
PHYSICAL REVIE%' 8 VOLUME 29, NUMBER 12

Surface barrier in metals: A new model with application to W(001)
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A new model of the surface barrier at a metal surface is presented. It is one dimensional, has two

adjustable parameters (z0, the location of the image plane, and A, , which determines the length scale
of the transition from vacuum to bulk), and its form is suggested by the results of self-consistent
electronic-structure calculations for a five-layer film of %(001) described here. The optimum form
for electrons rvith incident energies below 10 eV is determined by comparison with available low-

energy-electron-diffraction data from %(001).

I. INTRODUCTION

Charge-transfer processes occur in many branches of
surface science, such as Schottky-barrier transmission and
thermionic and field emission. Particularly important are
spectroscopic IDcthods W41ch Usc charged part1clcs, exaIIl-
ples bemg photoemission and the scattering of low-energy
electrons and positrons. Although not all these techniques
are equally sensitive to the form of the potential barrier at
the surface, a detailed knowledge is usually essential for a
complete analysis of such processes.

In classical electrostatics, the form of the potential bar-
rier outside the surface of a perfect conductor can be
found by solving I.aplace's equation using the method of
images. The classical image barrier for a charge q at
point z is as follows:

V(z)=, z &0, (1)2z'

where the metal occupies the half-space z&0. Unless
other%'isc stated %'c Usc rydbclg atoIDic units throughout.

There are several problems associated with the use of
Eq. (1) for describing surface processes such as those list-
ed above. The divergence at z=O is unphysical. The po-
tential should go smoothly to its bulk value, a modifica-
tion which is commonly referred to as image-potential
"saturation. " A more realistic description of the metal
surface could also result in the modification of the asymp-
totic form, for example, a shift in the image plane.

A quantum-mechanical description of the surface-
potential barrier experienced by an electron was given by
Bardeen, ' He performed a one-dimensional approximate
Hartree-Fock analysis of a jellium model and showed that
the barrier arose mainly from exchange and correlation ef-
fects. If the potential inside the metal was assumed to be
constant, the image form (1) should be asymptotically
correct, but substant1al dev1at1ons weIC not1ceable w1th1n
(2—3)ao from a jellium surface with an electron density

appropriate to that of Na. Shortly thereafter MacColl
calculated the surface-barrier reflectivity for a one-
dimensional potential of image form cutoff at a constant
value Vo.

The problem has been studied by numerous authors
since that time. Of particular interest for the present
work was the observation by Cutler and Davis that the
long-range (z & —10ao) behavior of the potential of Bar-
deen could be approximated by the following:

V(z)= ~ (1—e~), z& —loao, (2)
2z

whei'e tile damping factoi' A, describes saturation effects
Furtller iiisigllt illto tile form of the static potential bai
rier resulted from self-consistent calculations for jellium
su/aces using a local approximation for' exchange and
correlation. This approximation leads to an incorrect ex-
ponential decay in the potential far outside the surface,
and, since the calculations focus on the effective potential
"felt" by occupied states, they do not provide a reliable es-
timate of the potential appropriate for more energetic
electrons. The results should nevertheless give a reason-
able picture of the transition from bulk to vacuum, and an
example is given in Fig. 1 for a jellium model with r, =2.
For a jellium model, the asymptotic form of the potential
outside the surface can be related to surface properties by
the observation that

2

V(z)=, z~ —oo
2(z —zo)

'

where zo is the center of mass of the induced charge dis-
tribution (relative to the edge of the positive background).
The position of the image plane zo depends on the method
of calculation, but lies 0.5ao —1,5ao outside the edge of
the jelliuln background. for metallic densities. The
image-plane location is weakly d.ependent on the screening
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tions from the Schottky effect in thermionic emission. A
modification of this form, with an interpolation region be-
tween the two in Eq. (6), has been used by Rundgren and
Malmstrom" and recently by Hall et al. ' to interpret
high-resolution electron scattering data.

Recently, Dietz et al. ' showed that improved agree-
ment with LEED fine-structure measurements could be
obtained by using a barrier in which a linear interpolation
between vacuum Rnd bulk rcglons ls Used»
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FIG. 1. Effective potentia1 at je111UQ1 SQrface for I;=2, plot-
ted from results of Ref. 4. The origin is located 1.5ao inside the
jelhum edge. Also shown (dashed curve) is the classical image
potential relative to an image plane at zo ———3.lao (Ref. 5).

V{z)= z
z) ~z~O

2(zI —zc)
'

radius in the metal, lying closer to the jellium edge as r,
lncI'cases.

The above arguments then suggest a surface barrier
with an asymptotic form (3) and a transition to the bulk
potential similar to that of Fig. 1. However, it was al-
ready evident in the work of Bardeen' that no single bar-
rier can be satisfactory for electrons of all velocities and
dynamical corrections to the image potential have been
discussed by several authors. Harris and Jones, for ex-
ample, performed detailed calculations for a simplified
model of a metal surface and showed that velocity-
dependent effects could be understood in terms of the in-
teraction between the moving charge and its spatially re-
tarded 11Tlagc.

With the improvement of electron scattering measure-
ments, particularly low-energy electron diffraction
(LEED), it has become essential for theorists to use in-
creasingly refined barrier models. Early work used vari-
ants of the step barrier, which consists simply of a discon-
tinuity in the potential at the plane z =a:

V(z) =
Uo» Z QQ

This model is simple to treat analytically, but the sharp
discontinuity leads to unphysical results. Other authors
have used an exponential barrier shape for the transition
rcglon»

V(z) = —Uo/[ I+exp( —Pz)] .
This model is also straightforward to treat analytically,
and it provides a rough approximation to the results of
JclllQIQ calculRtlons such Rs t4osc shown ln Flg. I.

The modified image barrier, which is based on classical
electrostatics, was suggested by Cutler and Gibbons,

+
V(z) = . 2(z —zo) 2(z —z,)'

—Uo, z~z, .

This model gives generally satisfactory results in calcula-
tions of LEED fine structure' as well as periodic devia-

with two adjustable parameters UI (the step height at
z=0) and zo (the image-plane location). The barrier was
used successfully to reproduce experimental data on
Cu(001), alld I'cccIltly wc showed 'tllat a IIIIIlor IIIodlflca-
tion enabled the presentation of a consistent picture of
Rvallablc high-resolution Rnd spin"polarized LEED IQca-
surements for W(001). In particular, it was possible to
separate unambiguously barrier scattering effects from
spin-dependent and Bragg features. An additional in-
teresting featuI'e of this work was the discovery that
several barriers provided equally good fits of individual
intensity energy curves. This is a consequence of the in-
terference origin of the fine structure and will be dis-
cussed further below.

In spite of the satisfactory results obtained using the
model barrier (7), the linear interpolation used can only be
approximate, and the increasing availability of high-
resolution data means that better discrimination between
barrier models is becoming possible. It is the aim of this
paper to describe a model of the surface-barrier potential
that is one dimensional, has two free parameters, and
should be useful in other contexts. The transition from
the shifted image form {7)to the bulk potential is suggest-
ed by self-consistent density-functional calculations car-
ried out for a five-layer W(001) film. These calculations
are described in Sec. II. In Sec. III the potential is aver-
aged parallel to the surface and the results suggest a sim-
ple, physical parametrization of the barrier. The parame-
ters are optimized for W(001) in Sec. IV by comparison
with experimental data on W(001) (energies 0—10 CV, an-
gle of incidence 8 up to 48'). The present state of the bar-
rier parametrization question and possible future modifi-
cations are discussed in Sec. V, and our conclusions are
llstcd ln Scc. VI.

II. SELF-CONSISTENT FILM
CALCUI. ATIONS —%(001)

III thIs section, wc plcscIlt results of a self-consIstent
energy-band calculation for a five-layer W(001) film. "
For tlm purpose of this discussion, we assume that thc po-
«nti» ««he central hyer is representative of the bulk.
Thc potentIal for thc film gconlctly of Flg. 2 was dctpr-
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tively. The I.AP%' basis functions and the charge density
constructed from them are continuous with continuous
derivatives at the boundaries of all regions in Fig. 2.

Thc valcncc charge density can bc I'cprcsclltcd as a
plane-wave expansion extending over regions I, II, and III,
and a remainder which is approximated by its muffin-tin
coillpoIlcilt 111 lcglolls II, III, alld IV. With a frozc11-cole

approximation, it is relatively easy to calculate the poten-
tial components and to express them in the same form as

the charge density, ' i.e.,

III———————————P —————————--A
Vocuurn IV Vacuum

Y

unit ce0
FIG. 2. (110) cross section of five-layer %(001) film showing

separation of space 1nto different regions.

mined by solving the Schrodinger-like density-functional
equations using a local approximation for exchange and
correlation. Details of the linear-augmented-plane-wave
(I.APW) method used for the construction of the charge
density and potential are given in Refs. 17 and 18, respec-

V(r)=VMT(r)+pe' ''V(G)

+ y e cosh(G[( I )b(G)))
6

ii

The muffin-tin potential VMT is constant in region I,
sphcAcally syIQmctIl. c 1D region II» and planaI' symmctHc
in regions III and IV. The non-muffin-tin part enters
only via the plane-wave expansion and it can easily be in-

cluded as plane-wave matrix elements throughout the A

slab. Outside this slab, the corrugation of the potential

FIG. 3. Variation of the self'-consistent potential for %'(001) film in (s) (II00) snd (b) (110) planes perpendicular to the surface snd

contsining the surface atom ( S), tlM subsurface stoIQ snd tlM atom 1Q the central layer (C). Psft (I) 1s the fuH potential snd part (2) 18

the muffin-tin contribution.
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FIG. 4. Contour plot of the self-consistent potential in (110)
and (100) planes perpendicular to the W(001) film. The con-

tours are marked in rydberg units and the interval is 0.05 Ry.

FIG. 5. Self-consistent film potential averaged parallel to the
surface (dashed-dotted curve) and the average excluding regions

II of Fig. 2 (dashed curve). The slope discontinuities in the

latter are due to these exclusions. Also shown is the model bar-

rier Eq. (9) with zo ———2.9ao, X=1.lao ' (solid curve).

parallel to the film is neglected.
These calculations were carried out for an unrecon-

structed bulk geometry and included more than 50 basis
functions per atom, leading to mRy accuracy in the eigen-
values. Integrations over the two-dimensional Brillouin
zone were performed using the linear triangular method'
with 28 points in the irreducible part of the zone. The
self-consistent potential should have the same accuracy as
the eigenvalues. In spite of the known shortcomings of
the local approximation for the exchange-correlation po-
tential, the calculated work function (4.3 eV) is in good
agreement with the experimental value of 4.6 eV. '

The self-consistent potential for the three outermost
layers is shown in Figs. 3 and 4 and has some interesting
features. In particular, Fig. 3 shows that the muffin-tin
term is the dominant contribution to the potential. The
contour plots of Fig. 4 show, however, that the potential
has a distinctly three-dimensional character. We shall re-
turn to this point in Sec. V.

III. SURFACE-BARRIER MODEL

The barrier models discussed in Sec. I are all one-
dimensional. They can be compared with the results of
Sec. II by averaging the latter parallel to the surface. For
the potential representation in Eq. (7), this can be per-
formed analytically in terms of the potential parameters

V(G) and b(G) for planes of integrations both with and
without the circular intersections with the Inuffin-tin
spheres. Results for both these averages are shown in Fig.
5. The average of the potential in region I ( —0.965 Ry) is
different from the bulk values obtained by the two
methods of averaging. The inner potential Uo is, howev-

er, usually determined by matching calculated and experi-
mental features, such as peak positions or thresholds.

Although the density-functional formalism is the basis
of both the jellium and tungsten calculations, the similari-

ty between the potential variations in Figs. 1 and 5 is re-
markable. The form of the results leads us to propose the
following barrier model:

1 A(Z Zo)
(1—e ' ), z(zo

2(z —zo}
&(z)= .

0

p~ )
p Z )Zo

Ae
' "+1

(9)

where the constants 2 and P are determined by matching

V(z) and its derivative at the image plane z=zo. This
leads to

P= Uo/~

2 = —1+2UD/1, .
(10)

Far outside the surface, the barrier has the form suggested

by Cutler and Davis [Eq. (2) above], but with a shift in
the image plane in line with the considerations of Sec. I.
The quantity A. determines the range of transition from
the vacuum potential to its value in the bulk. It has a
simple physical interpretation, since —A, /2 is the value of
the potential at the image plane.

In Fig. 5 we also show the model barrier of Eq. (9) with

the parameters zo= —2.9ao, A, = l. lao ', and Uo ——1 Ry.
It is clear that the form (9) provides a much better repre-
sentation of the potential in the transition region than the
linear interpolation used previously. Barriers correspond-
ing to nearby points in the (zo, A, ) plane lead to qualitative-
ly similar barriers, particularly if the image plane is
moved further from the surface with a corresponding in-
crease in the transition range 1/I, . For barriers corre-
sponding to a narrow band of values in the (zo, A,) plane,
we may then expect similar I.EED intensity curves.

The parameters obtained from the fit to the potential
from the layer calculations are appropriate for occupied
states well below the energies of incident electrons. They
should, however, provide a valuable guide to the barrier
parameters for electrons above the vacuum level. In
analyzing I.EED experiments, we expect Uo to decrease
with increasing energy. Furthermore, dynamical effects
could lead to changes in zo and A, , since electrons moving
towards or parallel to the surface should have a weaker in-
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teraction with it than in the case of a stationary electron.
Since Uo can be determined with some precision by com-
parison with experiment, we believe that the model barrier
(9), with two physically meaningful adjustable parameters,
should be a useful starting point for surface-barrier effects
in general. In the following section, we analyze published
data on W(001).

IV. DETERMINATION OF BARRIER
PARAMETERS FOR %(OOI }

The method used to calculate the diffracted electron in-
tensities is described in detail in Ref. 14. The scattering
properties of the semi-infinite crystal are described by the
layer multiple-scattering method, which leads to the total
amplitude reflection matrix

R + =r ++r -R +(-1-r-+ R —+) -'r+-+ . -(11)

R describes the scattering properties of the substrate, r
and r are reflection and transition matrices for the surface
barrier, and r +, for example, denotes the scattering of
an electron moving in the direction of z & 0 into the z & 0
direction. Although the matrices r and r are found by in-

tegration into the bulk, it is important to note that the
phases depend on the position of the barrier zo. The
strength of inelastic scattering allows us to express the in-
verse matrix as a series and to truncate the series to in-
clude only "double-diffraction" terms. ' In these calcula-
tions, we have made minor changes which lead to more
accurate results in the immediate neighborhood of thresh-
olds.

The experimental data are the same as used in Ref. 14.
They comprise high-resolution (15-meV) refiectivities for
angle of incidence 8=48' (Ref. 21) and spin-polarized in-
tensities for 15'~8~43'. The incident energies E are
between 0 and 10 eV and we have assumed that Uo ——1 Ry
over this range. The energy dependence of Uo should be
considered for larger energy ranges.

Inelastic scattering processes play an important role in
determining the reflected intensities. In our earlier work'
we used an energy-dependent imaginary potential to
describe the bulk damping, with a barrier damping V;
given by

found to be necessary to describe high-resolution data in
this range. For energies below 10 eV, however, the in-
tensities depend most sensitively on the barrier parameters
zo and A, , and we have used the scaling factor o,'=1 and
the exponent P=0.2ao ' throughout.

As in our earlier work, we have used the high-
resolutio~ data at 48 to locate the regions in the space of
barrier parameters (zo, A,) which reproduce the reflectivity
extrema accurately. In Ref. 14 we found that saturated
image barriers centered at —7ao, —3.3ao, and 0 gave
equally good fits to the peak positions for 8=48' and a
similar effect was found in the present calculations. The
interference nature of the mechanism means that phase
changes near 2m in the matrices r and r [Eq. (10)j lead to
similar calculated intensities. Over the restricted energy
range considered here, this is possible by changing either
the position of the image plane or by large changes in A, .
The film calculations show, however, that not all regions
of (zo, A,) space are physically reasonable. The value of zo
should not be too different from its static value, and "sa-
turation" effects due to the weaker interaction felt by an
electron moving towards or parallel to the surface rule out
k values significantly greater than the fit to the fi.lm po-
tential (A, = l. lao ').

These considerations reduce the number of barriers
yielding satisfactory agreement with the fine structure in
the 48' data to a narrow region of (zo, i, ) space from
( —2.6,1.1) and ( —3.3,0.7). As noted in Sec. III, barriers
along such a line are similar and even a resolution of 15
meV does not permit a clear distinction between them. In
Fig. 6 we show that the calculated fine structure for the
barrier ( —3.1,0.8) compares very well with the experimen-
tal measurements. ' As noted in Ref. 14, spin-dependent
effects are not pronounced for these energies and incident
angles. The energy zero in the experimental curve has
been moved upwards by 0.13 eV and the energy of the

V; =0.1 exp( —O. lz ) .

In this work, we use a bulk damping

V;~ (E)=Vo(l+e/p)'7,

(12)

(13)

with Vo ——0. 1 Ry and /=5 eV. This form was suggested
by McRae and Caldwell, following electron-reflectivity
measurements on other transition metals, and produces
relatively minor changes in the calculated peak positions.
More significant is our use of the barrier damping

0.05

V; (E)=aV;"'"(E)exp(—Piz i ) .

The surface-barrier damping is then proportional to the
bulk damping [Eq. (13)], is centered on the outermost
atomic plane, and. decays exponentially into both bulk and
vacuum. For energies abave 10 eV, the damping is con-
siderably stronger than that in Ref. 14, which we have

4.5 5
Energy (ev)

FIG. 6. Comparison between calculated and experimental
fine structure for 8=48'. (a) Experiment, after Ref. 21. The en-

ergy zero has been shifted upwards by 0.13 eV. (b) Calculated
spin-polarized intensities for barrier with zo ———3. lao,
A, =O;8ao . Solid curve, spin down; crosses, spin up. The fine-
structure mesh is 0.01 eV.
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threshold now agrees with both the calculated value and
with the value found recently by Baribeau et al. ~ There
is an additional peak near 3.5 eV (with a maximum 1.46
eV below the highest clearly resolved minimum in the
data of Ref. 21) and we find that the position of this max-
imum is sensitive to the choice of barrier parameters. A
satisfactory fit to this peak reduces the acceptable values
of (

i
zo i, A, ) to (3.2+0.15,0.8+0.1).

In Fig. 7 we compare the measured spin-polarized in-
tensities for 8= 15', 17.5', 20', and 26 with those calculat-
ed using the barrier (—3.1,0.8). The fine structure near
threshold is not resolved in the measurement, but the
staking asymmetry between spm-up and spm-down I.nten-
sities is apparent. For these incident energies and angles,
there is a delicate interaction between Bragg peaks, spin-
dependent features, and barrier scattering effects. The
agreement between theory and experiment is satisfactory.

V. DISCUSSION

0 2 4 6 8 10

Energy (eV}

10

Energy (eV)

FIG. 7. Comparison between calculated and experimental
spin-polarized intensities for 8=15', 17.5, 20', and 26'. (a) Ex-
periment, Ref. 22. The intensities are in arbitrary units. (b)
Calculated intensities for barrier with z0 ———3. lao, A, =O. sa0
Solid curves, spin down; crosses, spin up. The mesh is 0.1 eV.

The self-consistent film calculations described here
show that the effective single-particle potential for occu-
pied electrons demonstrates significant departures from
the muffin-tin form assumed in almost all LEED calcula-
tions. Since threshold effects originate in the coupling of
the beams by G vectors parallel to the surface, they will
be affected by non-muffin-tin terms in the potential, and
this is an interesting consideration for future work. It is
important to note that a barrier derived from a local-
density calculation is not appropriate for LEED calcula-
tions. The asymptotic form outside the crystal has an ex-
ponential rather than an inverse dependence on the dis-
tance from the surface, and the asymptotic form in the
crystal has an average value which is too low for the ener-

gy range considered here (0—10 eV) and quite inappropri-
ate for higher energies. However, the transition from vac-
uum to bulk should be described more satisfactorily and
the results have suggested a one-dimensional Inodel poten-
tial. The real part of this potential has two adjustable pa-
rameters, zo, the position of the image plane, and A, ,
which describes the degree of barrier saturation.

The one-dimensional model [Eq. (8)] with zo ———3.2ao
and A, =0.8ao provides a satisfactory fit to LEED fine-
structure measurements on W(001). The relative insignifi-
cance of three-dimensional effects at this level of accuracy
may be due to the high symmetry of the W(001) surface
and these effects could be more important for less symme-
trical surfaces, such as W(110).

This work is a refinement and extension of earlier
work ' and shows some interesting similarities and
differences. In particular, the position of the image plane
(zo= —3.2ao) is very similar to those obtained using the
modified image' ( —3.0a 0) and saturated image'4
( —3.3ao) barrier models. Although the long-range parts
of these potentials are similar, the forms near the surface
are quite different. In this region, the potential is compli-
cated by dynamical and three-dimensional effects, and
high-resolution and spin-polarized data, if possible in con-
junction with absolute reflectivity measurements, are
needed to further refine the barrier models. The interfer-
ence nature of the barrier-dependent scattering means that
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barriers corresponding to other regions of (zo, A, ) space
lead to essentially identical peak positions. However, the
optimum region given above is the only one which is qual-
itatively similar to the barrier ln the flilm calculations.

This work confirms the overall picture described ear-
lier. ' In that analysis, we also found several barriers
which described the data at 0=48' equally well, and the
origin of the low-energy structure in the W(001) LEED
curves —the interaction among Bragg peaks, spin-
dependent features, and barrier scattering effects—is un-

changed. The optimized barrier, like the saturated image
barrier and the barrier determined from the film calcula-
tion, overlaps the bulk region. This is a familiar situation
in LEED calculations, where the reflection and transmis-
sion matrices of each layer are usually determined
separately, even if the layers overlap. In the present con-
text, wc dctcrm1nc thc 1cflcct1on and tlansID1ss1on ma-
trices for the much weaker barrier scattering. Since zu is
located outside the muffin-tins of the surface layer, the
overlap is weak and the scheme we use should be reliable.

VI. CONCLUSIONS

Self-consistent electronic structure calculations have
been performed for a five-layer W(001) film. The results
suggest a model for the scattering potential for electrons
near the surface, and an appropriate choice of parameters
(zu ———2.9a&,A, = l. lao ') reproduces satisfactorily the
averaged potential of the film calculations in the transi-

tlon rcglon.
The barrier model has been used to analyze measured

LEED intensity curves from W(001) with the following
1csults.

(a) With zu ———3.2ao and A, =O.Sau, the model pro-
vides a satisfactory fit to both the threshold fine structure
for 0=48' and to spin-polarized measurements at lower
lncldent angles.

(b) The optimum barrier location is close to those found
in earlier work using the modified image and saturated
image barrier models. The degree of saturation is, as ex-
pected, greater than in the film calculations.

(c) Three-dimensional effects in the barrier are not sig-
nificant for the W(001) surface at the present level of ac-
cuI'acy.

High-resolution and spin-polarized I.BED data appear
to be capable of providing a detailed picture of the scatter-
ing potential experienced by an electron near a surface.
The realization of this will require the continuing close
cooperation between theory and experiment, with the
development of more refined calculational models and
methods of obtaining data of even higher resolution.
Work in these directions is continuing.
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