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Equilibration of random-field Ising systems
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The equilibration of Ising systems in random magnetic fields at low temperatures (T) following a

quench from high T is studied in the framework of a simple solid-on-solid model. The rate at which or-
dered domains in the model grow with time in any dimension (d) is estimated as a function of the
random-field strength, the exchange strength, and T, on the basis of an approximate analogy to the prob-
lem of a one-dimensional random walk in a random medium. Domains are argued to grow logarithmically
with time for all d. This result has a simple interpretation in terms of energy barriers which must be sur-
mounted in the equilibration process.

Despite intense theoretical study over almost a decade,
the behavior of the Ising model in a random magnetic field
(RFIM) remains imperfectly understood. ' There is now
widespread acceptance of the simple physical arguments
which suggest that the lower critical dimension d, (the
dimension below which no long-range-ordered state can oc-
cur in the RFIM) is 2. That acceptance remains cautious,
however, given the lack of a definitive refutation of the
field theoretic analyses predicting d, = 3, and ambiguities in
the interpretation of experiments on random antiferromag-
nets in uniform magnetic fields —the most convenient phys-
ical realizations of the RFIM. The source of the experi-
mental ambiguities, namely, long equilibration times and
history-dependent behavior, are striking in and of them-
selves. 3 A skeletal outline of the salient experimental facts
for three-dimensional (3D) samples follows.

When cooled in a nonzero random (i.e., applied) field the
random antiferromagnets typically do not exhibit long-range
order down to the lowest temperatures studied. This is true
even for comparatively modest fields, though for small
enough fields the short-range order can extend out to very
long distances4 —thousands of angstroms —before it dies
off. On the other hand, the antiferromagnetic long-range
order established by cooling in zero field typically persists
under the application of even quite large fields. Thus at a
given point in the random field-temperature plane the sys-
tem can either exhibit long-range order or not, depending
on how that point has been reached. It is not at all clear
which (if either) of these two cooling procedures produces
the system's true equilibrium state upon which so much
theoretical attention has been lavished. Depending on one' s
prejudice one can argue that static equilibium is achieved ei-
ther by finite or zero-field cooling5 and hence that d, is,
respectively, 3 or 2.

One approach to this dilemma is to adopt one of these
competing explanations and examine it more critically. One
might ask, say, whether the simple arguments predicting
d, =2 (and hence a long-range-ordered equilibrium state in
3D) also predict the existence of metastable states which
persist over experimental time scales

'

and possess only
short-range order. Can one account for the correlation
length of that order and understand how it diverges to pro-
duce long-range order in the long time limit? Our goal here

is to take a step in this direction by constructing a model to
study the decay of an isolated droplet of spins of one sign,
immersed in a sea of spins of the other, in the RFIM at
temperatures (T) well below the transition temperature T, .

(In 2D, where T, =O, we consider T's well below the
mean-field critical temperature, say. We will beg the impor-
tant question of how such a droplet is formed on cooling
slowly from above T, . Rather, we imagine quenching the
system from a temperature above T, to some T significantly
less than T,. We therefore take as given the existence of
droplets out of equilibrium and estimate, as a function of
their linear size and the other parameters in the problem,
the time required for them to evolve to their equilibrium
size. )

Our model, a discrete-lattice solid-on-solid (SOS)6 rep-
resentation similar to those used7 to argue for d, = 2 in static
equilibrium, is such that the droplet (taken initially as a hy-
percube of side L in d dimensions) typically finds it energet-
ically favorable to shrink to zero or to a small fraction of its
original size.

Our central result is that the time tL required for this de-
cay in any dimension ~ 2 has the form

tL —exp(Lhz/2JT), L & L',
tL —exp(2L h/T), L & L'; (lb)

here, L'= (4J/h)2 is a crossov—er length whose significance
will emerge shortly; J and h are the exchange and average
random-field strengths, respectively, and tL and L are,
respectively, measured in units of some characteristic micro-
scopic spin-flip time, say 10 '4 or 10 ' sec, and the lattice
spacing. The inverse of (1) gives the linear size L(t) of
the smallest droplets which cannot equilibrate in time t.

That is, starting at t = 0 and low T with a collection of (in-
dependent) droplets of different sizes, one would find,
roughly speaking, only droplets of size L & L(t) left in the
system after time t, where

L(t) —L'T//T", T & T

L(t) —L"(T/T')', T& T',
(2a)

and P"=8 J(I/tn). Taking a characteristic time, say a
minute or an hour, for t (i.e. , t —10'6) yields T"—J/5, a
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small temperature. At all but the lowest temperatures,
therefore, (2a) is the appropriate formula. For sufficiently
small II result (2) naturally crosses over to the far more ra-
pid equilibration appropriate to the pure system:9 L(t)—I,"~'. The fact that the random fields produce energy bar-
riers which must bc climbed in thc cquillbIation process ac-
counts, as we shall see, for thc striking difference between
this algebraic result in pure systems and the exponentially
long times of Eqs. (1).

Typical scattering experiments on the RFIM in fixed field
are performed by cooling slowly whereas our arguments ap-
ply to a quench to temperatures some~hat lower than T,. It
is, moreover, likely that random exchange (i.e., dilution) of
the antiferromagnets studied experimentally contributes sig-
nificantly to the equilibration characteristics of those materi-
als. ' 'o This dilution is not in our model. Furthermore,
the relevance of our calculations for isolated SOS droplets to
the more complex equilibration of the full RFIM and its
physical realizations is far from clear. We, therefore, do not
attempt a detailed comparison of (2) with experiment. "
Ho~ever, it is ~orth considering the consequences of specu-
lating that L(I) provides a reasonable measure of the
characteristic linear size $(I) of correlated domains'2 in the
RFIM and its experimental realizations at time t following a
rapid quench of the system at t=o to some T & T,. The
rough consistency of (2) with two qualitative features of
neutron measurements of ( make one hopeful that this
speculation is not too unrealistic.

(i) Taking T' —J/5 and JT//II2 between 1 and 100 say
(e.g. , both T/h and J/l'I between 1 and 10, corresponding
roughly to the experimental range) one obtains L's between
4 and 7000 lattice constants. Thus one gets rough order-
of-magnitude agreement with measurementsII of g. [The
fact that L(r) decreases with decreasing T in (2) seems in

flagrant contradiction of the experiments, where, in fixed
field, g increases and eventually saturates as T is lowered.
However, lowering T in (2) does nor represent the slow
cooling of R typical experiment but rathcl' R series of
quenches to progressively lower temperatures T. Once the
system is quenched down to some T & T, in our model, L
is determined according to (2) and ought to remain frozen
at that value over any reasonable experimental time scale if
the temperature is lowered further. ]

(ll) T11c fact that (2) llolds independent of dlIIlc1181011 (d)
for all d ~ 2 is also consistent" with the qualitative similari-
ty of scattering resultsI'I on the RFIM in 2D and 3D. [In-
terpreting (2) in 2D involves some ambiguity because the
2D RFIM cannot have long-range order;7 therefore, the
cqlllllbflum $, pe, ls probably flIlltc cvcll at T 0 Tllc
form (,a-exp[(J/II)2], characteristic of a lower critical
dimension, '4 is often hypothesized, and numerical evidence
supporting this expression has been obtained. '5 If it is
correct, then, at least for small enough h/J, the $(I) in-
ferred from Eq. (2) is && g,„ for all reasonable I, in which
case $(t) will be observed experimentally and the finiteness
of g,~ is presumably not terribly relevant. The qualitative
similarity of the 2D and 3D measurements is at least con-
sistent with this scenario. ]

As we shall see, the independence of Eqs. (1) and (2) on
dimension reflects the fact that the limiting slow step in the
decay of a droplet in d dimensions (d an integer) is, for all
d~3, the removal of the outermost (d —1)-dimensional
layer. Thus for Rll d ~ 2 the decay time is identical to the
20 decay time. This is a manifestation of d, being 2 in the

SOS model employed. 7

To derive (1), let us start in 2D. Consider a square drop-
let of side L of down spins surrounded by up spins in the
RPIM on a square lattice with both T and h small compared
to J. To simplify the description, we adopt the SOS
representation;6 i.e., let the droplet's shape at every moment
be specified by the instantaneous (integer) heights of the L
columns of down spins constituting it (Fig. 1). The stand-
ard Metropolis algorithm is a convenient one for describing
the temporal evolution of the column heights.

In equilibrium at low T, a 2D SOS droplet of width L in
the RFIM has height7'6 w —(II/J)2L. Thus, for weak ran-
dom fields, w « L An initially square droplet will, there-
fore, decrease considerably in height, from L to roughly ~,
at low T in the long time limit. To estimate the decay time,
fII'st consldcI' the 11mlt J~ ~, whcrc thc dl'oplct d1sappcars
completely at long times. Any change of the column
heights which costs exchange energy (i.e., which increases
the surface area of the droplet) then requires infinite energy
and so is forbidden. It follows that the droplet's shape
remains perfectly convex, admitting no "inlets" (Fig. 1); its
surface area is exactly twice the sum of its width (i.e., the
fixed constant L) and its height (i.e., the height of its tall-
est column). Whenever the height decreases by one, an in-
finite energy is gained making the decrease irreversible; the
height can never increase. For the height to decrease from
L to L —1 obviously requires the elimination of the
droplet's entire top layer. Since "inlets" are prohibitively
costly this row can only be eroded systematically from its
two ends: taking bites out of its middle is forbidden. Thus,
the top row disappears when its two vertical boundaries,
diffusing inward from the right and left, meet. The motion
of each of these boundaries is like that of a particle walking
randomly through a disordered medium, the disorder being
supplied by the random fields. For example, when the
boundary moving in from the left tries to move past R site
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FIG. 1. Droplet (shaded) of down spins immersed in sea of up

spins. Droplet consists of L columns (labeled by n) and has height
w Dotted lines indicate the initial (square} configuration of the
droplet. Rcgj[on A ls an inlet of Up spills.
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where the random field points down (recall the droplet con-
sists of down spins) it encounters an energy barrier of 2h
which it crosses only with probability e " . If there are
several such adverse random fields close to one another
creating a large barrier, the boundary may well get stalled
and move back to the left, surmounting the barrier only on
some subsequent attempt. On the other hand, the boun-
dary progresses easily through sites with favorable (i.e., up)
fields.

Sinai'7 has proven exactly that a particle walking randomly
on a 1D lattice wherein the probability of hopping to the
right or left is a random function of its position covers dis-
tance L —(Int)2 in time t (for large L and t) Th. e physical
content of this result' is that, statistically, in traversing a
large distance L, the particle will encounter regions where
sites past which it has a low probability of moving out-
number sites with high transmission probability by O(L'l2).
A time —exp(L'l2) is required to cross this "barrier. " In
our case, regions where adverse fields outnumber favorable
ones by O(L'l2) produce barriers of 2hL' 2. We therefore
estimate that the top row is annihilated in a time

1D 2Li/2h T One's first guess is that a total time Ltq' is
required to wipe out all L rows of the droplet, but since
subsequent rows begin to erode long before the top one
disappears, the droplet has probably lost a fraction of O(1)
[not merely of O(1/L)1 of its area by the time the top row
disappears. Thus t~ should be a good estimate for the de-
cay time of the whole droplet. '

How is this picture altered by finite J (still in 2D)? First,
the droplet decays only until the height reaches
O((h/J) L), but this is insignificant. Second, provided
r' )e J [i e., L & L'= (4J/h)2] the droplet will decay in
a much less organized fashon. Its surface area will some-
times increase, a process costing at least 2J of energy and so
requiring time e /~. "Inlets" will now occur and, more im-
portantly, the height can now increase: having decimated a
row one is no longer assured that it will not regenerate.
Indeed, since the energy to be overcome in wiping out an
unfavorable row is —2L'/ h while the exchange energy
gained is only —2J, one will, even for small h/J, actually
lose energy in the elimination provided L P L'. If, e.g. ,
several unfavorable rows occur in succession, even if the
first of them is destroyed, it may very well rebuild itself be-
fore the next one is eliminated.

Let us then model the situation as follows. Imagine that
the droplet grows or shrinks by having whole rows either
added to or removed from its top. The L column heights
are thus constrained to move together; the droplet is always
a perfect rectangle. Assume further that each horizontal
row has a net random field of either AL' or —hL', each
with probability ~. Since moving the boundary down (up)
decreases (increases) the droplet's surface area by 2 and
hence gains (costs) 2J in exchange, the possible energy
changes b,E for downward (upward) moves are
—2J+2hL'l' (2J+2hL'l2) Thus one arrive. s at the fol-
lowing approximate picture of the droplet's progress: at
discrete, regular time intervals (the natural length of which
should be t~, the typical time required to build or destroy a
row) one tries randomly to move the upper boundary either
up or down. Depending on AE for the prospective move, it
is either made or not, according to the Metropolis algo-
rithm.

The droplet's evolution has thus been reduced to the

motion of a particle (viz. , the droplet's upper boundary) in
a 1D random medium. The particle feels a constant force
2J downward due to the exchange energy but encounters
barriers —unfavorable rows of random fields —which for
L & L' are bigger than 2J. In their exact treatment of a
similar 1D random walk in a random medium, Derrida and
Pomeau showed that the presence of sufficiently strong
barriers will reduce the distance 8 that the particle travels in
time t from the linear dependence, R —t, that obtains,
without the barriers, to a weaker power law, R —t' with
a (1. One's first thought, therefore, is that our droplet's
height should reach its equilibrium value in a time algebrai-
cally dependent on L However, the present situation
differs from that of Ref. 20 in that the barrier heights grow
(as hL'l2) with the distance [of O(L)] that the particle
must fall. A simple generalization of the calculations of
Ref. 20 to such a situation shows that the particle requires a
much longer time, viz. , tq —e" / for the fall.

The physical interpretation of this result is clear: the big-
gest barrier the particle must scale limits its overall speed.
To estimate this barrier, suppose that the particle falls
through n sites in an unfavorable region. For n )) 1 this
means that n'/ more unfavorable rows than favorable ones
have been eliminated, so the particle has crossed a random-
field barrier —2n' L' h. It has simultaneously gained 2Jn
in exchange energy. The difference of these two energies is
maximized when n = (h/2J)2L, yielding a maximal energy
barrier of Lh2/2J or a climbing time of e~" l2Jr. This argu-
ment suggests that the result ought to be independent of
our approximating the interface by a straight line. Even
when the interface looks very jagged, the exchange energy
of the system is given, crudely speaking, by 2J times the
overall height of the droplet. The system, therefore, on
average, gains 2J of exchange for each unit drop in height,
just as in the flat-interface picture. The rough estimate of
2n'/ L'/ h for the field-energy barrier encountered during a
height change of n likewise does not require a flat interface.

In our flat-interface (ID) approximation of droplet evolu-
tion the time t& should be multiplied by the step size

2gi/2h T
tq —e h/ to give the total time for the decay:
rgn e2L &I&+&& I2&&. This extra factor r&n may be an ar-

i/2

tifact of the flat interface. Since the actual droplet decays
with different speeds in different columns, many rows erode
or build simultaneously. It may be an overestimate to as-
sign a time tq to each overall height change of the system.
We therefore keep only the leading (linear) term in L in the
exponential for tq, i.e., we write tq —tq. This agrees with
the simple physical estimate based on the maximum energy
barrier. On the other hand, it is clear that t& alone does not
adequately describe the decay for all L since, e.g. , in the
limit L & L', where the exchange energy gain from annihi-
lating any row dominates the field-energy cost, the decay
time for the droplet should approach the J ~ (i.e., the
1D) limit tqn. Exactly how the crossover at L —L'
between tq and t~ occurs is unclear. We will not speculate
on this; our estimates for tpn in the two limits L )L' and
L (L' are summarized in Eq. (1).

To generalize these results to three and higher dimen-
sions, imagine constructing a 3D SOS model droplet, con-
sisting of a 2D array of columns. Take the droplet to be a
cube of side L initially. Removing one 2D layer then gains
4JL in exchange energy and either gains or loses —2AL in
field energy. Therefore, if 2J ) lt (a condition we assume
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satisfied) the exchange inevitably dominates. One might
think, then, that the boundary falls linearly with time and
that the droplet decays in a time of O(L). This is in-
correct. Each 2D layer takes time t~ to erode. Presumably
by the time the first layer of the droplet has completely
disappeared a volume fraction of O(1) [not O(1/L)] of
the droplet has eroded; the -total time for the decay of the
3D droplet is, in consequence, something like t~ . A simi-
lar argument applies to all dimensions higher than 3: in any
dimension d ) 2 the peeling off of the first (d —1)-
dimensional layer is the slowest step and dominates the de-
cay. By induction, then, it follows that tq gives the decay
time in all higher integral dimensions.

Subsequent to the completion of this research we received
a report of work prior to publication of Villain, ' who has

obtained a result identical (aside from a factor of 2) to (2a)
independently and by arguments somewhat different from
ours. (He uses, e.g. , a continuum model rather than our
discrete one. ) He has also obtained a generalization of (2)
applicable for T's up to and above T,. In so doing he has
argued that, at least for dimensions d & 4, cooling through
T, indeed results in the nonequilibrium configurations we
have assumed. Bruinsma and Aeppli and Shapir2 have
also studied the equilibration of the RFIM, obtaining results
similar in spirit but different in detail from ours.

We are grateful to R. Bruinsma for stimulating our in-
terest in this problem and for many valuable comments and
suggestions, and to R. J. Birgeneau for helpful discussions
of the experiments and a critical reading of the manuscript.
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