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Total energy and pressure in the Gaussian-orbitals technique.
II. Pressure-induced crystallographic phase transition

and equilibrium properties of aluminum
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The phase stability of Al as a function of pressure and the bulk properties at equilibrium are ex-
plored via a series of all-electron, non —muffin-tin, local-density-functional calculations for the fcc
and bcc structures. The techniques used are the linear combination of Gaussian-type orbitals
(LCGTO) techniques which we have developed and used to test on bcc Li and fcc Ne recently. The
zero-pressure static lattice cohesive energy and lattice constant are in good agreement with experi-
ment, though the computed bulk modulus is less satisfactory. By comparison of the energies and
enthalpies of the fcc and bcc structures at various compressions, ihe fcc phase is found to be more
stable for pressures below 3.28+0.09 Mbar with the bcc structure more stable at higher pressure.
The current results are compared to previous calculations in an attempt to resolve some major
discrepancies between those more approximate calculations (which are both less costly and applic-
able to a wider variety of crystal structures than present implementations of LCGTO methodology).

I. INTRODUCTION

Calculations, in the local-density-functional (LDF) for-
malism of the phase stability of elemental crystals as
diverse as Xe, ' rare earth metals, C, Si, ' and third-
period metals Al, Na, Mg, have been performed with
considerable success in recent years. Early work was re-
stricted to modest pressures (few tens of kilobars at most)
and was subject to significant numerical limitations, but
more recent efforts have explored regimes of quite high
pressure with a level of success which is at least qualita-
tive and, frequently, quantitative.

Such calculations are arduous for a number of reasons.
In a given crystalline phase, the static-lattice cohesive en-

ergy is the difference between the total electronic energy
per unit cell of the solid and that of the isolated atom, two
numbers which may be as much as six orders of magni-
tude (as in Xe) and never less than two larger than their
difference. Within the assumed local-density model, how-
ever, both total energies are variationally stable and if due
care is taken to calculate them by procedurally paxallel
techniques it is quite plausible that a beneficial cancella-
tion of errors (e.g. , atomic core energy problems in LDF)
will occur. The difference of total energies between crys-
talline phases is yet smaller, usually by an order of magni-
tude or more, than the cohesive energy of either phase, so
that calculations of the crystalline phase stability can be
even more demanding than those of cohesive energy.

The zero-temperature isotherm, of course, does not fol-
low from application of the variational principle to the
LDF model, so that transition pressures are even more
difficult to calculate than total-energy differences. Fur-
ther, the zex'o-tempex'ature isotherm must be calculated in
a variety of ways which are identical in principle but may
not be when implemented. One such procedure is direct
exploitation of the virial theorem (Ry atomic units
throughout, except for pressures, which are in kbar):

P =(1.470 99y 10')
3XQ

Here T is the total kinetic energy in the assumed local-
dcilsity model, E tllc total cilci'gy, aiid N tllc number of
primitive cells each with volume Q. There is an
equivalent surface integral expression which is usually ap-
plied in the atomic sphere approximation (ASA). One
may also fit the total energy (as a function of volume) to
an assumed equation of state and obtain the pressure by
differentiation or make a direct approximation of
—dE/dV by numerical differences. Whatever the pro-
cedure, the fact that E and PV are calculated separately
means that the calculated enthalpy h =E+I'V will not be
a variationally stable quantity though it should be thermo-
dynamically. Since the volume change in passing from
one phase to another is often found to be very small, it is
not uncommon to compare calculated energy differences„
rather than enthalpy differences, on the basis that the re-
sulting imprecision is likely to be lower or at least better
controlled in the former procedure.

As might be expected, the severe tasks confronting cal-
culations of crystallographic phase stability have motivat-
ed a great variety of approximate techniques not only for
obtaining the PV relation but also for obtaining total ener-
gies, their differences, etc. Among the more common of
these are pseudopotential and linear muffin-tin orbitals'
(LMTO) procedures. Recent studies of the high-pressure
phases of Al have utilized ab initio pseudopotentials (AP)
and generalized pseudopotential theory' (GPT) as well as
the LMTO method. Those results agree qualitatively on
the sequence of lattices with increasing pressure
(fcc~hcp~bcc) but disagree remarkably as to the values
of the transition pressures.

We report here a set of LDF calculations on Al em-
ploying techniques which rely on an entirely different set
of restrictions and approximations from those found in
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the LMTO, AP, or GPT techniques. We view these cal-
culations as complementary to those of Refs. 5 and 6.
Our methodology is based on the procedure devised by
Callaway, Zou, and Bagayoko" (CZB) which extends the
CallawRy-WRllg (CW) llllcRI comblnatlon of GRllsslRI1-
type orbitals (LCGTO) methods' to calculation of crys-
talline total energies. In the preceding paper' (hereafter
referred to as I) we have shown how to control the CZB
methods so that one can calculate a reliable crystalline
equation of state directly from the virial theorem.

We summarize pertinent methodological features in
Scc. II, plcscllt tllc cquatloll of stRtc Rnd crystal pllasc sta-
bility results in Sec. III, follow in Sec. IV with a discus-
sion of the one-electron results as a function of pressure,
and give a brief conclusion in Sec. V.

s-type

320000.000000
54866.400000
8211.766500
1 866.176 100

531.129 340
175.117970
64.005 500
25.292 507
10.534 910
3.206 711
1.152 555
0.186357

259.283 620
61.076 870
19,303 237
7.010882
2.873 865
1.336 596
0.650000
0.341562
0.178 259

5.089230
0.650000
0.178 259

TABLE II. The (12s9@3d) basis set for Al at 7.4 a.u. in the
fcc structure {see text).

LCGTO total ener'gies and virial pressures were com-
puted for six lattice constants in the fcc structure (7.8, 7.6,
7.4, 7.0, 6.4, and 5.6 a.u.) and for four lattice constants in
the bcc structure (6.032, 5.556, 5.080, and 4.445 a.u.). At
standard pressure and 0 K, the Al lattice constant is re-
ported as 7.60 a.u. '" The values 7.6, 7.0, 6.4, and 5.6 uti-
lized for the fcc structure calculations correspond to
compressions of 1.0, 0.8, 0.6, and 0.4 of the equilibrium
volume, while the four lattice constants for bcc produce
corresponding cell volumes for that structure. These four
volumes are -very nearly the same as those used by LaIl1
and Cohen (LC) in their high-pressure study. The two
remaining values (in the fcc structure) were selected to al-
low R dcccllt calcU1R'tloll of tllc cqUlllbIlulll lat'tlcc coll-
stant and bulk modulus 8 at acceptable computational
cost.

Throughout these calculations every attelnpt has been
made to ensure that the input par'ameters are equivalent
with regard to crystal structures for a given molar
volume. As in our earlier high-pressure study' of Ne, it
was necessary to modify the Gaussian basis set as the lat-
tice constant is reduced to avoid linear dependence prob-
lems. However, for comparable volumes in the fcc and
bcc structures, identical basis sets were used; the five sets
required are tabulated in Tables I—V.

In the fcc calculations the total list of Fourier coeffi-
cients was truncated at a maximum value of X (E~, see
I) equal to 15 000 [in units of (2~/a) ], or 42 956 rotation-
ally independent Fourier coefficients. The corresponding
value ~n the bcc structure Is E~——9500, or 42699 In-
dependent coefficients. The total number of independent
Fourier coefficients allowed to vary from iteration to
iteration, NI (see I), was 80 and 79 in the fcc and bcc
structures, respectively.

To achieve a useful analysis of results calculated at only
a few molar volumes some form of fitting technique must
be employed. In their high-pressure study, LC fitted the
four energies they calculated (in each structure) to the
Murnaghan' equation of state and obtained the pressure
by differentiation. For purposes of comparison only, we
have applied the Murnaghan equation to our data. The
fact that our LCGTO procedure generates both energy
and pressure directly at each lattice constant makes a
more flexible fitting procedure both possible and useful,
however.

We chose a polynomial of the form

E(Q)/X=E, + Q C;0

TABLE I. The (12s 9p 3d) basis set for Al at 7.6 and 7.8 a.u.
in the fcc structure as well as for 6.032 a.u. in the bcc structure
(see text).

TABLE III. The (12s 9p 3d) basis set for Al at 7.0 a.u. in the
fcc structure as well as for 5.556 a.u. in the bcc structure (see
text}.

s-type

320000.000 000
54 866.400 000

8 211.766 500
1 866.176 100

531.129 340
175.117970
64.005 500
25.292 507
10.534 910
3.206 711
1.152 555
0.176678

259.283 620
61.076870
19.303 237
7.010882
2.873 865
1.336 596
0.650000
0.341562
0.169000

d-type

5.089 230
0.650000
0.169000

s-type

320 000.000 000
54 866.400000

8 211.766 500
1 866.176 100

531.129 340
175.117970
64.005 500
25.292 507
10.534 910
3.206711
1.152 555
0.199000

p-type

259.283 620
61.076 870
19.303 237
7.010882
2.873 865
1.336 596
0.766000
0.400000
0.199000

d-type

5.089 230
0.766000
0.199000
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TABLE IV. The (12s9p 3d) basis set for Al at 6.4 a.u. in the
fcc structure as well as for 5.08 a.u. in the bcc structure (see
text).

TABLE V. The (12s 8p 3d) basis set for Al at 5.6 a.u. in the
fcc structure as well as for 4.445 a.u. in the bcc structure (see
text).

s-type

320000.000 000
54 866.400 000

8 211.766 500
1 866.176 100

531.129 340
175.117970
64.005 500
25.292 507
10.534 910
3.206 711
1.152 555
0.238 316

p-type

259.283 620
61.076 870
19.303 237
7.010882
2.873 865
1.603 198
0.916601
0.481 656
0.238 316

d-type

5.089 230
0.916601
0.238 316

s-type

320000.000 000
54 866.400 000

8 211.766 500
1 866.176 100

531.129 340
175.117970
64.005 500
25.292 507
10.534 910
3.206 711
1.152 555
0.325 412

p-type

259.283 620
61.076 870
19.303 237
7.010 882
2.873 865
1.336 596
0.650000
0.325 412

d-type

5.089 230
0.800000
0.325 412

with both the coefficients and exponents determined by
fits to the calculated data. In Eq. (2), E, is set equal to
the Xa atomic total energy obtained from the Mintmire
and Dunlap and Dunlap et al. atomic and molecular
codes' neglecting spin polarization (E,= —480.68202
Ry). This choice represents an attempt to reproduce the
large volume behavior of E (0) for the paramagnetic crys-
tal (something the Murnaghan equation cannot do), as-
suming that function to be smooth and attractive at all ex-
panded cell volumes. It must be emphasized that the
spin-polarized atomic total energy, —480.70031 Ry, was
used to determine the crystalline cohesive energy. These
atomic calculations were executed with the basis set in
Table I with one additional s Gaussian (0.065237) and
one additional p Gaussian (0.041 397) added to mimic the
effect of off-site orbitals in the crystal.

With E, determined, a set of exponents y; was selected.
For any set of exponents, the coefficients C; were deter-
mined uniquely by the requirement that Eq. (2) fit the
four energies under consideration (either the four corre-
sponding to lattice points near equilibrium or the four
points corresponding to high pressure). The optimum
values of the exponents were determined by varying them
sequentially to minimize the standard deviation of the
pressure derived from Eq. (2) with respect to the calculat-
ed pressures.

This procedure has two benefits. It forces the fitting
function to match exactly the calculated quantities which
are variationally stable in LDF theory, the energies, and it
removes the imposition of a prescribed, unalterable
volume dependence (such as that given by the Murnaghan
equation) upon the calculated data.

III. EQUATION OF STATE AND CRYSTALLINE
PHASE STABILITY

The calculated cohesive energies (relative to the spin-
polarized atom) and the virial pressures are shown in
Table VI for the six primitive cell volumes considered.
The primary sources of imprecision in the cohesive ener-
gies are the truncation errors in the Fourier sums for E„,
and ( U+D), and the error introduced by basis-set effects.
An estimate of the truncation error in the total energy is
obtained by calculating E„,and ( U+D) for several values
of EM less than 15000 (see I); the error in the individual
cohesive energies is no more than 0.007 Ry for the three
larger volumes, and no more than 0.005 Ry for the three
more compressed volumes. Note that these truncation er-
rors are systematic and will always result in cohesive ener-
gies which are underestimated (see I).

The major sources of error in the virial pressure are

TABLE VI. The calculated cohesive energies (Ry) and pressures (kbar) for both the fcc and the bcc
structures at the six primitive cell volumes Q (a.u. ) used (see text) and corresponding lattice constants
(a.u.).

118.6
109.7
101.3
85.8
65.5
43.9

fcc

7.8
7.6
7.4
7.0
6.4
5.6

6.032

5.556
5.080
4.445

fcc

—0.2335
—0.2346
—0.2308
—0.2072
—0.1034
+ 0.2925

bcc

—0.2234

—0.1937
—0.0928
+ 0.2844

fcc

—53.9
—13.3

56.1

301.1
1154.1
4676.8

bcc

4.0

299.6
1103.3
4413.7
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TABLE VII. Calculated versus fitted pressures (kbar) for Al in the fcc (f) and bcc (b) structures.
(M) mc4cates filttmg to the Murnaghan equation %'hlle (P) labels the fit from the fj.ve-term polynomial
in inverse powers of the volume (see text). Each fit is to four values, either high-pressure (b) or low-
pressure (I). Standard deviations are given for each fit. The four y; for the three polynomial fits
above are as follows: P (1f)~(1.033158,2.38855,4.04102,7.8654), Pq(f)~(1 0,.2 0., 5 0,.10.0), and
PI, (b) -+(1.0, 1.7785, 5.0, 10.0).

Q (a.u.3) calc. (f)
fcc structure
MI (f) P& (f)

bcc structure
Mg (f) Pg (f) calc. (b) M~ (b) PI, (b)

118.6
109.7
101.3
85.8
65.5
43.9

—53.9
—13.3

56.1
301.1

1154.1
4676.8

—53.5
22.8

113.4
351.2

—48.8
20.4

117.5
304.4 386.4

1284.2
5100.1

372.0
1317.9
4677.7

299.6
1103.3
4413.7

387.2
1232.1
4849.4

375.7
1260.3
4417.6

Standard
deviation 225.8 231.9 90.6

inadequacies in the core basis set, which primarily affect
T, and ordinary numerical imprecision in E [see Eq. (1)j.
The former error always should shift the pressure in the
negative direction (at least for small Z) since core-basis-
set enrichment will increase the core kinetic energy. We
found this behavior earlier in both Li and Ne (recall the
discussion in I of the effects of a 12s8p3d to 15s8p3d
basis change for Ne). By comparison we estimate that
basis-set enrichment to saturation (four to six more s-type
Gaussians and one to two more p-type) would raise our Al
pressures in the vicinity of equilibrium at most 20 kbar.
Near equilibrium, an upward shift of the calculated pres-
sures by about 18 kbar would move the predicted zero-
pressure lattice constant slightly outside 7.6 a.u. , exactly
as expected by simple inspection of the calculated
cohesive energies alone. These core shifts should be par-
ticularly unimportant for structural stability considera-
tions since total energy and pressure differences between
phases wiH largely cancel such shifts.

It is evident from the calculated data that there is a
transition from the fcc to the bcc phase between the two
more compressed volumes treated. It is also apparent, as
noted, that the Xo, equilibrium lattice constant lies out-
side the experimental lattice constant, 7.60. '

To make more quantitative conclusions, the data must
be fitted by an equation of state. The four primitive cell
volumes at which both bcc and fcc values were calculated
mere used to determine the transition point between crys-
tal phases, while the four volumes nearest the experimen-
tal zero-pressure volume were fitted to obtain the equili-
brium properties. The overall quality of the fit was tested
by comparison of the calculated and fitted pressures (see
Table VII). We consider the equilibrium and high-
pressure properties separately.

A. Equilibrium properties

The polynomial fit, Eq. (2), produced an equilibrium
lattice constant of 7.65 a.u. whereas the Murnaghan equa-
tion yields 7.66 a.u. Both fits produce a cohesive energy
of —0.235 Ry for their respective equilibrium lattice con-
stants. T'he polynomial ftt yields a bulk modulus of 968

kbar as opposed to 1009 kbar from the Murnaghan equa-
tion. Even this difference, as large as it is, shows a high
consistency between the fits. Since the bulk modulus is
dctcl'IIllllcd by thc sccolld dcrlvatlvc of E(Q), It ls I'cRsoll-
Rblc that tlm valllcs of 8 dctcHlllncd fl'onl tllc two fl'ts

differ somewhat more than do the other calculated quan-
tities. Trial fits to other forms showed the deduced equili-
brium properties to be quite insensitive to fitting details.
Since the polynomial fit is statistically superior, the re-
sults obtained with that fitting technique are compared in
Table VIII to several other theoretical calculations'"'
and to experiment.

The experimental static lattice cohesive energy used
here ( —0.248 Ry/atom) was determined by the usual pro-
cedure of subtraction of the zero-point energy of the lat-
tice from the cohesive energy extrapolated to 7=0 K.
The zero-point energy was determined from the zero-
temperature Debye temperature, SD ——423 K, given by
Gschneidner in his Table XV. The zero-temperature
cohesive energy is quoted by him (in his Table XII) as
—0.245 Ry/atom. Compared to the experimental values,
the present Xa calculation produces underbinding and a
slightly expanded lattice, results that are consistent.

The only other Xa results with a= —,
' available are

those of Ross and Johnson ' using the augmented plane-
wave (APW) method. They obtained a lattice constant
somewhat larger than our result. However, they find sub-
staIltlRl ovcrbindlng whclc wc find sllgllt UIldclblndlng.
The nonspin-polarized atomic total energy we infer from
their paper agrees with the Herman-Skillman value we
calculate. They do not say but we suspect that they did
not use the spin-polarized atomic total energy. However,
that correction is not large enough to eliminate the over-
binding that they found. The discrepancy therefore does
not appear to arise entirely from the atomic part of the
calculations. Given that one would expect the muffin-tin
approximation used in the APW method to reduce varia-
tional freedom and hence raise the total crystal energy, the
cohesive energy from the APW calculation should be
smaller in magnitude than that from an LCGTO study
using the same 1.DF model. Such behavior is indeed pre-
cisely vvhat we found in I l. There seems, thelefore, to
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TABLE VIII. The lattice constant ( a, ), bulk modulus (8), and the static lattice cohesive energy (E, )
of Al found in this study compared to previous calculations and to experiment.

Chelikowsky (Ref. 17)
(Renormalized atom)
Lam & Cohen (Ref. 18)
(AP)
Liberman (Ref. 19)
(KKR, Liberman exchange correlation)
Janak et al. (Ref. 14)
(KKR, von Barth-Hedin exchange correlation)
Williams et al. (Ref. 20)
(ASW, von Barth-Hedin exchange correlation)
Ross 8c Johnson (Ref. 21)
(APW, Xa, ~=—', )

Present calculation
(LCGTO, Xu, a=

3 )

Experiment (see text)

a, (a.u. )

8.34

7.59

7.65

7.59

7.60

7.79

7.65

7.60

8 (kbar)

650

715

780

801

870

940

968

794

E, (Ry/atom)

—0.219

—0.268

—0.245

—0.285

—0.298

—0.30

—0.235

—0.248

be no obvious explanation for the discrepancy between our
results and those of Ross and Johnson. '

For the bulk modulus, the experimental value we quote
in Table VIII is from the elastic constants reported by
Kamrn and Alers for T=4.2 K. There is extensive
disagreement among reported (or attributed) experimental
values of the bulk modulus. Anderson (Ref. 24), cited by
Janak et al. ,

' attributes a T =0 K bulk modulus of 880
kbar to de Launay but careful inspection of de Launay's
review (especially his Table V) shows that the value 880
kbar actually follows from the 0 K elastic constants of
Sutton. Comparison of Sutton's measurements with
those of Schmunk and Smith, of Lazarus, of Goen and
Weerts, and of Kamm and Alers at room temperature
(the only temperature at which the full comparison is
available), show that Sutton's values of c~~ and c~2 are
substantially larger than those found by any other work-
ers. Since 8 =(c~~+2c~2)/3, it is obvious that Sutton's
data will predict a larger bulk modulus than that extract-
ed from other worker's results. The consistency of all
those other results at room temperature led us to the de-
cision to omit Sutton's data.

We note further that Lam and Cohen' quote a room-
temperature bulk modulus of 722 kbar from
Gschneidner who attributes the value to Bridgman.
This latter value seems low relative to the other more re-
cent determinations (which yield a room-temperature
value of about 760 kbar). The manifest diversity in the
measured values of the bulk modulus of Al, a seemingly
simple quantity, is remarkable. It is inappropriate for us
as theorists, however, to pursue the issue. In any event,
since the bulk modulus of Al falls discernibly with in-
creasing temperature, it seems more suitable to corn.pare 0
K electronic structure calculations with the best available
low-temperature experimental value. We believe that to
be the value derived from the elastic constant measure-
ments of Kamm and Alers.

B. High-pressure phase stability

Previous studies of the phase stability of Al at high
pressures have compared the energies (and, in Ref. 6, the
enthalpies) for the fcc, hcp, and bcc structures. The CW
codes in their present form are restricted to cubic crystals,
hence we have only investigated the fcc and bcc struc-
tures. This restriction is not a serious drawback since the
discrepancies among the earlier work are quantitative not
qualitative. In particular, there is significant disagree-
ment between McMahan and Moriarty (MM) and LC as
to the transition pressures and volumes but not as to the
sequence of phases.

The difference in the static-lattice cohesive energies
[E,(bcc) —E,(fcc)] obtained in the current investigation
is plotted as a function of the relative volume in Fig. l.
[Throughout this discussion the fitting function used is
the polynomial of Eq. (2) unless stated otherwise. ] The
previous ab initio self-consistent pseudopotential (AP)
(Ref. 6), LMTO (Ref. 5), and GPT (Ref. 5) results are also
shown for comparison. For the current LCGTO and the
AP results the relative volume scale used is based upon
the equilibrium volumes calculated by the two techniques,
112.0 a.u. and 109.14 a.u. , respectively. For the LMTO
and GPT curves, MM reported the relative volumes with
respect to the experimental volume per primitive cell at
room temperature and one atmosphere, 112.0 a.u. , ap-
parently because they did not calculate equilibrium values
with either technique.

From Fig. 1 it is clear that our result for the relative
volume (and in fact the absolute volume) of the transition
from fcc to bcc is in excellent agreement with the AP in-
vestigation of LC, and thus disagrees considerably with
the transition volumes from the GPT and LMTO work of
MM. The transition volume predicted by the present
work is 49.97 a.u. Fitting to the Murnaghan equation
produced a transition volume of 49.6 a.u., in reasonable
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FIG. 1. The difference in energy between the bcc and fcc structures versus volume for the AP (Ref. 6), OPT (Ref. 5), and LMTO
(Ref. 5) methods, and the present LCGTO calculation.

agreement, with the results fioin tile polyiioniial fitting
procedure shown in Fig. 1, precisely as argued earlier.

It is fitting that the AP prediction of the transition
volume agrees best with our result. This conclusion fol-
lows from comparison of the substantive approximations
made in the two methods. The AP method makes only
one such approximation (as opposed to routine matters of
numerical procedure) in its solution of the LDF problem,
to wit, the use of a frozen core. The LCGTO methodolo-

gy is, in contrast, an explicitly all-electron technique. It
does not make a frozen core approximation. Core relaxa-
tion is weakly constrained in the CW version of LCGTO
by Fourier-series truncations (see I). Harmon er al. '

studied the frozen core approximation in their LCGTO
technique and found all-electron calculations to give per-
ccpt1bly lower total cncI'g1cs 1n S1 at volume comprcssions
greater than 20%. Such differences should largely cancel
between adjacent crystalline phases, precisely thc behavior
found by LC. Basis-set effects must be controlled careful-
ly in both the LCGTO and AP procedures. Since
structural stability is determined by differences in energies
calculated with basis sets that are identical except for
their crystalline locations, basis-set effects should be in-
consequential in both our calculation and that of LC.

In their comparison of accuracy of AP versus LMTO
or GPT, MM noted that both the GPT and LMTO uti-
11zcd substantlvc approximations bcyoIld those 1n AP
which make both the GPT and LMTO methods "poten-
tially less accurate in structural calculations than the AP
method. " The extension of that argument to account for
the evident differences between our findings and those of

MM is straightforward, since the LCGTO procedure is
less approximate than the AP method. Of course, the
more approximate procedures used by MM enjoy the great
advantages of computational speed and applicability to a
great variety of crystal structures. In this sense the
LCGTQ procedure is simply not competitive. However,
when the LCGTO method can be used, it clearly has a
valuable role as a rigorous implementation of the LDF
theory.

At low pressures the LCGTO energy difference is con-
siderably larger than the AP energy difference with the
latter approaching the former at compressed volumes.
This behavior probably occurs because the exchange-
correlation potential used by LC approaches the potential
we used in the limit of large densities. The agreement be-
tween the LCGTO and AP techniques at high pressures
should relieve some of the concern noted by MM about
the validity of the AP core treatment at elevated pres-
sures.

Naturally, the transition volume predicted by a compar-
ison of the energies at fixed volumes is only approximate
since there will in geneI'al be a discontinuity in the volume
at the transition. The correct quantity to be studied is the
enthalpy (h =E+I'V) difference. Of the prior calcula-
tions only LC studied h(Q). In Fig. 2 we compare the
enthalpy differences [h(bcc) —Ii(fcc)] as a function of
pressure for the AP and LCGTO techniques. For pres-
sures gI'eater than 1.5 Mbar the two curves are very nearly
pa1allcl and arc scparatcd by approximately 2 IIlRy. This
is excellent agreement for such small values evaluated as
differences between two relatively large quantities.
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FIG 2. The difference in enthalpy between the bcc and fcc structures versus pressure for the AP method (Ref. 6) and the present
I,CGTO calculation.

The LCGTO prediction for the transition pressure is
3.28+0.09 Mbar (the uncertainty here is the standard de
viation of the fitting procedure) as opposed to approxi-
mately 2.9 Mbar for the AP method. The primitive cell
volumes at the fcc-to-bcc phase transition are 50.37 and
49.57 a.u. , respectively. The volume discontinuity is thus
only 0.016 of the fcc volume at the phase transition. The
average of the fcc and bcc volumes (49.97 a.u. ) at the cal-
culated transition pressure is exactly the transition volume
obtained from the energy. A similar result is found for
the pressure discontinuity implied by the fixed volume
transltlon. Fol this study thc lmpllcd prcssure discon-
tinuity is 0.15 Mbar and the average pressure for the two
phases at the transition volume is 3.28 Mbar. These two
results are strong confirmation of the assertion by MM
that an energy versus volume study (as opposed to enthal-

py versus pressure study) of phase stability in Al can be
reliable.

Despite the well-known difficulties with association of
thc I DP OIlc-clcctlon clgcnvalucs with physical onc-
clcctl'oil cxcltatloll cllcrglcs, it ls coII1II1011to Illakc sllcli Rll

interpretation in metals near the Fermi surface. In this
section we adopt that pragmatic view. An important, and

certainly less arguable, benefit of studying the one-

electron eigenvalues is as a means of comparison of
diverse I.l3F calculations, some of which emphasize the
total energy and isotherm while others produce only the
one-electron eigenvalues. The sum of those eigenvalues
also is used in many total-energy calculations [e.g., Eq.
(10) of I]. In fact, MM evaluate structural energy differ-
ences (at constant volume) in the LMTO directly from the

difference in the sums of the eigenvalues. For these
reasons we are obligated to discuss our one-electron re-
sults.

For comparison, the most interesting previous energy-
band calculation is one by Singhal and Callaway using
an earlier version of the CW codes and the same LDF
model as we used. Their basis set (1ls Sp 5d) differs from
ours (12s9@3d) in ways one might think significant. Our
basis sct was sclcctcd to provide optllrlufll flcx1bihty Rnd

fidelity for the representation of the occupied orbitals
which, of course, are the critical quantities for a ground-
state calculation. This goal must be achieved at a
manageable cost. (A five-Gaussian d basis would have re-
sulted in nearly a 40% increase in our computational ex-

penditures. ) Since precision is our overriding concern, a
test of such d-basis enrichment is required. (One is espe-
cially sensitized to this need by the emphasis of both MM
and LC on the crucial role that d states play in the high-
pressure phase stability of Al, due to hybridization effects
near the Fermi level. ) Comparison of the Singhal and
Callaway band structure with the equilibrium band struc-
ture found in this investigation showed no significant
differences up through I 25. Since this range extends to
energies nearly 1 Ry above the Fermi level, we are confi-
dent that our more modest d basis posed no handicap for
investigation of ground-state properties, even at highly
compressed volumes.

Among the previous high-pressure studies, only MM
published an actual band structure at ultrahigh compres-
sion (0/0&& ——0.135). It was for the fcc structure (in spite
of the transition to bcc at lower compression) so we re-
strict this discussion to that phase. Comparison of their
high-prcssure and normal-pressure band structures reveals
several interesting changes. (Their zero-pressure band
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structure agrees with ours in all substantive features. ) The
most important are as follows: (1) The X4 empties and
rises above both the Xj and X3 states, while the X3 drops
below the Fermi level. (2) The W3 state moves above the
Fermi level while the 8'2 state drops below, and the 8'~
state moves up drastically (out of the figure in MM). (3)
The Lz and Li states reverse. (4) The K3 state is driven

up through the two Ki states and the Fermi level.
Direct comparison between our high-pressure band-

structure results and those of MM is impaired since the
largest compression we considered is OA and MM did not
publish results at intermediate pressures. Even so, it is re-
warding to study the trends in the fcc Al energy bands
under compression. Table IX shows the locations of
several points in the energy bands near the Fermi level,
relative to the bottom of the conduction band, for
compressions of 1.0, 0.8, 0.6, and OA of the experimental
volume, 109.74 a.u. At 0.4 compression we find the fol-
lowing: (1) There is no change at X in the order of the
singly degenerate states among themselves or with respect
to the Fermi level. In fact, the separation between the Xq
and X3 states has increased by 0.093 Ry (zero-pressure
separation equals 0.606 Ry) and the separation between
the X~ and X~ states has only decreased by 0.022 Ry
(zero-pressure separation equals 0.098 Ry). (2) At W the
reversal in the ordering found by MM (at 0.135 compres-
sion) has occurred but the W3 state is still occupied and
lies 0.034 Ry further below the Fermi level, a 52% lower-
ing. (3) At the L point no reversal has occurred and the
separation between the Li and Lz states has actually in-

creased from 0.017 to 0.176 Ry. (4) At the K point the
K3 state has moved above one of the Ei states but not the
other, and the higher of the Ei states has moved above
the Fermi level.

It might appear that our results disagree significantly
with those of MM, but that is not necessarily the case.
MM found that the bulk of the change in the LMTO
band structure for fcc Al occurred after the lattice
reached 0.5 compression (our study only achieved 0.4).

The predominant cause of those changes is significant
lowering of the energy for the d states relative to both the
s and p states. We observed similar lowering of the d
states. The disagreement in the trends may be understood
at least qualitatively in terms of the relative shift in the s-,
p-, and d-type states under pressure.

Inspection of self-consistent Gaussian orbital coeffi-
cients for states near the Fermi surface reveals two gen-
eral trends in the energies of those states as the crystal is
compressed. The s states are shifted upward relative to
the p states and the d states are shifted down. At zero
pressure the singly degenerate states at X, I., and E are
ordered with the p states lowest in energy, followed by the
s states, then the d states. Initially, compression of the
lattice moves the s states up relative to the p states; thus
the X&, I.&, and the higher EI states move up relative to
the other states near the Fermi level. The trends in our
results up to about 0.6 compression are primarily a result
of this behavior. Further compression (to 0.4) causes a
discernible increase in the d-type character of those same
states. Eventually they must drop relative to any states
wh1ch remam p-type, leadmg to the reversals ln order ob"
served by MM. This trend is foreshadowed clearly by the
behavior of the energy difference between the states at Xi
and X&. That difference evidently is largest somewhere
between 0.8 and 0.6 compression and decreases with fur-
ther compression. The ordering of those two states al-
most certainly must switch for some compression beyond
the range investigated here.

The greatest disparity between the trends exhibited in
Table IX and the results of MM concerns the separation
between L i and Lz . We find that of all the mixed s- and
d-type states the Li state has acquired the least d-type
character at 0.4 compression and thus any reversal in the
shift of Li relative to Lz would be expected to occur (if
at all) at a higher pressure than does the reversal for the X
states.

Although the preceding discussion makes the pressure-
induced ordering reversals found by MM quite plausible

TABLE IX. Positions (in Ry) of various points in the fcc Al band structure relative to the bottom of
the conduction band, F~ for four cornpressions relative to the experimental equilibrium volume, 109.744
a.u. The gaps at X and L (LhX =XI —X4 and hL =L

&
—L ~ ) also are given.

Compression

pp

X4,

X)
X3~ (gap)
8'3

8')
L2t

I)
hL (gap)
E3
El
E$

1.0

0.8205
0.6015
0.6998
1.2075
0.0983
0.7545
0.8294
0.9067
0.4776
0.4946
0.0170
0.6776
0.7167
0.7912

0.8

0.9466
0.6903
0.8196
1.3404
0.$293
0.8637
0.9254
1.1560
0.5347
0.5998
0.0651
0.7765
0.8093
0.9579

1.0928
0.8051
0.9418
1.4924
0.1367
0.9982
1.0330
1.4724
0.6066
0.7228
0.1162
0.9010
0.9141
1.1454

04

1.3312
1.0222
1.0986
1.7214
0.0764
1.2308
1.1925
2.0314
0.7421
0.9182
0.1761
1.1258
1.0759
1.4234
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our results indicate strongly that those reversals occur at
rather higher pressure than found in their I.MTQ ca1cula-
tion. It is unlikely that differences in the order of levels
at high density occur because of detailed differences in the
LDF model utilized. The faster pressure-induced lower-
ing of d-type states found in the LMTO calculations of
MM (relative to the LCGTO findings) therefore seems
likely to be an artifact of the approximations used in the
LMTO method. Since the lowering of the d states with
pressure appears to be the principal mechanism driving
the fcc-bcc transition, one would expect the LMTO pre-
diction of a transition pressure to be lowered with respect
to the corresponding LCGTQ value. This outcoIDe is
especially likely in the case of the LMTO calculations by
MM since they evaluated structural energy differences
directly from tlie one-electron eigeiivaliies.

V. CONCLUSIONS

We have demonstrated that high-precision phase stabil-
ity studies, including direct-pressure calculations, are both
feasible and useful within the CW version of the LCGTO
formalism using the modified CZB technique. It is an
all-electron, non —muffIn-tin methodology whj. ch cs the
most rigorous implementation of LDF theory applied to
the Al phase stability problem to date. However, the state
of the art for LCGTO calculations is such that there are
many systems for which some more approximate, less
costly method may be essential. There are at least three
techniques (LMTO, GPT, and AP) available from which
good qualitative results for the sequence of structural

phase transitions with pressure have been obtained for Al.
Of tliose tlii'ee, we have fouiid tlie AP method to give tile
best quantltatIve agreement wIth our a11-electron calcula-
tion of the fcc~bcc transition pressure and volume in Al.
In comparison, the LMTO calculation produces a signifi-
cantly laxger transition volume than either the AP or
LCGTQ calculations, a result which may be due to a too
rapid lowering of the d states relative to the p states and
the s states in the vicinity of the Fermi level. However,
the LMTO method has the distinct advantage of being
both fast and relatively simple to apply to unusual crystal
structures.

Compared with experiment, our low-pressure results
behave in a way consistent with weak underbinding. The
Xa prediction of the lattice constant at zero pressure is
expanded slightly compared to experiment (7.65 versus
7.60 a.u. ) while the predicted binding is about 10% too
small ( —0.235 versus —0.248 Ry). The calculated bulk
modulus at equilibrium (968 kbar) can be compared with
our best assessment of the experimental value of 794 kbar.
At high pressures the bcc structure is more stable than the
fcc structure for pressures greater than 3.28+0.09 Mbar.
At this transition the average volume is 50.0 a.u. and the
volume discontinuity at the transition is 0.8 a.u.
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