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Excitations in the one-dimensional anisotropic classical Heisenberg chain
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The classical equations of motion for the Heisenberg chain with single-site anisotropy are shown to be
equivalent to a set of nonlinear wave equations. For a zero-field XF chain the excitations are linear. This
agrees with magnetic specific heat measurements on (CH3)4NMnC13 (TMMC).

Excitations in one-dimensional magnetic systems have at-
tracted a considerable amount of theoretical and experimen-
tal study. In particular, Mikeska' has shown that the classi-
cal equations of motion for the magnetic XY chain in a
transverse magnetic field can be mapped into the sine-
Gordon equation. Also, the antiferromagnetic chain
(CH3)4NMnC14 (TMMC) is an ideal XY magnet if the tem-
perature is below 10 K.2 Therefore TMMC should be a
physical system where nonlinear excitations can be experi-
mentally detected. Recently' the magnetic specific heat of
TMMC was analyzed in the temperature range between T~
and 10 K with the following two conclusions: First, the ex-
perimental specific heat of TMMC in a transverse field can
only be theoretically explained by nonlinear excitations.
Second, the experimental specific heat with no external field
can be satisfactorily explained by considering linear spin-
wave contributions. In this Brief Report we will present a
simple explanation of the zero-field specific heat results.
The excitations can be obtained by solving the classical
equations of motion for the magnetic chain with single-site
anisotropy. The equations of motion are equivalent to a
system of two wave equations, one of which is linear and
the other is nonlinear. For an XY chain the solutions to the
system of equations will be linear which agrees with the
zero-field specific heat results for TMMC.

The continuum approximate Hamiltonian is
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where A = A /a, J = Ja, A is the anisotropy constant, J is the
exchange constant, a is the lattice constant, and the z direc-
tion is along the chain. The Hamiltonian is transformed to
spherical polar coordinates,

S = (sin& cos@, sinH sin@, cos0),

and using u = cos8 and Q as canonically conjugate variables
we obtain two coupled partial differential equations from the
functional derivatives of the Hamiltonian density in Eq. (1):
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@ may be eliminated from Eq. (2b) by differentiation of this
equation with respect to time and differentiation of Eq. (2a)
with respect to z. The equations for the second-order time
derivatives of @ and u have terms the order of J and JA. It
will be assumed that the wavelength of excitations are very
large compared with the lattice constant. Then a will be
small, J is small, and 3 is large; therefore the terms the or-

A2
der of J will become very small as a becomes small and
these terms will be neglected in the equations of motion.
The terms the order of JA remain constant for any a.

The second-order partial differential equations for u and
$ are

u„—(c'(u) u, ),= 0,

y. —(c'(u) y, ), = 0,

(3a)

(3b)

where c'(u) = 2A J (1—u'). It must be emphasized that
Eqs. (3) are only valid for excitations much larger than the
lattice constant. Equation (3a) is particularly simple since it
only contains the dependent variable u. This equation is a
nonlinear wave equation and the general solution is4

u =f(z — (c) u)+rg( +z( c) u),r

where f and g are arbitrary functions. Assume that the
functions f and g are chosen such that Eq. (4) can be solved
for u as a function of z and t. Then, since u does not
depend on P, Eq. (3b) is linear. Now consider Eqs. (3a)
and (3b) for TMMC in the temperature range between TN

and 10 K. Since TMMC has XY character we will choose as
a particular solution of Eq. (3a) the trivial solution u =0.
Then c'(u) =2AJ, which is independent of u, and Eq. (3b)
becomes a linear wave equation with constant c and the cor-
responding excitations are plane waves. Nonlinear excita-
tions are seen to come from deviations from XY character
corresponding to nontrivial solutions of Eq. (3a).

In conclusion, if a magnetic chain has LY character we
have shown that the continuum approximate zero-field exci-
tations are linear and magnetic measurements such as
specific heat can be adequately explained with linear theory.
This is in agreement with experimental specific heat results
for TMMC.
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