orthogonal. Using the results of Appendix A for the
matrix 8, (28) may be rewritten as

2 lo

=M(2lp+ 1)Np g (2l+ 1)X)M] p (30)
T
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I have presented the formulas of this section very con-
cisely since they have such close analogs in Sec. II. No
detailed calculations have yet been done with them, al-
though less sophisticated equations with the same basic
physics have been treated. I hope that the success of the
x-ray formulas' will encourage people to test the
electron-loss equations given here.

Note added in proof. After this paper had been submit-
ted the work by S. J. Gurman, N. Binstead, and I. Ross [J.
Phys. C 17, 143 (1984)] appeared. They also derive the
single-scattering formulas for x-ray absorption that are
obtained here. In addition they present numerical results
indicating further the utility of these equations.
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APPENDIX A
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—ill' mi m2

m&, m2

(A2)

which yields
r 2

(21, +1)(21,+1) I /l /2

BLL, (ll, l2)=
4m

To make this more explicit one can apply the formula'o
r 2
I ll 12

0 0 0

(A3)

(Ii+12—I)!(I,+I—l~)!(/2+/ —ll)!
(/+I, +I,+1)!

where I have used Yt* ——( —1) Yt . Then one needs
the sum rule'

l'

Here I present some of the details omitted from the
derivations in the text. Most of the manipulatons involve
standard but cumbersome formulas for spherical harmon-
ics and their integrals. '

Begin with the matrix B that is defined in Eq. (14).
The necessary integrals may be written in terms of 3j sym-
bols, ' e.g.,

x
(p —I)!(p —/l )!(p—/&)!

where 2p =I +/&+/2. Using (A4) I find, for instance,

=3 lo
L,L'(Io 1)= /lL, L' /ll

4~ ' ' o 2l+1

(A4)

&Y,. I Y, , Y,, )=
(21'+ 1)(21l+ 1)(2/2+ 1)

4m
Io+ 1

X6 2/+1 (A5)

I' ll 12

X 000
li l2

( —1)—m mi m2
(A 1)

I

which was used in (15). Similarly one may tediously gen-
erate the H (I,l,p)'s of Eq. (21):

H (0, 1)= (h/+ )

H(l, l)= (h/+ l) + (h/+, )
21+ 1 2/+ 1

H(2, 1)= 3 (/+2)(1+1) (h+ )2+ 1(1+1) (h+)2+ 3 I(l —1) (h+ )2
2 (21+3)(21+1) (21+3)(21—1) 2 (21+1)(21—1)

5 (I+3)(1+2)(1+1) h+ 2 3 (I+2)(1+1)l h+ l 3 (1+1)l(l—1)
2 (2/+5)(21+3) + 2 (2/+5)(21 —1) +' 2 (21+3)(21 3)

(hp+ 3)
5 I(l —1)(l—2)
2 (2/ —1)(21—3)

(A6)

(A7)

(AS}

(A9)

where for simplicity I have suppressed the argument p, both in H and in all the h!- . Note that replacing (i) h/&p) ~e'l'lp
yields H(l, l;p)~( —1) + e 'l'lp from each of (A6)—(A9). This should always occur due to the sum rule"

2
/ I I'

g( 1) (2/+1) 0 0 0 =( 1)
1'

(A10)

which ensures that (22) goes to (23) far above threshold. Note that the same expansion coefficients of H in terms of
( h+) 's, Eq. (20), also apply to the expansion of both M in terms of (M )'s, Eq. (31), and T' in terms of ( t')'s, Eq. (B8).

Lastly I turn to the derivation of (18). Using (17) in (10) yields, instead of (12),
r

Jo 1

p, =A3fuuNolm gMg tAL L (Jo, /o, , )+LL Mg l—
L,L'

where

AL„L, (Jo /o l')= g &~oMo I Yl~ I YL, Z&&&Yr. z& I Yl~ l~oMo&
Mo, m, cr

Introduce complete sets of states and factor the matrix elements

(Al 1}

(A12)
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~~'Jo'o »= 2 &Y~
I Ylm Y~, &(&Y~,Z~I Jo~o&&JoMOI Yi,z.&)&Ys.,Yl-l Yi&

MO, m, a
Li L2

Since thc
I JOMO & are sums of direct products of

I
Yt

times
l Z, &, I deduce from the parentheses on the right-

hand side in (A13) that 11 ——11——10 and ml ——mz. From
the form of the Clebsch-Gordan coefficients for adding
angular momenta 10 and —,

' to get Jo, one has for allowed

values

tt'= t—i'(k, k)

J dx x'hi+(kx) I dy y'ht+(ky)tt'(x, y),
(83)

where I have used an angular momentum decomposition
of the t matrix of the surrounding sphere:

Jo+ —,
' +m sgn[00(Jo —10)] ( x

l

t'
l y & =g YL (x )tt'{x,y) YL (y ) . (84)

(A14)

where sgn denotes "sign of." Now most of the sums in
(A13) can be done to obtain

AL L (J0,10, —,
'

)

Jo+ —,
=2 g ( YL

I Y,—Yt, , & ( Yt, ,Y,—I YL, &

O+ mo, m

70+ —,
'

=2 BL I (lo, 1) .
0+

Substituting (A15) into (All) and using (A5) yields (18).
An entirely similar approach leads to (33).

APPENDIX 8

Hcl'c I prcscllt cquatlolls fol thc extra colltrlbutlolls to
the formulas of the text when one allows a sphere of po-
tential to surround all the (muffin-tin) atoms in the cluster
or molecule. This additional source of scattering is espe-
cially relevant for molecules"' or other cases where the
scI'ccmng of thc coI'c hole on thc absorbing atom 1s Qot ef-
ficient. Formal procedures for including such contribu-
tions have been published before; "" ' I followed the
methods of Beeby. '

It is convenient to make a slight change in notation,
putting the coordinate origin at the center of the sur-

rounding sphere, whose radius is Ro, and calling the lo-

cation of the absorbing atom R. Assuming the muffin-
tine potential of this atom does not overlap that of the
surrounding sphere, one finds an extra contribution to (5)

I stIcss that thc dimcnsionlcss tl ls Qot glvcn by an equa-
tion like (6) since the conventional phase shifts are deter-
mined by scattering from outside a spherically symmetric
potential. For the present case of a surrounding sphere
the tt' arise as parameters in solutions of the form

YL, (r)[ht+(kr)+tt'jt(kr)], r (Ro
YL (r )atht+(kr), r )R

where R ~ Ro is the radius beyond which the surrounding
sphere potential stops varying. (A minor generalization is
necessary for a Coulomb potential. '

) Hence the tt' may
be computed by starting with a wave of the form (85} for
r & R [call its radial part Rt(r)], integrating Schrodinger s
cquat10Q 1nward to r =R o ~ and then Il1atch1ng. T1Ms

yields

[ht+*Rt j
[Jt Rij

(86)

~ I

Xt =Im e ' Q (21+1)j)-(kR)T'(l,l;k,RO), (87)
r

[A,B]=A 8—8
dr dr

and all quantities are evaluated at r =80.
As shown in the text one often only requires a reduced

form of XL, L, . Xl of {16). The extra contribution to Xt
due to the surrounding sphere is readily obtained from
(81) and the properties of the 8 matrix proven in Appen-
dix A. I find that one should add to (20)

Xl L =g[e '(i)'C'- AC' -(—i)'e '] (81)
L

111'
T'(1,/;k, RO) =g (21'+1) t(' .

l'
(Bg)

where s denotes surrounding spllere. Thc propagators arc
given by

These equations simplify a lot if the absorbing atom is at
the center of the surrounding sphere, i.e., R =0 so

C'-, =4m g(i) j (tkR) Yt(R)( YLlYL YL, &, (82) Xt(R =0)=Im(e 'tt }, (89)

where the only changes for C',- is that R —+ —R in
LS,L' R

(82). Note tllat Ro docs 110't appeal cxpllcltly 111 (82). Its
effect instead lies in tt' which is determined by

which emphasizes that the oscillatory structure lies in tI.
Indeed if one represents the potential energy of the sur-
rounding sphere by a spherical average of a shell of
muffin-tin potentials, he can show that (89) yields a con-
tribution identical in form to those summed over in (20).
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