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Instability at the melting threshold of laser-irradiated silicon
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Symmetry breaking at the silicon melting threshold is demonstrated to result from an increase of reflec-

tivity associated with a strong decrease of the laser penetration depth. One shows analytically that starting

with a uniform irradiation, one can produce periodic solid and liquid stripes with the average surface tem-

perature at the melting value and liquid regions slightly hotter than solid ones in contradiction with the pre-

vious idea of an undercooled liquid. The pattern size has to be smaller than a critical value of the order of
the laser penetration depth.

In recent studies on laser annealing, various patterns'~ of
coexisting liquid and solid regions have been observed close
to the melting threshold of the irradiated silicon. These pat-
terns often take the appearance of spontaneous periodic sur-
face structures, or ripples, with spatial periodicity J related
to the optical wavelength of the formula3 L =)/(I +sin8),
where 8 is the angle of incidence measured from the normal
to the surface. These facts strongly suggest that the pattern
period L is due to the interference of the incident laser
beam with one or two waves traveling along the surface in
two opposite directions. The surface waves can be pro-
duced by scattering of the incident wave by various pertur-
bations such as scratches, defects, plasmons, etc. To pro-
duce the observed ripples, this initial perturbance with spac-
ing I. must grow, so that we must find an amplifying
mechanism.

The purpose of this paper is to show that such an instabil-
ity exists near the melting temperature and that it can lead
to the observed ripples. Once the melting temperature T is
reached on the surface, an increase of laser intensity should
produce melting. But, as liquid silicon is metallic, its reflec-
tivity is twice as large as the solid one. Consequently, the
absorbed laser energy decreases by a factor of 2 when the
surface becomes liquid; its temperature should go below T
and the surface should solidify again. So the increase of re-
flectivity implies a nonuniform surface phase even with a
uniform irradiation5 as first noticed by Hawkins and Biegel-
sen. But, in order to explain the observed liquid and solid
stripes, they argued that the liquid stays in fact undercooled.
This undercooling is explained as a surface-tension effect,
the pattern size resulting from a balance between the lateral
thermal gradient and the high surface energy coming from
the liquid-solid interfaces. But this interpretation implies an
overpressure in the liquid, i.e., a curvature of the liquid-
solid interface according to Laplace's law which is not
present in the observed stripe geometry.

In this Rapid Communication, we want to present a new
theoretical model which explains how starting from a spatial-
iy uniform laser irradiation, one produces a spontaneous sym

metry breaking which could lead to a regular set of liquid and
solid stripes, but ~ith liquid temperature slightly above T and
the solid one slightly below, in contradiction with the previ-
ous idea of an undercooled liquid.

Besides the reflectivity increase, there is another very im-
portant consequence of melting, unnoticed up to now in this
ripples problem, which is the strong decrease of the laser
penetration depth (which goes from —1 p, m in the solid to—100 A in the liquid for wavelength —0.4 p, m). It is true
that less heat enters a liquid region but as this heat is depo-
sited in a region much thinner than in the solid, the liquid
surface should finally be hotter than the solid one, the im-
portant physical quantity in fact being the heat deposition
per unit volume rather than the heat deposition per unit
surface. In order to compensate for the decrease of ab-
sorbed energy in the liquid, a lateral heat flow is necessary
from the solid region to the back of the liquid one, leading
to a heat-flow pattern shown on Fig. 1(a) in a two-
dimensional situation (liquid stripes). Such a compensation
is only possible if the widths of the liquid and solid stripes
are not too large compared with the laser penetration depth
in the solid. This would lead to an upper boundary for the
pattern period L, as for any instability, the observed pattern
being given by external boundary conditions. Finally, as
liquid and solid coexist at the surface, one expects an aver-
age surface temperature close to the melting one, and, con-
sequently, a ratio liquid-to-solid area such that the resulting
mean reflectivity leads to T at the surface.

In order to emphasize the importance of the decrease of
laser penetration depth compared to reflectivity change, we
now consider a simple situation where the temperature dis-
tribution can be calculated exactly. This model is two
dimensional and contains all the main physical features of
the problem, i.e., different reflectivities R, (RL and dif-
ferent penetration depths d, & dL for the solid and liquid
phases. We give a complete analytical solution, assuming
for simplicity that dL, =0 (as dL,

—10 2d, ) and that all the
heat conduction coefficients E are equal: from Fig. 1(a), it
is clear that most of the heat flows through the solid phase.
The introduction of a different conductivity in the liquid
would just add unnecessary complications in the analytical
calculation, without new physical insight. Let us consider a
silicon sample of thickness D, the back surface of which is
kept at a constant temperature (chosen as the zero for T),
irradiated with a laser power P having spatial uniformity.
What happens to the irradiated surface when P increases?
In order to get simpler results, we will restrict to the case
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The problem is to calculate the modulation 4 T correspond-
ing to heating elements (A, P, —Ar. P) located at nL & X
& nL+ a [see Fig. 1(b)], where a and b are the widths of

the solid and liquid stripes, respectively, and L =a+ b, n

being an integer from —~ to + ~. For that we first cut a
heating element in infinitely small heating lines, having a
section dx dz, located at a distance z from the irradiated sur-
face. Noting that in steady state the heat equation is analo-
gous to Poisson's equation in electricity, we are led to solve
the equivalent problem in electrostatics. There are two
boundary conditions: (i) as the heat flow at the irradiated
surface is zero, we introduce a mirror system with respect to
that surface; (ii) then we are left with the boundary condi-
tions T= 0 at z = + D (equivalent to the electrostatic poten-
tial V=O). To take into account these boundary condi-
tions, we use the trick of electrical images, which finally
transforms one heating line into a double infinity of lines,
images of the initial line with respect to the planes z = +D
(see Fig. 1). Using this method, one finds that a heating

-z/u,
line of intensity (A,P/d, )e ', produces on the surface, at
the distance X away from it, a temperature increase

TM 5T(X ) 2
A Pe — ~,

d d 1
ln

e +1+2e cosz
(2)

Kds 4~ e2~+ 1 —2e~cosz

where X=n X/2D Integra. ting Eq. (2) over z, the tempera-
ture increase produced by a solid heating element of width
dx, reads for d, « D

(3)

FIG. l. (a) Two-dimensional heat flow pattern for liquid stripes
on the surface. (b) Spatial distribution of heating elements used in
the calculation. (c) Electrical images analog for a heating line at
depth z.

D &) d, . If the whole surface is solid, the equilibrium sur-
face temperature is T, =A, PD/K where A, =1—R, . Simi-
larly, if the whole surface is liquid, the surface temperature
is TL=ALPD/K. Let us call P, and PL the laser powers
such that T, and TL equal T . As AL & A„PL) P„and
for a laser power P, & P & PL, the silicon surface cannot be
homogeneously liquid or solid. One can introduce an ab-
sorptance A such that for an intermediate value of P

T = D, A =nA, + (1—n)ALAP

The temperature increase for a liquid element is obtained by
setting d, =0 and replacing A, by AL, in Eq. (3). (It is
pleasant to check that extending this heat from —~ to ~,
one finds again TL.)

Using Eq. (3) for an infinite number of "heating" ele-
ments, one gets the surface temperature modulation

+OO t nL+a —X
b, T(X) = $ [A,f(x,d, ) —ALf(x, 0]dx

Pf ~ OO

An explicit calculation shows that 6 T is composed of a con-
stant term

b Tp= —(A, —AL, )
PD a
K L

independent of the position Xon the surface, and a modula-
tion depending on X

n represents the percentage of solid area for a surface par-
tially molten which would produce, for a specific P, an aver-
age surface temperature equal to T .

As the Si surface cannot stay homogeneous, we have to
look for an inhomogeneous solution. In order to prove that
there is at least one solution exhibiting a symmetry break-
ing, we choose arbitrarily to consider a specific one —a
periodic system of liquid and solid stripes. %e calculate the
surface temperature in this case and show that it is indeed a
possible steady-state situation. For that purpose it is con-
venient, as the heat equation is linear, to replace the real
solid-liquid heating pattern [see Fig. 1(b)] by a uniform
heating as if the whole surface were liquid, plus a regular
set of "heating" elements (A,P over depth d„and —ALP
on the surface). The surface temperature is T= TL+hT.

PD5 Tt(X) = g [@(nL—X+ a) —@(nL —X)], (6)
Kvr 2

with

P (X) = X(A InXz —A, ln(X2+ d ) )

and N= 1/L =2D/mL. The modulation comes essentially
from the neighboring stripes and will be found small, of or-
der L (see below).

From Eqs. (1) and (5) one finds that in order to have a
temperature close to the melting one on the surface a/L
should be equal to cx, to lowest order in L/D. This means
that the ratio of solid to liquid area is such that it corre-
sponds to an average absorption coefficient giving T at the,
surface, as expected.
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a2+ 4d2
5 Tt( &72 ) = a (2, —AL, ) ln4 —A, ln

+Tn' AL —A, 2, . (7)
PD

L +d, Em

One easily checks that for L « d„b, Tt(a/2) is always

negative, i.e., the solid temperature is below T while a
similar calculation done at the center of the liquid stripe will

give a temperature above T . On the other hand, for
L ) d„hTt(a/2) will be negative only if a is smaller than
a critical value

4 —Ma QgS

AL 3 2

4
in+= 1 —— ln4 ——o; . (8)

Similarly, one finds 4 T~ positive at the center of the liquid
only if b is smaller than a critical value b', obtained from
Eq. (8) by changing n to (1 —n). This implies an upper lim
ir for the pattern period, L'= inf[a "/n, 6'/(1 —n)], which
for silicon is L' —3.51,—3.5 p, m (i.e., of the order of the
lamellae size observed experimentally2). Our calculation al-
lows also an estimate of the temperature difference AT,„
between the liquid and solid regions. Taking an average
laser intensity of 2.5X 105 W/cm2 and the thermal conduc-

Let us turn to the temperature modulation and verify that
it is indeed very small and mostly of the correct sign, i.e.,
liquid areas slightly hotter than solid ones. At the center of
a solid stripe, Eq. (6) gives for the temperature variation

tivity of silicon at 1410'C to be K=0.25 W/cm K, as used
in Ref. 2, we find that D = 25 p, m and 6 T,„=0.6 K.

In conclusion, the new results of this Rapid Communica-
tion show that, although the increase of reflectivity at melt-
ing is the main physical reason for producing an inhomo-
geneous phase surface starting with an homogeneous excita-
tion, it is crucial to include the decrease of penetration
depth in order to restore the fact that liquid regions have to
be hotter than solid ones, in agreement with common sense.
We have also determined the range of possible pattern sizes
for this instability.

As for any instability, the pattern effectively observed
results from external boundary conditions which have to be
added to the basic mechanism. In the present case, this ad-
ditional effect comes from the interaction between the in-
cident beam and diffracted waves traveling along the sur-
face: the resulting interference and diffraction effects can
select a critical pattern if the laser wavelength is compatible
with the possible values of the pattern size; this is actually
what happens in most experiments as shown by the fact that
the observed ripples spacing is of the order of A. and the pat-
tern shape changes with the laser polarization. Consequent-
ly, a complete interpretation of the exyeriments on ripples
should include interference and diffraction effects as well as
changes in the optical properties at melting. But this com-
plete calculation is far beyond the scope of this paper, which
is only devoted to the elucidation of the physical mechanism
inducing a spontaneous symmetry breaking at the silicon
surface when irradiated by a uniform laser beam.
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