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Wc develop the embedded-atom method [Phys. Rev. Lett. 50, 1285 (1983)], based on density-

functional theory, as a new means of calculating ground-state properties of realistic metal systems.
%'e derive an expression for the total energy of a metal using the embedding energy from which we

obtain. several ground-state properties, such as the lattice constant, elastic constants, sublimation en-

ergy, and vacancy-formation energy. We obtain the embedding energy and accompanying pair po-
tentials semiempirically for Ni and Pd, and use these to treat several problems: surface energy and
relaxation of the (100), (110),and (111)faces; properties of H in bulk metal (H migration, binding of
H to vacancies, and lattice expansion in the hydride phase); binding site and adsorption energy of
hydrogen on (100), (110), and (111)surfaces; and lastly, fracture of Ni and the effects of hydrogen
on the fracture. We emphasize problems with hydrogen and with surfaces because none of these can
be treated with pair potentials. The agreement with experiment, the applicability to practical prob-

lems, and the simplicity of the technique make it an effective tool for atomistic studies of defects in

metals.

I. INTRODUCTION

The energy and structure of impurities, surfaces, and
otllc1' defects ln IIlctals draw considerable Rttcntloll RIld ef-
fort from the physics community. ' The experimental
investigations in these areas are often aided by comple-
mentary theoretical work. The theories are, however, fre-
quently plagued by inherent or practical limitations.
Band theories are generally limited by basis-set size and
the requirement of periodicity. ' Cluster methods9 are
also limited by the size of clusters or basis sets permitted
by computers. In both the band-theoretical and cluster
approach, the total energy is given as a sum of many one-
electron energies; in these methods, one solves for many
eigenvalues only to produce one number in result. Alter-
natively, two-body interatomic potentials may 4e derived
from fundamental considerations' ' or by empirical
means. ' ' These pair-potential methods, while yielding
the total energy directly, require the use of an accompany-
ing volume-dependent energy' to describe 'the elastic
properties of a metal. Any ambiguity about the volume
may automatically invalidate the results of a pair-
potential calculation because the elastic properties of the
solid are not accurately represented. Such ambiguities
arise in calculations involving surfaces, for example, be-
cause the exact termination of the volume on an atomic
scale at the surface is ambiguous. Relaxations, recon-
stnlct1011s, OI' defects ln tllc suIfacc slIIlply 111Rkc tllls RIIl-

biguity more pronounced. In fracture calculations, where
internal surfaces are formed, one does not know whether
to include the volume of the crack with the volume of the
solid and, if so, to what extent. Furthermore, whereas
pair potentials have been used successfully to treat inert
impurities, such as He in metals, ' the method is not ap-
plicable to chemically active impurities. It has been
demonstrated in particular that the energy of a hydrogen

atom in a transition-metal cluster cannot be represented
by pair interactions, whereas the energy of a helium atom
can be so repxesented.

We describe here a new method, which we call the em-
bedded atom method, ' of treating metallic systems where
fractures, surfaces, impurities, and alloying additions can
be included. This new method is based on an earlier
theory, the quasiatom' (or effective medium' ) theory.
The advent of the quasiatom method partly overcame the
difficulty of treating impurities such as H in metals.
In this scheme, an impurity is assumed to experience a lo-
cally uniform, or only slightly nonuniform, environment
In its simplest form, the energy of the quasiatom is given
by

Equas =Ez(PS(+))
where pt, (R) is the electron density of the host without
impurity at R, the site where the impurity is to be placed,
and Ez is the quasiatom energy of an impurity with
atomic number Z. Host-lattice relaxations can be treated
by calculating a lattice energy from pair potentials and
adding this to the quasiatom energy, so that
E«, ——Eq„»+E1„, but thcs does not circumvent t4e21

problem of defining the volume of the host. This problem
precludes the treatment of many interesting problems,
such as fracture and hydrogen embrittlement.

%e describe here the derivation and some applications
of the embedded atom method, based on the quasiatom
scheme, where all atoms are viewed as being embedded in
the host consisting of all other atoms. The embedding en-
ergy is electron-density dependent, where the density is al-
ways definable, and so the problem of defining the volume
is circumvented. This makes it possible for the first time
to treat chemically active as well as inert impurities and
alloying additions in one unified theory that can further-
more handle crystal structures which include surfaces and
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cracks. The embedded-atom method is not significantly
more complicated to use than pair potentials.

We begin, in the next section, by using the embedding
energy to derive the form of the total energy. Certain
properties of the solid are then related to the embedding
energy. In Sec. III, we show how the functions arising in
the theory can be obtained by empirical means. This
semiempirical method is then applied in Sec. IV to several
problems involving surfaces and hydrogen. Finally, in
Sec. V, we discuss the results.

II. THEORY

Each atom in a solid can be viewed as an impurity em-
bedded in a host comprising all the other atoms. Because
the energy of an impurity is a functional of the electron
density of the unperturbed (i.e., without impurity) host (as
will be reviewed in this section), the cohesive energy of a
solid can be calculated from the embedding energy. In
this section we will make some reasonable approximations
to allow practical application of this view.

In principle, it is possible, of course, to obtain the elec
tron density established by a given potential, and the ener-

gy is then a functional of that potential. Hohenberg and
Kohn show the converse: that the electron density
uniquely specifies the potential (to within an additive con-
stant), and thus the energy is a functional of the density.
Thus the unperturbed host potential is determined by its
electron density. When an impurity is introduced, the to-
tal potential is a sum of host and impurity potentials, so
the energy of the host with impurity is a functional of the
host and impurity potentials. Because the host potential
is uniquely determined by the unperturbed host electron
density, and the impurity potential is set by the position
and charge of the impurity nucleus, the energy of the host
with impurity is a functional of the unperturbed host elec-
tron density and a function of the impurity type and posi-
tion (first stated by Stott and Zaremba ). That is,

E=~z, ti t ps(r)l

where ps(r) is the unperturbed host electron density, and
Z and R are the type and position of the impurity. This
corollary is to be distinguished from the Hohenberg-Kohn
theorem, which shows that the total energy is a functional
of the total electron density. Rather, the new statement is
that the energy of an impurity is determined by the elec-
tron density of the host before the impurity is added.

It is important to understand that the Stott-Zaremba
corollary, stated in Eq. (2), is not a means of solving for
the self-consistent density around an impurity; that is, un-
like the Hohenberg-Kohn theorem, it is not a variational
theorem. Instead, it states that the fully self-consistent
calculation of the energy will depend on the initial, unper-
turbed host electron density, which is the argument of the
functional P. Therefore, self-consistency is contained
implicitly, not explicitly, in Eq. (2).

The functional P is a universal functional, independent
of host. Its form is unknown, and is probably rather com-
plicated. A simple approximation would be to assume
that the energy depends only on the limited environment
immediately around the impurity (N@rskov' ), or

equivalently that the impurity experiences a locally uni-
form electron density (the uniform-density approximation
of Stott and Zaremba' ). This simphfication can be
viewed either as a local approximation, or as the lowest-
order term involving the successive gradients of the densi-
ty. In the extreme case, Eq. (2) takes the form of Eq. (1),
where F is now a function and the host density is sampled
only at the impurity position.

At this level of approximation, the impurity problem is
identical to that of an impurity in jellium. The position
dependence is trivial in Eq. (2), so that the energy depends
only on the density of the background electron gas. Puska
et ol. have calculated the energies of all atoms from the
first three rows of the Periodic Table in a homogeneous
electron gas as functions of the background density. They
find two classes of behavior. The rare-gas atoms have
their lowest energies in a background of vanishing density,
and the energies are linear in the density. The chemically
active elements have a linear region at high densities, but
have a single minimum at lower densities, the depth of
which is correlated with the chemical bond strengths typi-
cal of bonds formed with that element.

Note that the linearity of the energy for the full range
of p indicates the chemical inactivity of an atom. It will
be shown later that as a linear function, the energy is ap-
proximated very well by a pair interaction. It is also true
that for nonlinear functions, the impurity generally can-
11ot bc treated wltll pair potentlRls. Tllc quaslRto111-
uniform-density approximation thereby indicates that pair
potentials are inadequate for chemically active elements, '

whereas the quasiatom energy does reflect certain chemi-
cal effects.

Because each atom can be viewed as an impurity in the
host of other atoms, we could take the following ansatz,
based on the quasiatom concept, for the total energy,

where F; is the embedding energy, pi, ; is the density of the
host at the position R; but without atom i, and the total
energy is the sum of the individual contributions, Here
each atom is assumed to experience a locally uniform elec-
tron gas, and the embedding energy is defined to be the
energy of that atom in a uniform electron gas relative to
the atom separated from the electron gas.

The embedding function F is not trivially related to the
functional W in Eq. (2). The above ansatz is more than a
slIIlplc gcllcrRllzatloI1 of thc quRslRtoII1 collccpt. II1 terms
of thc fllIlctloIlal P 1I1 Eq. (2), tllc cIlclgy required to rc-
move an atom from a solid, leaving a vacancy (neglecting
lattice rclaxations for now), is given simply by

(4R)

where the "solid" here includes the vacancy. It must also
be true that the same energy must be obtained by viewing
the solid with vacancy as the imJIunty and the single atom
as the host, so that

On the other hand, the embedding ansatz fEq. (3)l
prescribes that the energy to remove an atom from a solid
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is given by

E= $ [F.(p*;)—F.(p )] (4c)

to the mth neighbor, P' =[dg(r)ldr] „, and
p' =[dp(r)ldr]

The elastic constants at equilibrium are given by

where the sum is over all atoms except the one removed,
and p; is the density at atom i in the solid with the vacan-
cy. These three expressions [(4a), (4b), and (4c)] for the
energy must, of course, be equal. It is easily seen, then,
that the relationship between the embedding function de-
fined in Eq. (3) and the functional P is not trivial.

It is shown below that Eq. (3) leads to unrealistic prop-
erties of the solid. The origin of this difficulty lies with
the assumption of extreme locality, or complete uniformi-

ty, and of a uniform positive background. That is, a real
solid differs from jellium in that the charge densities are
nonuniform. The corrections which involve the gradients
of the density, ' or equivalently, the sampling by the im-

purity of a finite region of the host, ' serve to modify the
function F(pk;) by changing the argument to a density
averaged over a finite region. Also, when the uniform
positive background is removed, the first-order correction
is proportional to the density of the background, ' and
this can also be viewed as a modification of F. Also, Eq.
(3) neglects the core-core repulsion. The correction for
core-core repulsion is assumed here to take the form of a
short-range pairwise repulsion between the cores. The re-
sulting total energy is given by

E„,= QFi( pk;)+ —, g pij(R;j),

A,J +F'( p) Vij ——0,
where

!4ij———,
' g P' a; aj !a

(6)

Vij g pm ai aj (7b)

and where a; is the ith component of the position vector

where P,z is the short-range (doubly screened' ) pair po-
tential and R j is the distance between atoms i and j. If
we make a further simplification by assuming that the
host density (pk;) is closely approximated by a sum of
the atomic densities ( p ) of the constituents [i.e.,
pk; ——g. i+,.ipj(R;j)], the energy is then a simple func-
tion of the positions of the atoms. (Here pj is the contri-
bution to the density from atom j, where pk z is the total
host electron density at atom j.)

The ground-state properties of the solid can be calculat-
ed from Eq. (5) in a straightforward way. In what follows
we show the results for the calculation of the lattice con-
stant, elastic constants, vacancy-formation energy, and
sublimation energy of a perfect, homonuclear crystal. Be-
cause all atoms are equivalent, F=F;, /=i' j, and p=pj.
We can define p to be the density at equilibrium, so that

p =pk; for every i and p = g p(a ), where the a are
the distances between neighbors and the sum is over
neighbors. Also, we define P= g P(a ).

The lattice constant is given by the equilibrium condi-
tion

Cijkl (Bijkl+F (P)~ijki+F (P)Vij Vkl)/+p &

where Qp is the undeformed atomic volume, and

B;~ki= —,
' g(p~ —iI)~ la )ai aj ak ai /(a ), (9a)

W&ki= g(p~ —p~ /a )a; az ak at /(a ), (9b)
m

e P~= fd i'(r)/dr ], and p~ =[d P(r)/wher
r2]
For cubic crystals the three independent elastic con-

stants are, in Voigt notation, as follows:

Cii =[Bll+F (p)IVii+F'(p)(V11) ]/&p

Cip = [8i2+F'( p) Wi2+F ( p)( Vii ) ]/Qp

C~ = [Biz+F'(P) IVi2]/&p

(10a)

(lob)

(10c)

From Eqs. (6) and (10), we can see the interplay be-
tween the pair potential and the embedding energy. If the
pair potential is removed, then Eq. (6) establishes
F'(P)=0, and Eqs. (10) then give Cii ——Ci2 and C44 ——0,
which is obviously violated in real solids. If the embed-

ding energy is neglected, and we rely entirely on the pair
potential, then the equilibrium condition gives A,J.

——0, so
Ci2 ——C~ (the Cauchy relation), which in general is also
not valid. It is seen from Eqs. (10) that the Cauchy
discrepancy (Ci2 —C44) is determined by the curvature of
F at equilibrium.

The sublimation energy is given by

E, = —[F(p)+ —,P] .

The vacancy-formation energy is

Eir= —
2 P+ g [F(p—p ) —F(P)]+E„i,„, (12)

where E„i,„ takes account of the lattice relaxation around
the vacancy.

When impurities or alloys are formed, it is necessary to
know the embedding function F( p) for each element, as
well as the pair potential P,z(r) for each type of pair.
Given those functions, any of the ground-state properties
of the impurity or alloy can be calculated. The heat of
solution is one example. Another example is the migra-
tion energy of an impurity, given as the difference be-
tween the saddle-point energy and the equilibrium energy.
It is especially important to include lattice relaxations in
many calculations. '

In the special case when F(p) is a linear function [i.e.,
F(p)=F(0)+pF'], as is the case for helium, the entire
scheme is equivalent to the use of a different pair poten-
tial, g(r) =P(r)+2p(r)F'. This is consistent with the ob-
servation of Baskes et al. ' that helium, but not hydrogen,
in metals can be treated with a pair potential. It is also
consistent with the observation that pair potentials alone
cannot represent the elastic properties of real solids. This
is evident here in Eqs. (10), where the Cauchy condition
(Ciz ——C44) is satisfied if the curvature of F at equilibri-
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um is zero.
It is interesting to compare the pair-potential method'

(which uses the volume-dependent term) with the
embedded-atom method. In the former case, it was noted
that without the volume-dependent term, there was no
Cauchy discrepancy (in conflict with experiment). It was
then suggested that a volume-dependent energy be added
to account for the compressibility of the electron gas.
The pair potential provides the attraction between atoms
while the volume-dependent term serves to slightly ex-
pand the solid and gives the correct elastic constants. In
contrast, however, in what follows, the embedding energy,
which depends on the electron density, is dominant and
provides cohesion while the short-range repulsive pair in-
teraction keeps the solid at a slightly larger lattice con-
stant. In this way, we have replaced the traditional
volume-dependent energy with a density-dependent one,
the advantage being that electron density is always defin-
able.

III. DETERMINATION OF THE FUNCTIONS F AND Q

At this point one could try to calculate F and P from
first principles for any element, including as many correc-
tions as possible for the nonuniformity of the host elec-
tron density. However, it is not practical at this time to
calculate even the energy in a uniform host (jellium) for
atoms beyond the third row of the Periodic Table (this is
because the resonances introduced by the d states are too
narrow ). On the other hand, it has been shown that, at
least for light atoms, the next higher corrections do not
change the qualitative form of the functions. ' ' Assum-
ing that the complete theory retains the qualitative form
of the lower-order functions, one can establish F and P
empirically from the physical properties of the solid. We
have done this using the lattice constant, elastic constants,
vacancy-formation energy, and sublimation energy in fcc
and bcc phases to determine the functions.

Because F(p) and P(r ) for each element are determined
from the properties of the corresponding pure metal, all
that remains for alloy calculations is the determination of
the unlike atom-pair interaction. In many types of repul-
sive pair potentials it is found that P;J. is equal to the
geometrical mean of P;; and PJJ.

' This is equivalent
to assigning a particular form to P;J'

EMBEDDING ENERGY

0.0

—0.5—

—1.0—

-1.5
0,0 0.5 1.0 1.5

p/p
FIG. 1. Embedding energies for Ni and Pd as functions of

background electron density. The functions for Ni and Pd were
determined semiempirically, as explained in the text. The ener-
gies are scaled by the sublimation energy and the densities by
the equilibrium density (see text).

1.0

Constraints were imposed upon F to give it the same qual-
itative form it had in the functions calculated by Puska et
al. (i.e., F has a single minimum and F is linear at
higher densities). In addition, to make the zero of energy
correspond to neutral atoms separated to infinity, the
function was constrained to go to zero at vanishing densi-
ty. The constraints upon Z(r) required that it be mono-
tonic and vanish continuously beyond a certain distance.
The cutoff distance chosen was the shortest possible one
which permitted a reasonable fit, which in this case (fcc
metals) was between first and second neighbors.

The vacancy relaxation energy is calculated (in the
manner described in Sec. IV) to be 0.01 eV and is rather
insensitive to the fit. This simplifies the fitting to the
vacancy-formation energy.

An ambiguity arises from the unknown state of the

P; (r) =Z;(r)ZJ(r)jr, (13)

in order to represent the interactions of two neutral,
screened atoms, as suggested by the origin of P as an elec-
trostatic energy. Generally, then, for each element M we
seek two functions; the embedding energy FM( p) and the
effective charge Z~(r)

We have determined the functions F(p) and Z(r) for
Ni and Pd as examples. These are shown in Figs. 1 and 2.
The experimental physical constants used in the fit are
compared in Table I to the fitted values. The fit is sensi-
tive only to the range of densities from zero to slightly
above the equilibrium density and is well within experi-
mental uncertainties. The functions are cubic splines, for
generality, and the spline knots are tabulated in Table II.

N

0.0
0.00 0.25

R/a,
0.50 0,75

FIG. 2. Effective charges for Ni and Pd. The functions were
determined semiempirically, as explained in the text. The
charge is scaled by the total nuclear charge and the distance by
the lattice constant.
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TABLE I. Quantities used for determination of the functions
I" (p) and Z(r) for Ni and Pd, and their fitted values. Lattice
constant ao in A; elastic constants Cjl, CI2, and C~ in 10'2

dyn/cm; sub11mation energy Es ln cV; vacancy-formRtlon ener-

gy Ei~ in eV; and the energy diffexence bctvrcen bcc and fcc
phases» ln cV.

Expt.
Palladium

Expt. Fit

3.52'
2.465'

1.247"

1.4d

0.06'

3.52
2.438
1.506
1.278
4.45
1.4
0.07

3.89'
2.341"
1.761'
0.712'
3.91'
1.4
0 06'

3.89
2.305
1,803
0,755
3.91
1.4
0.05

'Reference 48.
Rcfcl ence 49.

'Reference 50.
Rcfclcncc 51.

'Reference 52 (the experimental number is derived from a model
of experimental binary phase diagraxns).

TABLE 11. Parameters used to define the functions E(p) and
Z(r) for Ni and Pd. The positions of the spline knots and the
values at the knots are given. Distances are given in A, densities
in A 3, chax'ge in a.u. , and energy in eV. The lattice constants
ax'e given in Table I. The equilibrium densities p, defined in the
text, are p=0.02855 A for Ni and p=0.01518 A fox' Pd.
Fox p~2. 3p, a linear extrapolation is performed based on the
slope at thc last knot.

0.0
0.43ao
0.65ao
0.71ao
0.85ao

28.0
5.054
0.294
0.137
0.0

ZN;(r) Zpd(r)

atoms in the solid. The atomic densities were taken «om
calculations by Clementi et al. These calculations are
based on Single-deterlmnant Hartfee-Pock theo~, and
therefore do not allow the proper mixing between given
ele:tronic configurations (3d 4s, 3d 4s, or 3d' for Ni,
for example). In both the isolated atom and the solid, the
configuration in the true ground state is not accurately
known. We have allowed for this by defining an empiri-
cal parameter N„hwich corresponds to the s-like content
of the atomic density. Thus the Ni atomic density is
given as a sum of s and d contributions according to
p'(r) =N, p,'(r)+ (N N, )pg(r), w—here N is the total
number of outer electrons. This parameter N, cannot be
determined by fitting to the properties of the homonuclear

material, because any change in the density can be com-
pensated for by a change in the function E(p), which is
the only place where the density affects the energy. How-
ever, the appropriate N, for a metal can be determined by
fitting to the heat of solution of, say, hydrogen in that
metal, as will be discussed in the next paragraph. This
gives the effective number of s-like electrons in the sohd,
and this number is held fixed for other types of impurities
in that metal.

For impurities, we need to fix the functions I'(p) and
Z{r) for each element. To do so, we take the embedding
energies from the calculations by Puska et al., without
adjustment. N@rskov has added corrections to the I'H
of Puska et al. which might alter the results for the
problems involving hydrogen, but we will use only the
original functions of Puska et al. in this work. The
quantities ZH(r) and N, are determined by fitting to the
heat of solution and migration energy of H in Ni. The in-
terstitial site lowest in energy for the hydrogen is found to
be the octahedral —halfway between second-nearest-
neighbor metal atoms —and the migration path goes along
the [111]direction to a tetrahedral site, with the saddle
point being about —', of the wa, y from the octahedral to
tetrahedral site. (These calculations allow for the relaxa-
tion of the metal lattice, which is necessary for hydrogen-
migration calculations. ' ') This fixes X, '=0.85. The
experimental data and the calculations fitted to them are
shown in Table III and functions are given in Table IV.
The parameters used here for calculating p,'(r) and pd(r)
are given in Table V. For another metal, we can find the
N, from the hydrogen heat of solution [the ZH(r) has
been determined from the fit to Ni]. For Pd, this is
N, =0.65 (see Table III). We can then calculate, without
further adjustment in parameters, the migration energy
for H in Pd. This, and other examples, are illustrated in
the next section.

In summary, for each element in the calculation, we
need the functions I'{p) and Z(r), the Clementi functions
for the atomic electron density p'(r), and the quantity X,.
This is how we determined them for Ni and H.

(1) +N;( p) and ZN;(r) wclc determined empirically
«om thc prop«ies of Ni such as its elastic constants, etc.

TABLE III. (a) Quantities used for determination of the
function Z(r) for H and X, for Ni, and their fitted values: hy-
drogen heat of solution [relative to the molecular bond strength
Of 2.4 CV atom (Ref. 6)] SIld Illigi'atloll C11Crgy 111 Ni. (b) QllaIltl-

ty used for determination of the X, for Pd, Rnd its fitted value,
hydlogcn heat of solution (rclRtlvc to the molecular bond
stx'cngth) in Pd.

0.0
0,5p
1.0p
2.0p
2.3p

+M(p)

0.0
—3.586
-5.148
—3.407

0.0

0.0 0.0
—3.117
—4.697
—3.015

0.0

0.0

0.0

HcRt of solution (cV)
Migration energy (eV)

Heat of solution

0.17'
0.41'

0.16
0.45
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TABLE IV. Paxameters used to define the functions I (p)
and Z(r) for H. The function EH(p) comes from fitting
PH(p)=b~p+b2+ 1/(b3p+b4) to the results of Puska et al.
(Ref. 26) ZH(r) =(1 r/2—.0)r, r (2 and ZH(r)=0, r )Z, where
the exponent is determined by fitting to the properties listed in
Table III(a). Distances are given in A, densities in A, charge
in a.u. , and energy in eV.

bi ——20.445 10
b2 ———2.897 859
b3 ——52.897 85
b4 ——0.412 562

(2) +H(p) for hydrogen was taken from the first-
principle calculations of Puska er al.

(3) X, ' and ZH(r) were determined by fitting to the hy-
drogen heat of solution and migration energy in Ni.

We next empirically determined the quantities Ii(p) and
Z(r) for another metal, Pd, from its elastic constants, etc.,
and N, was fixed by fitting to the hydrogen heat of solu-
tion. Now many other properties can be investigated
without adjusting the parameters both to test the validity
of the approach and to give new insight into the atomistic
processes of interesting phenomena.

p,'(r) = g C;R;{r) /4n,

{s.+1/2)
{2g;) '

e,.—i —g,.r&{r)= ' r ' e
[{2n;)!]'~2

and similarly for pe(r). The g's below are given in A

4s
1

2
3
4
5
6
7
8

Nickel

54.888 85
38.484 31
27.427 03
20.882 04
10.957 07
7.31958
3.92650
2.15 289

—0.003 89
—0.029 91
—0.031 89

0.152 89
—0.20048
—0.05423

0.49292
0.61875

3d
1

2
12.675 82
5.432 53

0.421 20
0.70658

5$
1

2
3

5
6
7
8
9

10

Palladium

89.21928
61.909 83
40.127 41
38.427 03
26.92741
18.397 98
10.68346
7.241 12
4.202 29
2.339 89

—0.00071
0.02424
0.16808

—0.24234
—0.01686

0.19178
—0.27759
—0.022 57

0.55209
0.570 52

29.865 60
16.801 95
9.02038
4.671 47

—0.087 21
—0.238 76

0.570 74
0.58201

TABLE V. Parameters used to calculate the atomic density
of Ni and Pd. The total density is given by
p'(r)=N, p,'(r)+(N —N, )p~(r), where N=10, N, '=0.85, and
N, =0.65. The spberically averaged s- and d-like densities are
computed from Clementi (Ref. 32) by

IV. APPLICATIONS

In this section we will apply Eq. (5) and the functions
determined semiempirically in Sec. III to the following
problems: surface energy and relaxation in Ni and Pd,
properties of H in bulk Ni and Pd (binding of H to vacan-
cies and surfaces, lattice expansion in the hydride phase,
and, for Pd only, the migration energy), and fracture of
Ni and the effects of hydrogen. Problems with hydrogen
and with surfaces have been emphasized, because none of
these calculations can be done with pair potentials. There
are no adjustable paxameters in these calculations.

Most of the calculations involve minimizing the total
energy with respect to the positions of the atoms; this ls
accomplished by the conjugate gradients technique. The
forces are computed analytically from Eq. (5):

fk= —$ (I"kpj++j pik+4jv )rjk (14)
j (+k)

where fk is the force on the kth atom and r jk is the unit
vector between the jth and kth atoms.

A. Clean surfaces of Ni and Pd

For surface calculations, we minimized the total energy
of Ni and Pd slabs with (100), {110),and (111) surfaces.
The surface energies and relaxations are calculated, and
the latter are compared to experiment in Table VI. The
slabs were sufficiently thick (more than 20 layers) to
guarantee that surface energies and geometries were in-
dependent of thickness to better 'than 0.1%.

The surface energy is computed by using the energy of
each atom,

E; =Ii(ps;)+ —, g $(R,J.),
j (&i)

which is the contribution of the ith atom to the total ener-

gy in Eq. {5). For atoms in the bulk, E; is the sublima--

tion energy [Eq. (11)],but surface atoms will have higher
energy. The difference [E;—( —E, )] summed over all
atoms and divided by the area gives the total surface ener-

gy. For Ni, the (100), (110), and (111)surface energies are
1550, 1740, and 1310 erg/cm, respectively. These num-
bers compare favorably with the measured crystal-vapor
surface energy (1725 erg/cm ), which represents an
average of several faces, including ones not considered
here. For Pd, the calculated energies for the same sur-
faces are 1270, 1390, 1070 erg/cm, in the same order as
for Ni. Unfortunately, we could find no measurement for
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TABLE VI. Calculated and measured surface geometries for
the (100), (110), and (111) surfaces of Ni and Pd. Surface

geometry is indicated 4y the change in the spacing between first
and second layers of surface atoms (in A) from bulk-terminated

value.

Surface

Ni(100)

Ni(110)

Ni(111)

Pd(100)
Pd(110)
Pd(111)

'Reference 55.
Reference 56.

'Reference 57.
~Reference 58.
Rcfcrcncc 59.

fReference 60.
~Reference 61.

M)2(theory)

—0.06

—0.11

—0.05

—0.10
—0.15
—0.07

0.0 +0.02'
0.0 +0.1'

+ 0.02 +0.02'
0,00 ~0.025'
0.0 +0.14'
0.00 +0.025

—0.06 +0.02
—0.10 +0.02'

0.0 +0.02'
—0.025+0.025'

comparison 1n Pd.
The relaxed geometries (see Table VI) agree with the

available experimental data to within 0.1 A. [The accura-
cy of the experimental analysis of the geometry is various-
ly quoted as 0.01 to 0.1 A (Ref. 35).] In particular, wc
note that the experiments on the (100) and (111) surfaces
do not show a significant contraction relative to bulk,
whereas the (110}surface shows an obvious contraction.
The theoretical geometries agree with this, and are in
keeping with the general trend of fcc surfaces which have
small relaxations on the (100) and (111) surfaces and
larger relaxations on the (110}surface.

and 0.06 eV in Pd. The comparison with experiment is
hampered by the difficulty of assigning observed traps to
particular defects. Early experiments3 ' tentatively iden-
tified a trap for H in Ni at 0.24 eV as belonging to a va-
cancy. On the basis of Nairskov's effective-medium calcu-
lations, an alternate assignment was made for the vacan-

cy as the H trap at 0.44 eV. On the other hand, hybrid
quantum-cluster calculations ' give 0.05 eV binding ener-

gy to a vacancy in Ni, although these authors claim that
their calculated value is too low. In Pd, the latest work
has identified a 0.24-eV trap as a vacancy, mostly based
on Nyrskov*s results. It is quite posible that the measured
(0.2—0.45)-eV binding energy is to vacancy clusters rather
than to actual, single vacancies. It is also likely that the
binding energy to a vacancy is sensitive to the choice of
EH(p). We have chosen the function from Puska et al. ,26

but N@rskov's corrected function' may give higher bind-

ing energy. Thus it is difficult to assess the agreement of
the calculated binding energies with experiment. Another
characteristic of hydrogen binding to vacancies, however,
seems to be that the equilibrium position is not the center
of the vacancy, but rather near a neighboring octahedral
site. This has been observed experimentally ' as well as
theoretically. ' ' The present calculations in Ni place the
hydrogen atom 1.82 A away from the center of the vacan-

cy along a [100] direction (0.06 A outward from what
would be an octahedral site). In a vacancy in Pd, the cal-
culated site is 0.13 A outward from the octahedral site.

Another application of the model is to hydrides. The
lattice constant of the fully stoichiometric hydride can
easily be calculated by minimizing the total energy. In Ni
the hydride lattice is calculated to be 4.5% expanded from
the metal, compared with the measured 5%. For PdH,
the lattice expansion is calculated as 4%, where the exper-
iment (on PdH06) finds 3.5%. Stoichiometry effects in
the theory have not been considered here. In both metals,
the agreement is quite good, especially considering that
the electronic structure of metal hydrides is quite different
from that of metals. This agreement encourages the con-
clusion that the embedded-atom method provides a
universal description of metal bonding.

B. 8 in Sulk Ni and Pd C. H on Ni and Pd surfaces

We have calculated the hydrogen migration in Pd. The
effective charge ZH(r) of hydrogen was determined in
Scc. III by fitting to the heat of solution and migration
energy in Ni, and the effective number of s-like electrons,
N„ in Pd was determined by fitting to the heat of solution
in Pd. So it is interesting to calculate, without adjustment
of the parameters, the migration energy in Pd, which we
find to be 0.26 eV, in excellent agreement with experi-
ments (0.26 CV). The migration path is found to be the
same as in Ni (see Sec. III).

Thc biiidiilg of H to a vacancy» iclatlvc 'to a bulk equi-
librium (octahedral) site, is calculated to be 0.05 eV in Ni

The calculated and observed adsorption energies and
binding sites for the (100), {110),and (111) surfaces are
presented in Table VII and illustrated in Fig. 3. These
calculations are for single-atom adsorption, whereas the
best experiments for comparison are at coverages of frac-
tions of a monolayer.

The calculated heats of adsorption on Ni surfaces are
systematically about 0.25 eV too low, while on the Pd sur-
faces, the error is much less (0.05 eV too high on the aver-
age). The calculated adsorption sites are in complete
agreement with the experimentally deduced sites (see Fig.
3 and Table VII). On the {111)surface, the Ni —H bond
length has been measured by two groups as 1.57 A (Ref.
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0
TABLE VII. Calculated adsorption sites, bond distances, R~ H, in A, and adsorption energies rela-

tive to an isolated atom, E„in eV for hydrogen atoms on the (100), (110), and (111)surfaces in Ni and
Pd. See Fig. 3 for illustrations of the sites.

Surface

Ni(100)

Ni(110)

Ni(111)

Pd(100)

Pd(110)

Pd(111)

Site

hollow
bridge
top
"threefold"
bridge
bridge~

top
hollow
hollow'
hollow'

top
bridge

hallow
bridge
top
"threefold"b
bridge~
bridge~

top
hollow
hollow'
hollow'

top
bridge

Theory
RM—H

173
1.59
1.54
1.59
1.58
1.66
1.53
1.62
1.63
1.63
1.55

Unstable with
hollow site
1.87
1.67
1.62
1.68
1.66
1.77
1.61
1.70
1.71
1.71
1.63

Unstable with
hollow site

E,
2.66
2.54
2.26
2.71
2.68
2.63
2.34
2.27
2.56
2.56
2.21

respect to

2.91
2.83
2.48
3.04
2.96
2.89
2.56
2.37
2.91
2.91
2.41

respect to

Site
Experiment

E,
2.90'

2.87'

ho11owf'~'" 2.87+0.03~

hollow' 2.93'

2.93'

hollow' 2.85'

"threefold""'

'Reference 62.
'The "threefold" site on the (110) surfaces does not have perfect threefold symmetry. Two of the three
neighboring metal atoms are in the first layer and one is in the second, thus reducing the symmetry.
But the geometry is close to what would be recognized as a threefold site.
'Reference 63.
~The first bridge site listed for the (110) surface is the twofold site between nearest neighbors (along a
[110] direction). The second is the twofold site between second-nearest neighbors (along a [100] direc-
tion).
'There are two inequivalent, threefold-symmetric, hollow sites on the (111)surface which differ by the
position of the second-layer metal atoms. However, these calculations of hydrogen adsorption show no
distinguishable difference between these two sites.
Reference 64.

I'Reference 65.
"Reference 66.
'Reference 67.
'Reference 68.

43) and 1.84 (Ref. 44), which bracket the theoretical bond
distance. Cluster calculations by Melius et a/. indi-
cate Ni —H bond lengths from 1.6 to 1.8 A, depending on
surface and cluster size, in good agreement with the
present work.

D. Fracture in Ni

We studied the fracture of Ni (see the first description
of this in Ref. 1) by minimizing the total energy of a slab,

illustrated in Fig. 4(a), which is infinite and periodic in
two directions, having free (111) surfaces. A line of va-
cancies is created to simulate a small crack, and external
forces are applied along the [111]direction to the atoms
on the outer surfaces. The slip planes are (111),so in the
present case, the applied stress is perpendicular to the slip
directions in that plane. In this way, the fracture is con-
strained to be brittle. For large stresses, the crystal
breaks, and the fracture stress can be established by vary-
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POSSIBLE HYDROGEN ADSORPTION SITES
ON fcc (100)

POSSIBLE HYDROGEN ADSORPTION SITES
ON fcc (110)
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FIG. 3. Top views of the possible sites considered for hydrogen adsorption on the (100), (110), and (111) faces of an fcc crystal.
The large circles represent metal atoms, the dashed circles represent hydrogen atoms in various possible sites, and the shaded hydro-
gen atoms represent the lowest energy sites (both experimentally and theoretically). See text and Table VII.

(b)

FIG. 4. Cross-sectional views of a Ni slab with defects, showing the effects of hydrogen and stress. Crystallographic directions are
indicated. Open circles represent Ni atoms. Three unit cells in the vertical direction are shown& and three in the direction perpendicu-
lar to the page. (a) Four Ni atoms in each cell have been removed from the midplane and an external stress of O. ll eV/A3 applied to
the outer surfaces. No fracture occurs. (b) Same slab with the addition of one H atom (solid circles) per unit cell. The energy in (b) is
not converged, and further iterations show the halves to be completely separated.
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ing the applied stress. The crystal orientation, shown in
Fig. 4(a), demonstrates brittle fracture. The introduction
of H then lowers the fracture stress, and this is pictured in
Fig. 4(b). It is important to emphasize that these are stat-
ic calculations; dynamical effects and plasticity undoubt-
edly play an important role in real fracture, and these ef-
fects are under investigation.

Thc embedded-atom method gives R reasonable dcscr1p-
tion of metallic cohesion and ground-state impurity ener-
gies. It is found that a simple embedding energy I" (p),
and a short-ranged (first neighbors only) pair potential are
sufficient to fit the main properties of the bulk crystal.
Tllc fllIlctlolls fol' Nl alld Pd wclc dcfcHlllncd lly flttlng to
bulk properties. The resulting functions were then used to
calculate energies and geometries of defects in metals,
which were in good agreement with experiment. The
computed surface relaxations, hydrogen-adsorption sites,
and hydride lattice expansions were within 0.1 A of
cxpcrlnlcIltally dctcHIllncd values. Tllc blndlng cllcl'gy of
hydrogen to vacancies and surfaces agree with experiment
to %1thin 0.25 cV. IIl pRrtlculRr, thc correct hpdrogen-

adsorption sites on surfaces and the correct migration en-
ergy in the bulk were predicted.

The functions E and P are not uniquely determined by
the empirical procedure of Sec. III. In fcc metals, for ex-
ample, one is able to represent the bulk properties by re-
stricting the range of P to first neighbors only, whereas
such as short-ranged potential may not be the best choice
in general. Until other materials can be tried (bcc metals
might represent a next step), there is no way to judge the
best universal forms for the embedding energy and effec-
tive charge. The choice of the best embedding function
for hydrogen (Puska et al. s and N@rskov'9 are two possi-
bilities) must also be decided on by further investigation.
In the meantime, however, the model represents a very re-
liable way of exploring the properties of metals and im-
pUAtles.

In summary, the embedded-atom method overcomes
the fundamental limitations of past methods, such as pair
potentials, and yet is practical enough for calculations of
defects, surfaces, and impurities in metals.
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