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Rayleigh waves on a superlattice stratified normal to the surface
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We present a theory of Raylelgh waves on a supellattlce when the surface is perpendicula1 to the
alternating layers. The method consists of first Fourier analyzing the equations of xnotion in the
direction perpendiculax' to the layers so as to include automatically the boundary conditions at the
different intex'faces. For each value of the wave vector k perpendicular to the layers, this gives a set
of wave vectox's parallel to the layers, i.e., perpendicular to the surface. Then a surface wave is con-
structed from a superposition of these solutions. The frequencies of the surface Rayleigh waves are
.obtained by using the Fouriex-analyzed conditions of vanishing stresses at the fxee surface. Numeri-
cal calculations are performed by lixniting the nuxnber of Fourier components taken into account.
For two relatively similar layers in the superlattice there are two different Rayleigh branches near
the Brillouin-zone boundary which result from the folding of the dispersion curve for a Rayleigh
wave on a homogeneous xnedium. The higher branch can disappear when the two layers differ sig-
nificantly in their e1astic properties. We present a few examples of the dispersion curves and of the
associated displacement fields. %e also px'esent examples showing the variation of the gap between
the two Rayleigh branches versus the paraxneters of the layers and their thicknesses.

I. INTRODUCTION

Despite a great deal of work on the propagation of
acoustic waves in layered media' there is still consider-
able interest in this problem at the present time due to the
possibility of fabricating superlattices that consist of alter-
nating layers of two different materials. ' Although the
bulk properties of such superlattices are being studied in-
tensely at the present time, a great deal of attention has
been directed recently at the magnetic, electromagnet-
ic, ' and vibrational ' ' properties of semi infinite -su-
perlattices. In this last case, the possibility of Love-type
@saves has been demonstrated, and explicit expressions
for their dispersion have been derived. ' ' The dispersion
of Rayleigh waves on such superlattices has also been ob-
tained in explicit form. ' Finally, the surface modes of a
superlattice have been studied on the basis of atomic
models. '~

In this paper we present what is to our knowledge the
first study of the propagation of Rayleigh waves on a su-
perlafflce cllt IlorIIlal to 1ts la111111af10118 (Flg. 1). II1 the
direction x~ perpendicular to the layers the Brillouin zone
for this structure is limited to —m/a ~ k &m. /a, where k
1s thc wave vcctoI of thc Raylcigh wave and Q 18 thc
period of the superlattice. The restricted range of varia-
tion of k gives rise to a bending of the Rayleigh-wave
dispersion curve near the zone boundary (wave slowing),
as well as to the possibility of a second, higher-frequency
branch of the dispersion curve in a limited frequency
range, due to the folding of the dispersion curve for Ray-
leigh waves on a homogeneous medium back into the first
Brillouin zone. Similar effects occur for a medium homo-
geneous in the bulk, but containing periodic surface pcr-

turbations in the direction of propagation of the Rayleigh
wave, such Rs R grating.

In Sec. II we shall describe the theory which gives the
frequencies of the Rayleigh waves on this type of super-
lattice. In this method the equations of motion are
Fourier-analyzed in the x1 direction in order to automati-
cally include the boundary conditions at the different in-
terfaces between the layers. The Rayleigh-wave frequen-
cies are obtained by seeking a surface wave satisfying the
Fourier-analyzed boundary conditions at the free surface.

Section III is devoted to some applications of this
theory. A few dispersion curves, as well as the associated
displacement fields are presented, and the effects of the
physical parameters of the layers and their thicknesses on
the two branches of the Rayleigh-wave dispersion curve
near the zone boundary are discussed. Some conclusions
from this study are presented in Sec. IV.

II. THEORY OF RAYLEIGH WAVES
ON VERTICALLY STRATIFIED MEDIA

A. General presentation

Thc geometry of thc supc1latt1cc studlcd 1n th1s papcx' 1s
depicted in Fig. 1. The two layers are assumed to be elas-
tic, 1sotloplc 01 cubic, media characterized by thc clast1c
moduli c~1,e&2,c44 and e&&,cI2,c44, and their densities p
and p', respectively. In the case of cubic media the theory
presented below applies when the free surface is a (001)
surface, and the x1-axis surface is along [1001. In the
case of isotropic media the additional assumption is made
that each medium has only two independent elastic con-
stants as a consequence of the relations c» ——e&2+2e&4.
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X)

where u(x, t) is the displacement field, and the elements

of the stress tensor T are given by

QpT p= QC~p„„(x) "(x,t) .
Bx~

{2.2)

FIG. 1. Geometry of the semi-infinite superlattice.

Rnd c ll =c12+2c44.
As indicated in Fig. 1, the free surface is perpendicular

'to tllc xl direction, RIld wc RssllIllc that 'tllc wave vcctol k
parallel to the surface is in the xl direction. The period
of the superlattice is a =d+d', where d and d' are the
thicknesses of the unprimed and primed media, respec-
tlvcly. In t1118 papcl' wc arc 1Iltcl'cstcd ln surfRcc wRvcs
polarized in the sagittal plane (the XI,XI plane). As a
matter of fact, these waves are decoupled (for the symme-
try considered in this paper) from the so-called transverse,
or shear horizontal, modes polarized along xz.

The method that we will use to obtain these waves is
based on a Fourier analysis, along xl, of the equations of
motion in the bulk, which includes the boundary condi-
tions at the different interfaces separating the layers; this
is achieved by taking the elastic moduli c,

&
and the density

p to be coordinate dependent. For given values of co and
k this operation leads to an infinite set of equations which
has an infinite number of solutions for the wave vector kI
along XI. If at least one of these solutions is real, this
means that one can find at that frequency a wave propa-
gating in the superlattice. On the other hand, if all kI are
imaginary or complex, this frequency is situated outside
the bulk bands. Then one can construct a surface wave by
taking a combination of those solutions which have a de-
caying behavior far from the surface. Finally, this surface
wave should satisfy the conditions for vanishing stresses
at the free surface, which are also Fourier-analyzed and
which give rise to a set of linear homogeneous equations.
The Rayleigh-wave frequencies are then obtained by
equating the determinant associated with this system to

The numerical analyses are of course done by limiting
the number of equations in the above-mentioned sets; this
means that we take a finite number of Fourier com-
ponents. We now turn to details of the theory.

However, the elastic constants and the density are x~
dependent, i.e., for example, p(x I ) =p (p') if x

~ belongs to
the medium 1 (2). Then, in the contracted Voigt notation,
the equations of motion for cubic materials with (001)
surfaces and k along [100]become

Bell(XI ) Bu ~ Bc12(xt ) Bul—6) p(XI )u I = +
Bx I Bx 1 BX I Bxl

B ul B ul
+cl](xt) I +c~(xl)

BX I Bx3

B uI+ [C II (X 1 )+C44(X I )] 8x ~Bx3
(2.3a)

r

Bc44,(x ( ) Bu I Bul—a) p(x I )uI —— +
Bx1 Bxp Bx I

8 Q]+ lc44(x t )+cII{xI )]
BBx IBxI

(2.3b)

In Eqs. (2.3) we have assumed a harmonic time depen-
dence of the displacement field

u~(x, t) =u~(x)e

with

p(j) = Jdx 1p(x I )e— (2.6)

The displacement components, however, must possess the
Bloch property

We now expand all periodic functions of xl in a Fourier
series. For example, the density can be written

CO

p(x I )= g p(j)e

B. Theoretical description

The equation of motion of an elastic medium can be
written in the form

u (xl,xs)= g u {j
~

)x&e"',

where

(2.7)

B u (x, t) BT p(x, t)
p 2

—— , a=123
p BXp

kj ——k+2m.j/a .
We substitute these expressions into the equations of

motion (2.3) and then equate the mth Fourier coefficients,



2m.(m —n)
re p(m —n) — ct~(m —n)k„—c~t{m —n)k„+c44{m n—) z u~(n

~
x3)

5 =—co
Q dX3

2m (m n—)+ g ~ c»{m —n)+[c»{m —n)+c44(m —n)]k u3{n ~x )=0, m =0,+1,+2,
Pf =—oo

Q X3

2m (m n)—
c~(m —n)+[a»(m n—)+c~(m —n)]k„u, (n

~
x, )"

. dX3

2m(m n)—~ p(m —n) — c44(m —n)k„—c44(m —n)k„+c»(m n) — u3(n ix3)=0, m =0,+1,+2, . . . .
8 dX3

(2.9b)

It is worthwhile to note that these equations describe the motion of the elastic waves in each medium, but also fulfill the
conditions of continuity at the interfaces.

To solve Eqs. {2.9) we assume

ui(n ix3)=A„e ', u3(n ix3)=8„e (2.10)

with ReA, ~O to ensure satisfaction of the boundary conditions at x3 ——0o. (The parameter A, is equivalent to ik3„where
k3 is the wave vector along x3. ) Inserting the solutions (2.10) into Eqs. (2.9), we obtain the two foHowing coupled sets of
eqURtlOQS:

2'(m —n) 2g re p(m n) — — c~~(m —n)k„—c~~(m —n)k„+c44(m —n)A,

+ g { iA) — , c&2(m —n)+[c&2(m n)+—c44(m —n)]k„B„=O, (2.11a)
2~(m n)—

Pl
8

2m (m n)—g ( i A, ) — c44(m —n)+ [c|2(m —n)+@44(m —n)]k„A„

a) p(m n) — — c44(m —n)k„c44(m —n)k„+c—))(m nQB—„=O,, m =0,+1,+2, . . . .2~ 2n.(m n)—
5 Q

I ct Us introduce t%'o coIUIQn vcctoIs A and 8 %'hose
components are the coefficients A„and 8„, respectively.
Then one can formally write Eqs. (2.11) in the matrix

OITD

(M ))A, +M )'I)A —iAM(3B=O,

( —iA, )M»A+(M'33K, +M,",)8=0,
(2.12a)

(2.12b)

In order to so1vc this sct of equations, %"c pcrfoITll a
simple transformation on it that reduces it to a standard
eigenvalue problem. This consists of setting

where the matrices M;J, M';1, and M J are independent of

Eqs. (2.12) become
—+

A A
A, M' =M" (2.15)

8 B

Equation (2.15) indicates that the I, are the eigenvalues of
the matrix M' 'M" and that (A,B) are the correspond-
ing eigenvectors.

Finally, let us construct a surface wave by talung a
linear combination of the above solutions, which we label
by thc index s:

u~(n ~x3)= gK, A (A,, )e {2.16a)

Then if we introduce the matrices
u3(n ~x3)= QIC,B (A,, )e (2.16b)

This solution has to satisfy the conditions of vanishing
stresses at the free surface x3 ——0, which can be written
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FIG. 2. Dispersion of the bottom of the bulk bands (8) and
of the Rayleigh waves (R) in the reduced Brillouin zone associ-
ated with the superlattice. The two media in the superlattice
differ only by their mass densities, with (a) p'/p=0. 95 and (b)
p'/p=0. 5. 0 is a reduced frequency Q={~/c, )(a/2m), where

c, =(c44/p)' is the transverse speed of sound in the first medi-
um.

0.6 0.8

FIG. 3. Same as in Fig. 2 when the two media in the super-
lattice have the same mass densities, but elastic constants in the
ratio (a) c44/c44 ——1.1 or (b) 2.

TABLE I. Test for the convergence of the results when one increases the number of the Fourier coef-
ficients involved in the calculations. The frequencies of the Rayleigh wave (index R) and of the bottom
of the bulk bands (index 8) are given in the reduced notation Q=~a/2mc„where c, =(c~/p)'~~ is the
transverse speed of sound for the first medium. The results are given when the two media in the super-
lattice differ only in their mass densities, with p /p=0. 95, or only in their elastic constants, with

Mass-density variation
Qg Qg

Elastic-constant variation
Qg Qg

0
1

2
4

12

0.530 81
0.486 80
0.486 36
0.486 34
0.486 33
0.486 33

0.577 35
0.523 90
0.523 41
0.523 37
0.523 36
0.523 36

0.56301
0.51619
0.509 98
0.508 20
0.507 20
0.506 84

0.612 37
0.53448
0.52746
0.525 58
0.52452
0.524 14



Bu 1 Bu3
c~(x1) +

~X3 Bxl x3 ——0

Bu 1 BQ3
C 12(X1) +C 1 1 (X 1 )

Bx 1 X3 x3 —0

(2.17a)

(2.17b)

c44 ——cl2 ——,'c», and (ii) the two layers have the same
thickness: d =d'. Let us note that the velocity of the
Rayleigh wave on a homogeneous medium %'1th

112=&m= 3 II 1S S»c»y

clt ——2(1—v 3/3)c44/p =0.846c44/p .

The Fourier expansion of Eqs. (2.17) yields the pair of
equations

du 1 (n
i xl )

+ik„u3{n
~
x3)

Most of the results presented in the following sections
are obtained by taking M, which determines the number
of the Fourier components involved in the calculation, to
be M=4. This choice wiH be discussed later. How&ever,
in some figures we made the choice M= 8 or even M= 12
when, due to the large difference between the parameters
of the two layers, the results deviate from the M=4 case
by a detectable difference on the scale of the figures (of
the order of 1%).

'

CI2 Pl —Pl l ~Q I n X3 A. Dispersion curves for the Rayleigh waves

du, {n ~x, )
+ cll(m n)—

dx3
=0,

x3=0
(2.18b)

g Kg g [—c44(m —n)A~(Ag)A, ,

+ic44(m —n)k„8 (1,, )] =0, (2.19b)

g X, g [iclI (m n)k„A~(A—,, )

—c 1 1 (m n)8 (A—, )A,,] =0, ,

with m =0,+1,+2, . . . .
Inserting the solutions (2.16) into Eqs. (2.18) results in a

pair of equations for the determination of the coefficients
IE, I:

We first present the dispersion curves for the Rayleigh
waves and the bottom of the bulk bands in the following
cases. (i) The elastic moduli are independent of xl and
the mass densities have the following ratios: (a)
p'/p=0. 95 [Fig. 2(a)]; (b) p'/p=0. 5 [Fig. 2(b)]; (ii) the
mass density is independent of x, and the elastic moduli
have the following ratios: (a) c44/c44 ——1.1 [Flg. 3(a)]; (b)
c~/c44 ——2 [Fig. 3(b)]. These curves are drawn for the
case M=4. This choice comes from a test, summarized
in Table I, on the convergence of the results when one in-
creases the number of Fourier coefficients involved in the
calculation. The test is done by varying M in cases (ib)
and (ii b) above, when the wave vector k is at the
Brillouin-zone boundary {k=IJ/a) where one could ex-
pect the slowest convergence. The convergence is faster
~hcIl only thc IDass density 1s x] dependent. I ct Us also
note that even small values of M give a good qualitative
idea of the physical results, especially when the c; are xl

with m =0,+1„+2,. . . .
The dispersion relation for the Rayleigh wave is ob-

tained by equating the determinant of this linear system to
zero. To obtain numerical results, it is necessary to limit
the number of equations involved, i.e., to use a finite num-
ber of Fourier components. This will be done in the next
section where the displacements are described by 2M+ 1

terms in the Fourier expansions (2.7), that is, the summa-
tion on j in Eq. (2.7) [or the index n in Eq. (2.10)] range
from —M to + M. Then Eqs. (2.9), (2.11), (2.18), and
(2.19) will be considered for m =0,+1,+2, . . . , +M. We
note that the matrices M' and M" [Eqs. (2.14)] are o«1-
der 2(2M+ 1), and thus this is also the number of values
assumed by the index s in Eqs. (2.16) and (2.19).

III. DISPERSION CURVES AND DISPI.ACEMENTS
FOR THE RAYI.EIGH WAVES

This section is devoted to a few applications of the gen-
cra1 theory presented 1n Scc. II. Unless other%'isc spcc1-
fllcd, wc assume tllat (1) tllc two clastic lllcdla arc lsotloplc
with the following relations among the elastic constants:

0 0.6 ka

FIG, 4. Same as in Fig. 2 for a GaAs-Ga„A1I „As—type su-

perlattice. The elastic constants are assumed identical for the
two media and p'/p=0. 9. Here c, =e, (GaAs).
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TABLE II. Elastic constants and densities of Al and W. The
elastic constant c~q

——c ~ ~
—2c44 satisfies the isotropy assumption.

W
Al

(10' N/m )

52.33
10.68

(10' N/m )

16.07
2.82

P
(g/cm )

19.317
2.733

0.2

0.1

0 0.2 04 0.6 0.8 ka

FIG. 5. Same as in Fig. 2 for a W-Al —type superlattice.
Here c, =c,(W).

independent; this comes from the fact that the lowest
eigenvalues A,, are not very much affected by the intro-
duction of the higher Fourier components in the calcula-
tion.

Let us now make a few comments about Figs. 2 and 3.
Near the Brillouin-zone boundary, there is a bending of
the Rayleigh-wave dispersion curve (wave slowing), as
well as of the bottom of the bulk bands; the difference be-
tween the two media is greater as the bending becomes
larger. On the other hand, if one starts from a homogene-
ous medium and then introduces the superlattice by
slightly changing medium 2 with respect to medium 1

[Figs. 2(a) and 3(a)], one observes a folding of the Ray-
leigh wave associated with the homogeneous medium;
thus two surface wave branches are present near the zone
boundary. When the difference between the densities (or
the elastic constants) of the two media increases, the

{o)

U)

x3=Q
(b)

U3

x3=0

20'

2U)

X3=-a
2

20)

2U3

aX3=—
2

x3= a

4U)
x3= a

4U3

40)

I

0.5
I

0.25
I

0.5
I

0.25
I

0.75 -0.25-0.25 00 0.75t x) 1 X)
a

FICx. 6. Displacement fields associated with the {a) lower and {b) upper RayleighL waves at the point k =m/a of Fig. 2(a). The dis-
placements are drawn for different depths from the surface. The displacements are given in arbitrary units.
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x3-Q

U3
Ul

Ul

2U3

2U3

4Ug

4U3
4Ul

4UI

l

0.750.25- 0.25 0.2 0.750 5 't

a
FIG. 7. Displacement fields associated with the (a) lower and (b) upper Rayleigh waves at the point k =m/a of Fig. 3(a). The dis-

placements are drawn for different depths from the surface.

higher Rayleigh mode rises in frequency until it disap-
pears completely into the radiative region of the (co,k)
plane. Then one has only the lower branch, as in Figs.
2(b) and 3(b).

As a further illustration of the general structure of the
dispersion curves, we present two examples that corre-
spond to more realistic situations. Figure 4 describes a
cubic GaAs-Ga„A1~ As—type superlattice with
p'/p=0. 9 and elastic constants identical for the two
media (ctI ——11.8, CIz ——5.35, and c44. ——5.94, in units of
10' N/m ). Figure 5 presents the dispersion curves for a
lamellar system of the Al-W type. These are two nearly
lsotl'oplc crystals 11Rvlllg very different palaIllctcl's (Table
II).

B. Displacement field

%e present in Figs. 6 and 7 the variations of the dis-

placements ul and ul [Eqs. (2.16)] along one period of
the superlattice for cases (ia) and (iia) of the preceding
subsection for the wave vector k at the Brillouin-zone
boundary (k =n/a) For small wa. ve vectors these varia-
tions are slow and we do not present them.

Before discussing these figures, let us emphasize that

the displacements [Eqs. (2.16)] are obtained in our calcu-
lation for a finite number of their Fourier components.
Thus the displacements are continuous at the interfaces
between the layers and also have continuous derivatives.
However, due to the continuity of the stresses at. these in-
terfaces, the derivatives of the displacements should be
discontinuous. This property cannot be realized in the nu-
merical analysis, and the behavior of the displacements
near the interfaces is approximate.

Figures 6(a) and 6(b) correspond to the lower and upper
branches of the Rayleigh-wave dispersion curves of Fig.
2(a) (there is only mass-density variation in the superlat-
tlcc wltll p /p =0.95). Tllc displacement Il I associated
with the lower (upper) Rayleigh-wave branch has a
symmetrical (antisymmetrical) behavior with respect to
the midplane of the lighter medium and an antisymmetri-
cal (symmetrical) behavior with respect to the midplane of
the heavier medium. The reverse is true for the displace-
ment ul. In Figs. 6(a) and 6(b) the displacements are
presented at the surface and at two different depths inside
the crystal, showing the decay of the wave amplitude with
increasing distance into the superlattice from the surface.

Similarly, in Figs. 7(a) and 7(b) we have depicted the
displacements associated with the lower and upper
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branches of the Rayleigh-wave dispersion curves of Fig.
3(a) (only elastic constant variations in the superlattice
with c44, /c44 ——1.1) at k=m/a. The behavior for the
lower (upper) Rayleigh-wave branch is similar to that of
the upper (lower) wave in Fig. 6.

C. Gap variations versus other parameters

We have seen that for two relatively similar media one
obtains, near the zone boundary, two different branches of
the Rayleigh-wave dispersion curves that are separated by
a gap. Here we will concentrate on the positions of these
branches with respect to the bottom of the bulk bands as
functions of some parameters in the superlattice at
k =Ir/a.

Figure 8 presents these two Rayleigh branches as vvell

as the bottom of the bulk bands versus the ratio of the
mass density between the two crystals; the elastic con-
stants are in the ratio c~/c~ ——1.1 The two branches are
present in only a limited range of the ratio p'/p, one of
the modes reaching the bulk bands around p'/p =0.69, the
other at p'/p=1. 24. On the other hand, the two modes
become degenerate around p'/p=0. 96. Let us remark
that if the two crystals differ only by their mass densities,
this degeneracy occurs at p'/p= l. The dlsplacements as-
soclate6 11th the two mo(les in Fig. 8 plesent a behavior
slmliar to that sllowll 111 Flg. 7 (Flg. 8) wllcll p /p ls
greater (smaller) than 0.96, which corresponds to the
crossing points of the two dispersion curves.

Finally, in Fig. 9 we present the dispersion curves for

9. Bottolll of the bulk bands (8) Rnd Raylcigh waves
(R) at k =m/a versus the ratio of the layer thicknesses. The
two media differ only by their mass densities with p /p=0. 95.
Q is as defined in Fig. 2. The arrows indicate the asymptotic
11mlts of the curves foi 8 /6 ~ aq.

the Rayleigh wave and the bottom of the bulk bands at
k =n./a as functions of the ratio between the thicknesses
of the two layers. In this example the two media differ
only in their mass densities, with p'/p =0.95. At
d'/d=0, we have a homogeneous medium; departing
from this limit, two surface waves appear which then go,
in the limit d'/d ~ 00, to the Rayleigh wave of the second
mecBUI.

0,7 0.8 0.9 1.0 1.1 ).2 1.3

FIG. 8. Bottom of the bulk bands (8) and Rayleigh waves
(8) at k =m/a versus the ratio of the mass densities of the two
media in the superlattice. The layers have the same thickness
and theIr elastic constants are I the ratio c~/844= 1.1. Q 1s as
defined in F1g,.2.

In this paper we have presented a theory of sagittal sur-
face waves on a stratified medium cut perpendicular to
the layers. Besides the bending of the modes near the
Brillouin-zone boundary, one can observe the folding of
the Raylelgh-wave Chsperslon curve Into a second branch
if the two media are not very different. The existence of
this second branch and its separation from the first
branch have been studied as functions of the intrinsic pa-
rameters of the media and their thicknesses. The method
of the calculation, which is based on a Fourier analysis of
the equations of motion in the direction perpendicular to
the laminations, shows a better convergence when the two
media differ only in their mass densities. This can be un-
derstood, at least for small wave vectors where the super-
lattice becomes equivalent to an effective hexagonal medi-
um. As a matter of fact, the density of this effective
medium is the arithmetic mean of the two mass densities,
while its elastic constants result from some more sophisti-
cated combinations of the initial elastic constants (for
cxRIIlplc, tllc cffcctlvc c44 ls tllc arlthmctlc Illcall of thc
two c~ corresponding to the two layers). Now, the zero
Fourier components of the mass density or the elastic con-
stants in the superlattice represent the arithmetic means
of these quantities [cf. Eq. (2.6)j. In this long-wavelength
limit, the Rayleigh wave of the superlattice is equivalent
to that of the effective 11exagonai mecilum cut perpeM11cu-
IaI to its isotroplc plane.



DJAFARI-ROUHANI, MARADUDIN, AND %'ALI.IS

Finally, we note that we obtained qualitatively similar
results to those presented in this paper by modeling the
variation of the density and of the elastic constants versus

x1 by sinusoidal functions; however, the convergence of
the results is achieved in this last case for smaller values
of M. We also note that a method similar to that present-
ed here has been used' to study the surface polaritons of
a superlattice cut perpendicular to the larmnations.
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