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We present a theory of Rayleigh waves on a superlattice when the surface is perpendicular to the
alternating layers. The method consists of first Fourier analyzing the equations of motion in the
direction perpendicular to the layers so as to include automatically the boundary conditions at the
different interfaces. For each value of the wave vector k perpendicular to the layers, this gives a set
of wave vectors parallel to the layers, i.e., perpendicular to the surface. Then a surface wave is con-
structed from a superposition of these solutions. The frequencies of the surface Rayleigh waves are
obtained by using the Fourier-analyzed conditions of vanishing stresses at the free surface. Numeri-
cal calculations are performed by limiting the number of Fourier components taken into account.
For two relatively similar layers in the superlattice there are two different Rayleigh branches near
the Brillouin-zone boundary which result from the folding of the dispersion curve for a Rayleigh
wave on a homogeneous medium. The higher branch can disappear when the two layers differ sig-
nificantly in their elastic properties. We present a few examples of the dispersion curves and of the
associated displacement fields. We also present examples showing the variation of the gap between
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the two Rayleigh branches versus the parameters of the layers and their thicknesses.

I. INTRODUCTION

Despite a great deal of work on the propagation of
acoustic waves in layered medial>? there is still consider-
able interest in this problem at the present time due to the
possibility of fabricating superlattices that consist of alter-
nating layers of two different materials.>* Although the
bulk properties of such superlattices are being studied in-
tensely at the present time,” a great deal of attention has
been directed recently at the magnetic,’~’ electromagnet-
ic,>® and vibrational®>®~!¢ properties of semi-infinite su-
perlattices. In this last case, the possibility of Love-type
waves has been demonstrated,” and explicit expressions
for their dispersion have been derived.'*!* The dispersion
of Rayleigh waves on such superlattices has also been ob-
tained in explicit form.!* Finally, the surface modes of a
superlattice have been studied on the basis of atomic
models.!?

In this paper we present what is to our knowledge the
first study of the propagation of Rayleigh waves on a su-
perlattice cut normal to its laminations (Fig. 1). In the
direction x; perpendicular to the layers the Brillouin zone
for this structure is limited to —m/a <k </a, where k
is the wave vector of the Rayleigh wave and a is the
period of the superlattice. The restricted range of varia-
tion of k gives rise to a bending of the Rayleigh-wave
dispersion curve near the zone boundary (wave slowing),
as well as to the possibility of a second, higher-frequency
branch of the dispersion curve in a limited frequency
range, due to the folding of the dispersion curve for Ray-
leigh waves on a homogeneous medium back into the first
Brillouin zone. Similar effects occur for a medium homo-
geneous in the bulk, but containing periodic surface per-
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turbations in the direction of propagation of the Rayleigh
wave, such as a grating.!”

In Sec. II we shall describe the theory which gives the
frequencies of the Rayleigh waves on this type of super-
lattice. In this method the equations of motion are
Fourier-analyzed in the x; direction in order to automati-
cally include the boundary conditions at the different in-
terfaces between the layers. The Rayleigh-wave frequen-
cies are obtained by seeking a surface wave satisfying the
Fourier-analyzed boundary conditions at the free surface.

Section III is devoted to some applications of this
theory. A few dispersion curves, as well as the associated
displacement fields are presented, and the effects of the
physical parameters of the layers and their thicknesses on
the two branches of the Rayleigh-wave dispersion curve
near the zone boundary are discussed. Some conclusions
from this study are presented in Sec. IV.

II. THEORY OF RAYLEIGH WAVES
ON VERTICALLY STRATIFIED MEDIA

A. General presentation

The geometry of the superlattice studied in this paper is
depicted in Fig. 1. The two layers are assumed to be elas-
tic, isotropic or cubic, media characterized by the elastic
moduli ¢y1,¢13,¢44 and cjy,¢1;,¢44 and their densities p
and p’, respectively. In the case of cubic media the theory
presented below applies when the free surface is a (001)
surface, and the x-axis surface is along [100]. In the
case of isotropic media the additional assumption is made
that each medium has only two independent elastic con-
stants as a consequence of the relations c¢q;=cj;+2c4s

6454 ©1984 The American Physical Society



29 RAYLEIGH WAVES ON A SUPERLATTICE...

\ \\ \ X‘
Cij | Ciij \
——— P P’ \____
T
M

X3

FIG. 1. Geometry of the semi-infinite superlattice.

and ¢} =cjy+2¢u.

As indicated in Fig. 1, the free surface is perpendicular
to the x; direction, and we assume that the wave vector k
parallel to the surface is in the x; direction. The period
of the superlattice is a =d +d’, where d and d’' are the
thicknesses of the unprimed and primed media, respec-
tively. In this paper we are interested in surface waves
polarized in the sagittal plane (the x;,x; plane). As a
matter of fact, these waves are decoupled (for the symme-
try considered in this paper) from the so-called transverse,
or shear horizontal, modes polarized along x,.

The method that we will use to obtain these waves is
based on a Fourier analysis, along x;, of the equations of
motion in the bulk, which includes the boundary condi-
tions at the different interfaces separating the layers; this
is achieved by taking the elastic moduli c¢;; and the density
p to be coordinate dependent. For given values of @ and
k this operation leads to an infinite set of equations which
has an infinite number of solutions for the wave vector k;
along x;. If at least one of these solutions is real, this
means that one can find at that frequency a wave propa-
gating in the superlattice. On the other hand, if all k5 are
imaginary or complex, this frequency is situated outside
the bulk bands. Then one can construct a surface wave by
taking a combination of those solutions which have a de-
caying behavior far from the surface. Finally, this surface
wave should satisfy the conditions for vanishing stresses
at the free surface, which are also Fourier-analyzed and
which give rise to a set of linear homogeneous equations.
The Rayleigh-wave frequencies are then obtained by
equating the determinant associated with this system to
zero.

The numerical analyses are of course done by limiting
the number of equations in the above-mentioned sets; this
means that we take a finite number of Fourier com-
ponents. We now turn to details of the theory.

B. Theoretical description

The equation of motion of an elastic medium can be
written in the form

0%u4(X,1) AT op(%,2)
e E ——ap

" > o, 123 2.1)

p
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where U(X,?) is the displacement field, and the elements
of the stress tensor T are given by

ou
Tap= 3 Capun(X) 5~ (%,1) . (2.2)
v v

However, the elastic constants and the density are x;
dependent, i.e., for example, p(x;)=p (p’) if x, belongs to
the medium 1 (2). Then, in the contracted Voigt notation,
the equations of motion for cubic materials with (001)
surfaces and k along [100] become

Ocqy(xy) Quy  depp(x;) dus

—— 2 —
wp(XI)ul 8x1 axl axl 8x3
et e 2
clxy))—s+e¢ —_—
11X ax% 4\X ax§
82u3
+[c12(x1)+c44(x1)]mx—3— , (2.3a)
2 (1 Jta = 8c44(x1) aul au3
TepX U= axl 8x3 ax1
82u1
+[c44(x1)+cn(xl)]_5;ﬁ73
UL i (2.3b)
X{)—> X)) —> . .
Caa\ Xy ax% cnixy 8x§

In Eqgs. (2.3) we have assumed a harmonic time depen-
dence of the displacement field
Uy(X,t)=ugq(X)e 1o, (2.4)
We now expand all periodic functions of x; in a Fourier
series. For example, the density can be written

plxp)= 3 plje’ 2.5)
j=—oo
with
ﬁ(j):—‘l; foadxlp(xl)e_i(zﬂjx‘/a). (2.6)

The displacement components, however, must possess the
Bloch property

Ug(x,x3)= 3 2,0 |x3)e™ 2.7)
Jj=—w
where
ki=k +2mj/a . (2.8)

We substitute these expressions into the equations of
motion (2.3) and then equate the mth Fourier coefficients,
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> wp(m —n)-—ycu(m —n)k, — &1 (m —n)k2+E(m —n)? @(n |x3)

n=-—oo 3

o0

+ 3 i

n=—o

2m(m —n) o

2m(m —n) A

> i

conJ‘(m —n)— 2m(m —n) A

Cu(m —n)+[Cp(m —n)+E4(m —n)lk,

Caslm —n)k, —Eu(m —n)k2+&1(m —n);d—g
X

dX3

Cialm —n)+[C12(m —n)+E44(m —n)lk, ’Lﬁ}(n |x3)=0, m=0,+1,+2,...

(2.9a)
d A
E;;ul(n |x3)

2
{4\3(71 |X3)=O, m=0,i1,12,... .

3
(2.9b)

It is worthwhile to note that these equations describe the motion of the elastic waves in each medium, but also fulfill the

conditions of continuity at the interfaces.
To solve Eqgs. (2.9) we assume

_Ax _Ax
@(n |x3)=A,e 3, @3(n|x3)=B,e " °,

(2.10)

with ReA >0 to ensure satisfaction of the boundary conditions at x;=c. (The parameter A is equivalent to ik3, where
k3 is the wave vector along x3.) Inserting the solutions (2.10) into Egs. (2.9), we obtain the two following coupled sets of

equations:

2

n

@’p(m —n)

_ 2m(m —n) .
a

S1(m —n)k, —&1(m —n)k}+E44(m —n)A?

Ay

+ 3 (—i}) -Z—MAlz(m —n)+[C1p(m —n)+8y(m —n)lk, |B,=0, (2.11a)
n
. 27T(m ""n) ~ ~ A
> (—id) ~—a—C44(m —n)+[Cp(m —n)+Eu(m —n)lk, |4,
n
+3 |w0%pim —n)— 2T o )k —Baa(m — k2 +E1(m —mA2 |By=0, m=0,1,42,.... (2.11b)
n
l
Let us introduce two column vectors A and B whose Egs. (2.12) become
components are the coefficients 4, and B,, respectively. . .
Then one can formally write Eqs. (2.11) in the matrix o Al o |A
form MM |=M" | (2.15)
B B

(M3 A24+ M)A —iAM;B=0, (2.12a)

(—iM M3 A+ (M5A2+ M $5)B=0, (2.12b)
where the matrices ﬁij, ﬁ}j, and M ;j are independent of
A

In order to solve this set of equations, we perform a
simple transformation on it that reduces it to a standard
eigenvalue problem. This consists of setting

A=—1R& B=B. (2.13)
iA
Then if we introduce the matrices
- Mj; O - M1 My
M,= -~ ., > M”=— =, > (2-14)
—M;; M3; 0 Mg

Equation (2.15) indicates that the A? are the eigenvalues of

the matrix M’~'M" and that (A,B) are the correspond-
ing eigenvectors.

Finally, let us construct a surface wave by taking a
linear combination of the above solutions, which we label
by the index s:

Ax

1(n |x3)=3 K;Ap(As)e 3, (2.16a)

Agxy

#3(n |x3)= 3 KB(A)e (2.16b)

This solution has to satisfy the conditions of vanishing
stresses at the free surface x; =0, which can be written
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FIG. 2. Dispersion of the bottom of the bulk bands (B) and ) ) . .
of the Rayleigh waves (R) in the reduced Bri}louin zone asso.ci- 0 02 04 06 08 1
ated with the superlattice. The two media in the superlattice
differ only by their mass densities, with (a) p'/p=0.95 and (b)
p'/p=0.5. Q is a reduced frequency Q=(w/c)a/2m), where FIG. 3. Same as in Fig. 2 when the two media in the super-
cd=(cu /p)'/? is the transverse speed of sound in the first medi- lattice have the same mass densities, but elastic constants in the
um. ratio (a) ca4 /cas=1.1or (b) 2.

TABLE I. Test for the convergence of the results when one increases the number of the Fourier coef-
ficients involved in the calculations. The frequencies of the Rayleigh wave (index R) and of the bottom
of the bulk bands (index B) are given in the reduced notation Q =wa /2mc?, where ¢2=(c4, /p)}/? is the
transverse speed of sound for the first medium. The results are given when the two media in the super-
lattice differ only in their mass densities, with p’/p=0.95, or only in their elastic constants, with
cu/cu=1.1.

Mass-density variation Elastic-constant variation

M Qg Qp Qr Qp

0 0.53081 0.57735 0.56301 0.61237

1 0.486 80 0.52390 0.516 19 0.53448

2 0.486 36 0.52341 0.509 98 0.52746

4 0.486 34 0.52337 0.508 20 0.52558

8 0.48633 0.52336 0.507 20 0.524 52
12 0.486 33 0.523 36 0.506 84 0.524 14
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au1 au3
St Bl -0, 2.17
W) |G e || L, (2.172)
aul 8u3
-— -_— =0. 2.17b
ca(xy) 3%, +c“(x1)ax3 }x3=0 ( )

The Fourier expansion of Egs. (2.17) yields the pair of
equations

i Caalm —n)

n=-—c
d/\
A Ix) L aan [x) o,
dX3 x3=
(2.18a)
[ z l@lz(m~n)ik"ﬁ‘1(nfx3)
n=—o
dits(n | x3)
+ &ulm _pyilnlxy) =0, (2.18b)
dX3 Xy=

with m =0,+1,%+2,....

Inserting the solutions (2.16) into Eqs. (2.18) results in a
pair of equations for the determination of the coefficients
(K}

2K
s

S [ —aalm —n) Ay (AAg

+i€a(m —n)k,Bys(As)] | =0, (2.19b)
EKs‘E[i€12(m —l‘l)k,,A,,s(A,s)
s n

—&1(m —n)B(A)A] | =0, (2.19b)

with m =0,+1,+2,....

The dispersion relation for the Rayleigh wave is ob-
tained by equating the determinant of this linear system to
zero. To obtain numerical results, it is necessary to limit
the number of equations involved, i.e., to use a finite num-
ber of Fourier components. This will be done in the next
section where the displacements are described by 2M + 1
terms in the Fourier expansions (2.7), that is, the summa-
tion on j in Eq. (2.7) [or the index n in Eq. (2.10)] range
from —M to + M. Then Egs. (2.9), (2.11), (2.18), and
(2.19) will be considered for m =0,+1,+2,..., +M. We
note that the matrices M’ and M " [Egs. (2.14)] are of or-
der 2(2M + 1), and thus this is also the number of values
assumed by the index s in Eqgs. (2.16) and (2.19).

III. DISPERSION CURVES AND DISPLACEMENTS
FOR THE RAYLEIGH WAVES

This section is devoted to a few applications of the gen-
eral theory presented in Sec. II. Unless otherwise speci-
fied, we assume that (i) the two elastic media are isotropic
with the following relations among the elastic constants:
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c44=c12=-;—c“; and (ii) the two layers have the same
thickness: d =d’. Let us note that the velocity of the
Rayleigh wave on a homogeneous medium with
c12=c44=%cu is given by

cR=2(1—V3/3)c44/p=0.846c4, /p .

Most of the results presented in the following sections
are obtained by taking M, which determines the number
of the Fourier components involved in the calculation, to
be M=4. This choice will be discussed later. However,
in some figures we made the choice M=8 or even M =12
when, due to the large difference between the parameters
of the two layers, the results deviate from the M =4 case
by a detectable difference on the scale of the figures (of
the order of 1%).

A. Dispersion curves for the Rayleigh waves

We first present the dispersion curves for the Rayleigh
waves and the bottom of the bulk bands in the following
cases. (i) The elastic moduli are independent of x; and
the mass densities have the following ratios: (a)
p'/p=0.95 [Fig. 2(a)]; (b) p'/p=0.5 [Fig. 2(b)]; (ii) the
mass density is independent of x; and the elastic moduli
have the following ratios: (a) c44/c44=1.1 [Fig. 3(a)]; (b)
cy4/c44=2 [Fig. 3(b)]. These curves are drawn for the
case M=4. This choice comes from a test, summarized
in Table I, on the convergence of the results when one in-
creases the number of Fourier coefficients involved in the
calculation. The test is done by varying M in cases (ib)
and (iib) above, when the wave vector k is at the
Brillouin-zone boundary (k =7/a) where one could ex-
pect the slowest convergence. The convergence is faster
when only the mass density is x; dependent. Let us also
note that even small values of M give a good qualitative
idea of the physical results, especially when the c;; are x;

Q
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03} e
o2}
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1

0 02 0.4 06 0.8 1 ka
mw

FIG. 4. Same as in Fig. 2 for a GaAs-Ga,Al;_,As—type su-
perlattice. The elastic constants are assumed identical for the
two media and p’/p=0.9. Here ¢/ =c, (GaAs).
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TABLE II. Elastic constants and densities of Al and W. The
elastic constant ¢, =c; —2c44 satisfies the isotropy assumption.

cn Ca4 P
(10'° N/m?) (10'° N/m? (g/cmd)
w 52.33 16.07 19.317
Al 10.68 2.82 2.733

independent; this comes from the fact that the lowest
eigenvalues A; are not very much affected by the intro-
duction of the higher Fourier components in the calcula-
tion.

Let us now make a few comments about Figs. 2 and 3.
Near the Brillouin-zone boundary, there is a bending of
the Rayleigh-wave dispersion curve (wave slowing), as
well as of the bottom of the bulk bands; the difference be-
tween the two media is greater as the bending becomes
larger. On the other hand, if one starts from a homogene-
ous medium and then introduces the superlattice by
slightly changing medium 2 with respect to medium 1
[Figs. 2(a) and 3(a)], one observes a folding of the Ray-
leigh wave associated with the homogeneous medium;
thus two surface wave branches are present near the zone
boundary. When the difference between the densities (or
the elastic constants) of the two media increases, the

u
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O >< )
y 4
2U]
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0 >4 b
ya
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i >4 "
i L L .l
-0.25 0 0.25 0.5 0.75 1 )

a

FIG. 6. Displacement fields associated with the (a) lower and (b) upper Rayleigh waves at the point k = /a of Fig. 2(a). The dis-
placements are drawn for different depths from the surface. The displacements are given in arbitrary units.
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FIG. 7. Displacement fields associated with the (a) lower and (b) upper Rayleigh waves at the point kK = /a of Fig. 3(a). The dis-

placements are drawn for different depths from the surface.

higher Rayleigh mode rises in frequency until it disap-
pears completely into the radiative region of the (w,k)
plane. Then one has only the lower branch, as in Figs.
2(b) and 3(b).

As a further illustration of the general structure of the
dispersion curves, we present two examples that corre-
spond to more realistic situations. Figure 4 describes a
cubic GaAs-Ga,yAl,_,As—type superlattice  with
p'/p=0.9 and elastic constants identical for the two
media (c;;=11.8, ¢;,=5.35, and ¢4 =5.94, in units of
10'° N/m?). Figure 5 presents the dispersion curves for a
lamellar system of the Al-W type. These are two nearly
isotropic crystals having very different parameters (Table
ID).

B. Displacement field

We present in Figs. 6 and 7 the variations of the dis-
placements u; and u; [Egs. (2.16)] along one period of
the superlattice for cases (ia) and (iia) of the preceding
subsection for the wave vector k at the Brillouin-zone
boundary (k =7/a). For small wave vectors these varia-
tions are slow and we do not present them.

Before discussing these figures, let us emphasize that

the displacements [Egs. (2.16)] are obtained in our calcu-
lation for a finite number of their Fourier components.
Thus the displacements are continuous at the interfaces
between the layers and also have continuous derivatives.
However, due to the continuity of the stresses at these in-
terfaces, the derivatives of the displacements should be
discontinuous. This property cannot be realized in the nu-
merical analysis, and the behavior of the displacements
near the interfaces is approximate.

Figures 6(a) and 6(b) correspond to the lower and upper
branches of the Rayleigh-wave dispersion curves of Fig.
2(a) (there is only mass-density variation in the superlat-
tice with p’'/p=0.95). The displacement u; associated
with the lower (upper) Rayleigh-wave branch has a
symmetrical (antisymmetrical) behavior with respect to
the midplane of the lighter medium and an antisymmetri-
cal (symmetrical) behavior with respect to the midplane of
the heavier medium. The reverse is true for the displace-
ment u3. In Figs. 6(a) and 6(b) the displacements are
presented at the surface and at two different depths inside
the crystal, showing the decay of the wave amplitude with
increasing distance into the superlattice from the surface.

Similarly, in Figs. 7(a) and 7(b) we have depicted the
displacements associated with the lower and upper
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branches of the Rayleigh-wave dispersion curves of Fig.
3(a) (only elastic constant variations in the superlattice
with cj4/cyu=1.1) at k=m/a. The behavior for the
lower (upper) Rayleigh-wave branch is similar to that of
the upper (lower) wave in Fig. 6.

C. Gap variations versus other parameters

We have seen that for two relatively similar media one
obtains, near the zone boundary, two different branches of
the Rayleigh-wave dispersion curves that are separated by
a gap. Here we will concentrate on the positions of these
branches with respect to the bottom of the bulk bands as
functions of some parameters in the superlattice at
k=m/a.

Figure 8 presents these two Rayleigh branches as well
as the bottom of the bulk bands versus the ratio of the
mass density between the two crystals; the elastic con-
stants are in the ratio c4/c44=1.1 The two branches are
present in only a limited range of the ratio p’/p, one of
the modes reaching the bulk bands around p’/p=0.69, the
other at p'/p=1.24. On the other hand, the two modes
become degenerate around p'/p=0.96. Let us remark
that if the two crystals differ only by their mass densities,
this degeneracy occurs at p’/p=1. The displacements as-
sociated with the two modes in Fig. 8 present a behavior
similar to that shown in Fig. 7 (Fig. 8) when p'/p is
greater (smaller) than 0.96, which corresponds to the
crossing points of the two dispersion curves.

Finally, in Fig. 9 we present the dispersion curves for

051

049 +

0.47

0.45 |

e i i i i

07 08 09 1.0 11 12 13 [

P

FIG. 8. Bottom of the bulk bands (B) and Rayleigh waves
(R) at k = /a versus the ratio of the mass densities of the two
media in the superlattice. The layers have the same thickness
and their elastic constants are in the ratio ci /cis=1.1. Q is as
defined in Fig, 2.
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FIG. 9. Bottom of the bulk bands (B) and Rayleigh waves
(R) at k =m/a versus the ratio of the layer thicknesses. The
two media differ only by their mass densities with p’/p=0.95.
Q) is as defined in Fig. 2. The arrows indicate the asymptotic
limits of the curves for d'/d — .

the Rayleigh wave and the bottom of the bulk bands at
k =m/a as functions of the ratio between the thicknesses
of the two layers. In this example the two media differ
only in their mass densities, with p'/p=0.95. At
d'/d=0, we have a homogeneous medium; departing
from this limit, two surface waves appear which then go,
in the limit d’'/d — «, to the Rayleigh wave of the second
medium.

IV. CONCLUSIONS

In this paper we have presented a theory of sagittal sur-
face waves on a stratified medium cut perpendicular to
the layers. Besides the bending of the modes near the
Brillouin-zone boundary, one can observe the folding of
the Rayleigh-wave dispersion curve into a second branch
if the two media are not very different. The existence of
this second branch and its separation from the first
branch have been studied as functions of the intrinsic pa-
rameters of the media and their thicknesses. The method
of the calculation, which is based on a Fourier analysis of
the equations of motion in the direction perpendicular to
the laminations, shows a better convergence when the two
media differ only in their mass densities. This can be un-
derstood, at least for small wave vectors where the super-
lattice becomes equivalent to an effective hexagonal medi-
um.'® As a matter of fact, the density of this effective
medium is the arithmetic mean of the two mass densities,
while its elastic constants result from some more sophisti-
cated combinations of the initial elastic constants'® (for
example, the effective 04—41 is the arithmetic mean of the
two ¢z’ corresponding to the two layers). Now, the zero
Fourier components of the mass density or the elastic con-
stants in the superlattice represent the arithmetic means
of these quantities [cf. Eq. (2.6)]. In this long-wavelength
limit, the Rayleigh wave of the superlattice is equivalent
to that of the effective hexagonal medium cut perpendicu-
lar to its isotropic plane.
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Finally, we note that we obtained qualitatively similar
results to those presented in this paper by modeling the
variation of the density and of the elastic constants versus
x; by sinusoidal functions; however, the convergence of
the results is achieved in this last case for smaller values
of M. We also note that a method similar to that present-
ed here has been used!® to study the surface polaritons of
a superlattice cut perpendicular to the laminations.
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