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15 JANUARY 1984

R. Tao
Department of Physics, FM l5, -Uniuersity of Washington, Seattle, Washington N195

(Received 21 June 1983)

Our many-body theory for fractional quantized Hall effect is generalized to include v=q/p
filling. As the electrons of a two-dimensional system under a strong magnetic field are in a regular
array of the Landau orbitals, correlation energy is enhanced and energy gaps are formed. Such a
state can give rise to the Hall steps at fractional multiples of e /h. The motion equation of one-

particle Green function provides a systematic theory for calculating energy gaps.

I. INTRODUCTION

In our preceding paper, ' hereafter referred to as I, we
presented a many-body theory for fractional quantized
Hall effect. Since then, more Hall plateaus have been ob-
served ' at 7 5 5 5 3 and 3. However, no anomaly
has been found at filling factor —,

' .
Laughlin suggested an interesting wave function for

the ground state and from it concluded that 1/rn (m odd)
fillings are the fractional quantized steps. Halperin re-
cently suggested a modification of this wave function in
order to explain the Hall steps at v= —,

'
and —,

' which can-
not be explained by Laughlin. However, the proof that
those wave functions yield the lowest-energy state is ab-
sent. Furthermore, the lack of explicit particle-hole sym-
metry is a problem in these wave functions.

Yoshioka, Halperin, and Lee's numerical calculation of
the problem of a small number of electrons in a strong
magnetic field shows that the occupied Landau orbits are
regularly arranged in the ground state of the system. Our
many-body theory is a generalization: In an infinite two-
dimensional system, if the electrons in a partially-filled
Landau level can be arranged in a regular manner in the
space of Landau orbitals, the correlation energy is
enhanced and an energy gap is formed between the occu-
pied sites (holes) and unoccupied sites (particles). This
gap is essential to minimize the thermodynamic potential
and to form a Hall step' with a value ve /h. The width
of a Hall plateau and the low temperature necessary to ob-
serve the plateau are all determined by this gap. Our
many-body theory always has particle-hole symmetry.
For example, it gives a relation between the gaps at v= —,

'

and v= 3,

(ep —eh )2n 1

(e /e)v'2nn v 2 (e /e)&2nn

=const,

where n is the electron density of the sample and e is the
dielectric constant. Equation (1.1) explains Stormer s ex-
periment: the Hall plateau width of v= —,

' on a sample is
the same as the Hall plateau width of v= —,

'
on another

sample which has only half the electron density of the
first one

In this paper I extend our theory to include v=q/p fil-
lings. This extension is a generalization of the v= 1/p sit-
uation. It enables us to calculate the gaps and correlation
energy at v=q/p.

We start from a discussion about unperturbed states
and the motion equation for a one-particle Green's func-
tion to calculate the screened (shielded) Coulomb interac-
tion, and then establish self-consistent simultaneous equa-
tions for gaps. As Kadanoff and Baym discussed, the
self-energy and ground-state energy should be expanded in
terms of the screened rather than the bare Coulomb in-
teraction. This motion equation provides us with a sys-
tematic theory. From it we know that the ring approxi-
mation, which we used in I, is only the first-order expan-
sion in the screened potential. Some results from this ap-
proximation are not good enough: The gap at v= —,

'
was

the biggest one, a finding which is not consistent with the
experiment. This probleIn can be solved by calculating
higher-order expansion terms in the screened potential.
This reduces the gap at v= —,', and the gap at v= —,

' is then
the biggest. Since a gap still exists at v= —,', it would be
interesting to see if a weak Hall step is observed eventually
at v= —,, but the details of such a calculation are beyond
the scope of the present paper.

II. UNPERTURBED GROUND STATE

Let us still consider a standard two-dimensional
electron-gas model, with interacting electrons moving in a
uniform positive background to form an electrically neu-

tral system. Fractional Hall conductance has been ob-
served only in samples of very high mobility, so it is
natural to suppose that the electron-electron interaction is
more important than the impurity potential in lifting the
degeneracy of the Landau level in those samples. Thus
the properties of this two-dimensional electron-gas model
will provide an explanation of the fractional Hall steps.

We take the magnetic field along the z direction, use the

Landau gauge A=(0@x,O), and determine the system to
have area L, in the x-y plane. The first Landau-level
wave function periodic in the y direction may be written
in the form
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P (r)=m ' (ll. )

—2misy 1 X—I. 2

2
2m (2 1

(2.1)

where s is an integer between 0 and I. /2m. l, and l is the
magnetic length l=(cA/e8)'~ .

With the present experimental conditions (8=15 T,
@=13,m~=0.07m, ) e /el &fico, still holds. The expected
gaps are of the order O. le /el, so we may ignore the ad-
mixture of states above the first Landau level. In view of

I

the strong magnetic fields involved, we assume that all the
electron spins are parallel to the magnetic field; only one
spin state needs to be considered. There is no difficulty in
generalizing the discussion to include higher Landau lev-
els and the antiparallel spin state.

The Coulomb interaction between the electrons in the
lowest Landau level can be written in the form

1~c 2 g ~($1 $3~$2 $3)as&as2 s&~s3~s&+s&, s3+s& ~

where a ~, a are creation and annihilation operators, and

00 1 4m (si —si)
V(si $3p$2 $3 ) — dq exp ——

q +
[q2+4ir2($ $ )2/g2]1/2 2 I 2

2n.iql+ ($2 —si) (2.3)

Because of the particle-hole symmetry, we only consider
v& —,'. The behavior for v~ —,

' can be deduced from the
behavior for v& —,'.

Our many-body theory is not a standard perturbation
theory. Once the higher Landau levels are ignored, the
ground state %0 is independent of a when the P, is re-
placed by aA, (a&0); but without the Coulomb interac-
tion the entire Hilbert space is degenerate and any state
can be chosen as the ground state. Therefore, we cannot
in the ordinary way define the unperturbed state as
lim 0 4'0, which is unknown. ' The Coulomb interaction
is repulsive, so one may intuitively say that the ground
state of A „%0is highly correlated in such a way that one
electron avoids the others. This idea that electrons avoid
each other suggests that the unperturbed ground state, 40,
be the state in which the occupied electrons are arranged
in a regular manner and most uniformly distributed in the
space. Since (40

~
%0)&0,

exp( iHt )
~
40) /—( 40

~

exp( iHt )
~

40—)

tends to %0 as t +oo (1 i0+ ). ——
In I the unperturbed ground state for v= 1/p is taken as

the configuration in which the occupied electron states
(hole sites) are equally spaced with an interval p. This as-
sumption is justified by the fact that other configurations
would reduce the gap and yield a higher ground-state en-
ergy.

This commensurate state has a broken symmetry.
There are p equivalent states: the hole sites could be pj
(j =0, 1,2, . . .), or pj+1, or pj+2, . . . , or pj+p —1. Ow-
ing to different boundary conditions for those p states,
they cannot be mixed. As the system changes from one
state to the next one in the sequence, e/p charge is trans-
ported across the system. Therefore, there are also p
equivalent ground states of A, adiabatically transformed
from the above p unperturbed states and satisfying dif-
ferent boundary conditions.

The unperturbed state at v=q/p should also be the
state with period p and "most uniform distribution" of
electrons. This most uniform distribution can be arranged
in the following way. Since q and p have no common
divisor, it is always possible to find two integers t i, and t2,
satisfying

pt2+qt& = & .
Let

Oti ——0,
lt, =y, (mod p),
2ti ——y2 (mod p), (2.4)

(q —1)ti ——yv i (mod p) .

The configuration with hole sites (0, yi, y2, . . . , y~, ) is
the most uniform distribution. But it can be shown that
for an infinite system this most uniform distribution has
the same spectrum of particle and hole energies and the
same ground-state energy as the configuration of hole sites
(0,1,2, . . . , q —1).

Actually, let

$E(0, 1,2, . . . , p —1) (2.5)

(s could be a hole or a particle), and let

ts=z, (mod p), (2.6)

where t is an arbitrary integer which has no co~mon divi-

sor with p. We construct a new configuration in which z,
is also a hole (particle) if s is a hole (particle) in the origi-
nal configuration. The new set (zo,z i, . . . , zz i) is

(0,1,2, . . . ,p —1) itself, arranged in a different order.
Therefore, the new configuration has the same filling fac-
tor as the original one. The self-energy, the ground-state

energy, and all other physical quantities can be expressed
in Feynman diagrams. If we replace all quantum numbers

s in one Feynman diagram by ts to get a new one, the con-
servation law still holds for this new diagram. Thus, hole

(or particle) z, must have the same energy in the new con-
figuration as hole (or particle) s in the original configura-
tion. The ground-state energies are also the same for
both. Therefore, for example, at v= —', filling, the unper-

turbed state can be taken as shown in Fig. 1, where open
circles represent holes and solid circles represent particles.
Because of the symmetry, holes 0 and 1 have the same en-

ergy, particles 2 and 4 have the same energy, but particle 3
has a little higher energy. The spectrum is shown in Fig.
2, where ef is the Fermi energy and all particle and hole
energies are effective energies. Of two gaps, the smaller
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FIG. 1. Unperturbed ground state for v= —,. PIG. 3. Unperturbed ground state for v=
7 .

one, e&,
—eI„ is more important because it will decide the

temperature at which to observe the Hall step.
For v= —,

'
filling, the unperturbed state and the spec-

trum are shown in Figs. 3 and 4. The most ilnportant gap
is the smallest one, ez, eq —Ge.nerally, at v=q/p (q & 1),
the unperturbed ground state is as shown in Fig. 5; there

1 + [(q —1)/2] different hole energies and
1+ [(p —q —1)/2] different particle energies where [x] is
the integer not exceeding but closest to x. The most im-
portant gap is e~ —eq, (see Fig. 6).

In order to verify this unpertubed ground state, I have
carried out some numerical calculations which confirm
that a different configuration would yield smaller gags
and higher ground-state energy. For example, at v= —,,
the configuration with hole sites (0, 1,3) is not equivalent
to the configuration (0,1,2) but the (0,1,3) configuration
has a h1gher ground-state energy than fhe (0,1,2)

configur-

ationn. The smallest gap in the first configuration is also
smaller than the latter one.

Figures 7 and 8 tell us that the configuration (0,1,3)
makes all holes and particles have different energies. The
unperturbed state we suggested Inakes the IMnilnuHl
breaking of the degeneracy of particle energies and the de-
generacy of hole energies.

where

(3.2)

where (I)=(r„r&).
The motion equation for one-particle Green function

gives the screened Coulomb interaction, '" W(1,2) as fol-
lows:

W'( l, 2) =U (1,2)+ f 8'(1,3)P(3,4)U (4,2)d(3)d(4),

(3.5)

wher e

P(1,2)= i f 6(2,3—)6(4,2+)I (3,4;1)d(3)d(4) (3.6)

The potential w( r, t) is to be put equal to zero in the final
formulas

We define the one-particle Green function as

I.et us introduce a, small d1sturbance !D(r,i) into the
Hamiltonian I (1,2„3)=5(1,2)5(1,3)+

5V(3)

The self-energy is

M (1,2) =i f W(1+,3)6 (1,4)I (4,2;3)d (3)d (4),

wheIe

(3.7)

(3.8)

Wp

~a
ae ~ ~ ~ &f

FIG. 2. Spectrum of effective particle and hole energies for FIG. 4. Spectrum of effective particle and hole energies for
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FIG. 5. Unperturbed ground state for v=q/p.

(1+)=(r i, ti+b, ),

2

v(1,2)= 5(ti —t2),

V(1)=w(1) i f—v(1,3)G(3,3+)d(3) .

The functional derivatives of G and W are given by

= f G(1,4)G(5, 2)I (4, 5;3)d(4)d(5),
5V(3)

(3.9)

(3.10)

(3.1 1)

(3.12)

M''= — 8'1+3G 14G 43G 32

X W(4+, 2)d (3)d (4)d (5)d (6), (3.17)

and

W(1,2)= f W'(ri, r to)e
2m

(3.18)

~...,...,(~)= f W(r&, r2, tv)P,*,(ri)P,*,(r2)

and so on.
In this paper, we will still limit our calculation to the

ring approximation, i.e., Eqs. (3.14) and (3.15). Let

= f W(1,4)W(5, 2) ' d(4)d(5) .
5V(3) ' ' 5V(3)

(3.13)

X P,,(r2)P, ,(r, )dr, dr-,

=W. .. ( )5. (3.19)

Equations (3.5)—(3.13) provide a systematic theory: a
selection law. A series approximation for W' and M can
be generated.

The first approximation for W(1,2) and M(1,2) is

Let us use

W"'(1,2) =u (1,2) —i W(1,3)G (3,4)G (4, 3)u (4,2), (3.14)

M"'(1,2) =iG(1,2) W(1+,2), (3.15)
to represent W. ..,.. (cg) and

which is just the ring approximation. The next contribu-
tion to W(1,2) and M(1,2) is

W' '(1,2)= f W(1,3)G (4,3)G (6,4)G (3,5)G (6,5)

X W(4, 5)V(6,2)d(3)d(4), (3.16)

the bare interaction. Equation (3.14) is

Pq+)

Pq
~ & ~ ~ ~ +f

0

FIG. 6. Spectrum of effective particle and hole energies at
v=q/p.

n
0 I 2 3 4 5 6 7

E'h 6p0 l 0 5 4 4

FIG. 7. Unperturbed ground state for v= 7 .



(3.20)

W,'...,,(Cd)=&(sl —sI,s2 —sI)—ig f V(sl sI—,s2 sI—)8;..., (Cd)
I I dCd1

+1 5S HI+CO —ES +16~ 277
(3.21)

=G, (Cd), (3.22)

5 for particle,

—5 for hole .

Define a function f(m, cd),

f . =if(m, Cd) .
g=0 Cdl Es+l5s Cd+lCd Es+m +l5s+m ~77

(3.23)

It is a periodic function,

f(p+m, cd)=f (m, cd) .

At flllllIlg v=g /p, w1tl1 unperturhed state as 111 F1g. 5, we llave

f(0,cd}=0,

f(1,Cd}=
Cd —(E —El, )+i5 Cd+(E —El, ) —i5 '

&q O Pq O

f(2,Cd ) = +
Cd —(E —Eg )+l5 Cd+(E Eg ) —l5 Cd —(E ——Eg )+i5 Cd+(E —Eq ) l5-

&q+] O &q+t O &q &q

From Eq. (2.3) and Eq. (3.21), we have

$Vs g g (Cd): f dk

exp — [k +4Ir (sl —s3) /L ]+i l k(s2 —sI)
l 2 2 . 2m 2

2 I.
[k +4&(sl —sI) /L ]'~

e2 2
exp ——[k +4Ir (sl —sI) /L ]

E/ p [k +4Ir (sl —sI) /L ]'i f(sl sI~)—
Equation (3.15) gives the self-energy

)k 4J-4) I

Q I, tg) l

That is,



29 FRACTIONAL QUANTIZATION OF HALL CONDUCTANCE. II

1 d C01
i W„, (CO1)

N —C01 —E, +E5,, 2'

2

1/2 —1 2 —2 f(m, pii)eq m . ~ ' e ~e ~ p ep+i gelp 2 0elp o p e2 I
l — — m, 031

elp p

dcoi/2s
X

031 es+»&+i~s+»»
(3.26)

The first term is just the exchange energy, which is the same for all particles and holes.
Substituting s=O,pi=ed, , or s=l,co=ed, , . . . , or s=q,co=eP, . . . , into (3.26), we have the hole energies ei, ,0 1 p p ' ' ' s 0

ei, , . . . , and particle energies eP, . . . . All of these energies are expressed in functions of gaps. Thus we have self-
1 p

consistent simultaneous equations to calculate these gaps and energies. For example, for v= —,, we have

~0= —2&tr/2 —f1 (~20 ~20)+f1 (~20 o)

ao e P 1 1
dp f2(p ~20 ~30) +

p ~30+M(p ~20 ~30) ~20+M(p ~20 ~30)

1 1
+f3(p ~20 ~30) +

3p+N( P& 520&530) N( p, 620& 530)+520

~2 = —2&~/2 —fi ( ~20& ~30 ~20) +f1(~20& ~20)

co e P 1 1
dP f2(P ~20 ~30)

P M ( P&~20& ~30) ( P& ~20& ~30)+~20

+f3(p&~20& 30)
1

P~ 20~ 30

1

N( P ~20 ~30)+~20

e-p' f2(p ~20 ~30) f3 ( P ~20 ~30)
k3 ——2 K/2 —2f1(520& ~20 ~30)+2 dp

P 20+ P& 20» 30 30+N P& 20& 30

where

b,p es, /(e /5el), ——

52——ep, /(e /5el),

b,3——ep /(e /5el),

2
00 ae

a p+2ae P ~ +b(a p +2ape P ~ )'~
(3.27)

e
—P'n

M(p, a,b)= 'a +b +2
2 P

p2 /2
(a+b)+ a'+b'+2

'2

(a+b) 4[a b +2e P —ab(a+b)/p]
1/2 ' 1/2

e-""
N(p, a, b)= 'a +b +2

'2

ab(a+b)]
p2/2

(a+b) a+b )+2— (a+b) 4[a b +2— 1/2 1/2

f b
b I [M( p, a, b)] a I +a [[M(p, a,b—)] —b I

M(p, a, b)t[M(p, a, b)] [N(p, a, b)] I—
b [a —[M( p, a, b )] [ +b I a —[N( p, a, b )]2I

N( p, a,b) t [M( p, a, b)] [N( p, a, b)] I— (3.28)
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1

3
2
3

2
5

TABLE I. Energy gap.
3
5

1

5
4
5

1

7
2
7

P

e foal
0.183 0.183 0.0938 0.0938 0.075 33 0.075 33 0.034 18 0.0474

Ep —6jt

e'V'2m n /e-
0.317 0.225 0.1483 0.121 0.168 0.084 0.0904 0.0883

'Only the smallest gap is listed.

From those equations we have

e2
e —eI,

——0.0938
el

'

2

=0.1023
&3 O

(3.29)

The expressions of energies for v= —,
' are in the Appendix.

The numerical results are

e
ep —eg ——0.047 48

o el
'

2

ep —ep ——0.051 10—
el ' (3.30)

e
e —ep ——0.051 11

P4 p el

IV. DISCUSSION

So far, all numerical results in Table I are from the ring
approximation. Those results are expected to be improved
by calculating higher-order expansion in screened poten-
tials, and more calculations should be carried out for other
filling factors.

In our theory, holes and particles are symmetric.
Therefore, v= 1 —q/p filling can be achieved from q/ip
filling by replacing holes with particles and vice versa.
Thus, with the same density of electrons, we have a rela-
tion between two corresponding gaps at v= 1 —q/p and
v=q/p:

temperature dependence of our model, but the analogy
with superconductivity might suggest that the smallest en-

ergy gap (ep —ep, ), at v=q/p and the critical temperature
at which the commensurate state becomes favorable are
related as

(ep —ei, ),
C

k~co
(4.3)

rl=fi(rl/v, rl/v) (1—2v)f i(r—j/v, 0),
decides the gap at v= 1/p:

ep —ei, ——iI(e /el) .

(4.4)

(4.5)

Taking v=q/p [q/p is not 1/p or (p —1)/p] in Eq.
(4.4), we calculate qI from it, and define the value calculat-
ed from (4.5) as (ep —ei, )p. Define the ratio between

(ep —eg )p and the smallest gap (ep —ep, ), at a configuration
of v=q ip filling as A, ,

where kiq is Boltzmann's constant and cp is a numerical
constant. In superconductivity, 3.5 (co & 5. In this case,
cp might vary from those numbers. But we cannot rule
out another possibility that the quantum Hall system does
not undergo a phase transition; there is no critical tern-
perature T„' upon heating the fractional quantized Hall
effect disappears continuously.

As we mentioned before, the configuration with hole
sites (0, 1,2, . . . , q —1) at v=q/p has the minimum break-
ing of the degeneracy of particle energies and the degen-
eracy of hole energies. This property is very important.
From I, with the ring approximation, the solution of the
equation,

e /el i qrp
2 e f'el'

qpp
2

(4.1)
(ep —eh )p

=A( j),
(ep —ei, ),

(4.6)

(ep —&a)i-qrp = q

P —9'
«p —&i )qrp . (4.2)

As we mentioned in I, until a more detailed theory is
developed we cannot make strong statements about the

where j is the total number of different hole energies and
particle energies in that configuration. It turns out that
k(j) is a monotonically increasing function. Therefore, the
more breaking of the degeneracy of particle energies and
the degeneracy of hole energies, the smaller will be the
gap. Our ground state yields a bigger gap and lower
ground-state energy than any other nonequivalent config-
uration of hole sites.

0 1 2 3 4 S 6
h +h 6 6h E'

0 I ~2 5 ~4 5 6

FIG. 8. Distribution of (0,1,3) makes all particle and hole en-
ergies different.
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APPENDIX

At v= —,, the particle and hole energies are given by

~0 2+Ir~2+f1(~zoio) f1(~zot~zo)

P2 —1 —1

643

—1 —1
+f3(p ~20 ~30) ++(P ~20 ~30)+~20 +(P ~20 ~30)+~30

1 1
+fz(p ~30 ~40) +~(p ~30 ~40)+~30 M(P ~30 ~40)+~40

1 1
+f3(P ~30 ~40) ++(P ~30 ~40)+~30 +(P ~30 ~40)+~40

(Al)

~2 = 2 'Irt 2 fI (~zot ~30 ~20)+f1 (~zot ~20)
2

+ J"dp' —1 1
fz(p ~20 ~30) +

M(P ~20 ~30)+~40 ~20 M(p ~20 ~30)+~20

—1 —1
fz(p ~30—~40) +~(P ~30 ~40)+~30 ~20 ~(P ~30 ~40)

—1 1
f3( p ~30 ~—40) +

N(P ~30 ~40)+~30 540 N(p b,30 ~40)

—1 1
+f3(p ~20 ~30) +

+(P ~20 ~30)+~40 ~20 +(P 40 ~30)+~20

(A2)

~3 +'Ir~2 fI ( ~zot ~40 ~30) fI ( ~zot ~20 ~30)
2

ao e P 1+ "' f"'"'"'
(p. .., ,.)+ (p. .., ,.)

—1 1

—1 1
+fz(P ~30 ~40) +~(p ~30 ~40) —~30+~20 ~(p ~30 ~40)+~30

—1 1+ f3( p ~30 ~40) +
&(P ~30 ~40) —~30+~40 &(P ~30 ~40)+~30

1f2 ( tp~ tz~030)—h4 ———2&m /2 —2f(520, hp() —b,40)

+2 f "dp' 1
f3(pt~zot~30) ~( ~ ~ )

1 1
+fz(pt~30t~40) ~( ~ ~ ) ~ +f3(pt~30t~40) ~( g ~ ) ~ )

(A4)

where 6;=eI, l(e l7eA or ep.l(e l7eA and b„z ——5;—EJ, fI(a,b), fz(p, a, b), f3(p,a, b), M(p, a,b), and N(p, a, b) are in

Eqs. (3.27) and (3.28).
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