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Spin-localized model for the Lifshitz point in Mnp
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We present a theoretical interpretation for the occurrence of a Lifshitz point (LP) in the field-

temperature {8T}pha-se diagram of MnP. On the basis of a simple spin-localized model, with the

assumption that the exchange constants depend on H and T, we calculate the thermodynamic prop-

erties of MnP asymptotically close to the LP. In particular, we determine asymptotic expressions

for the transition lines which meet tangentially at the LP. The predictions of the model concerning

the behavior of the uniform transverse and longitudinal susceptibilities, and some other thermo-

dynamic quantities, are in agreement with the reported experimental data. Finally, a
renormalizaton-group analysis of the model shows that near the LP the Hamiltonian assumes essen-

tially the form of the uniaxial (m=1), one component (n = 1), Landau-Ginzburg-Wilson Hamiltoni-

an suitable to describe a LP in magnetic systems with uniaxial symmetry. All of these results are in

agreement with the suggestion that MnP has a triple point, where paramagnetic, ferromagnetic, and

helicoidal (fan) phases meet, with the characteristic properties of a uniaxial one-component LP.

I. INTRODUCTION

The novel multicritical Lifshitz point (LP) (Ref. 1),
which divides the phase diagram into modulated, disor-
dered, and uniformly ordered phases, has been searched
for in a variety of real physical systems, including mag-
netic compounds and alloys, ' liquid crystals, charge-
transfer salts, and systems exhibiting structural phase
transitions. The first successful attempt to find this type
of multicritical behavior has been reported by Becerra
et al. , who give experimental evidence that the triple
point of MnP, where paramagnetic, ferromagnetic, and
helicoidal (fan) phases meet, shows the characteristic
properties of a LP. In Fig. 1 we sketch the field-
temperature (H-P phase diagram of MnP in the neighbor-
hood of the triple point. The magnetic field is applied
along the b:—y direction (intermediate axis), and the mag-
netic moments lay in the b cplane (a:—z-is an extremely
hard axis). In the ferromagnetic phase, in zero field, the
moments point parallel to the easy axis c—:x. In the fan
phase the moments rotate (but do not undergo a full rota-
tion as in a screw phase) in the b-c plane, with a propaga-
tion vector along the a axis. The more relevant experi-
mental results for the present work are the following. (i)
the crossover exponent, /=0. 634+0.03, determined from
the shape of the phase boundaries which meet tangentially
at the triple point (see Fig. 1). This value of P, as well as
the shape of the phase boundaries, which were determined
by measurements of the transverse susceptibility, X", are
expected on theoretical grounds for a LP characterized
by the lattice dimensionality d =3, a one-component order

parameter, n = 1, and a unique direction of the wave vec-
tor instability, m =1. Furthermore, 7 is continuous and
displays a finite cusp across the para-fan transition line

Hi (T). As we move along Hi (T), X" diverges as T~ TL,
in agreement with the expected behavior at a LP. On the
other hand, X" is discontinuous across the ferro-fan first-
order transition line Hi(T). (ii) The longitudinal suscepti-
bility X» is constant throughout the ferromagnetic phase,
and shows a discontinuous behavior across the transition
lines. (iii) The wave vector q which characterizes the or-
dering in the fan phase, determined from neutron scatter-
ing experiments, ' goes to zero continuously as the triple
point is approached. The exponent Pk, with values be-
tween 0.44 and 0.4, obtained from the temperature depen-
dence of q along the critical line is in reasonable agree-
ment with the theoretical results. (iv) Finally, neutron
spin-wave scattering experiments" suggest a competition
between ferromagnetic and antiferromagnetic exchange in-
teractions along the a direction. The estimated ratio of
the competing exchange interactions is close to the value

as in the case of the LP in the axial next-nearest-

neighbor Ising (ANNNI) model. '

Despite the fact that the LP in MnP seems to belong to
the same universality class of some simple model systems
such as the ANNNI model, it nevertheless presents some
remarkable particularities. For instance, since Lifshitz
points are usually associated with T-p phase diagrams,
where T is temperature and p is related to pressure or ma-
terial composition, it is not straightforward to conclude
that a Lifshitz point should be found in H-T phase dia-
grams. In this respect we mention that the ANNNI
model does not exhibit a Lifshitz point in the H-T phase
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FIG. 1. (a) Schematic representation of the field-temperature
phase diagram of MnP in the neighborhood of the "triple
point. " The phase boundaries meet tangentially at (HL, , TI. ).
Hq(T) and Ho(T) are lines of critical points. Hl(T) is a line of
first-order transitions. The magnetic field is applied along the
b—=y direction, and the moments are on the b-c plane. The
propagati. on vector in the fan phase is along the a —=z direction.
(b) Sketch of the average magnetization per spin in successive
layers, in the ferromagnetic, paramagnetic, and fan phases. In
the fan phase, it should be noticed that the x component of the
magnetization exhibits an oscillating behavior along the z direc-
tion.

diagram. ' It is also noteworthy that the modulated phase
in MnP is a fan phase, which has never been considered in
the previous theoretical studies of Lifshitz points. These
facts then suggest that a proper understanding of the mul-
ticritical behavior of MnP near the triple point requires
the consideration of a particular Hamiltonian which
should be suitable for this magnetic crystal.

In this work we report a possible interpretation for the
experimental results of Becerra et al. on the basis of a lo-
calized spin model for the thermodynamic behavior of
MnP. Although some properties of this compound are
better accounted for by a band model of itinerant spins, '

we remark that a localized spin model has been successful-
ly applied to explain many magnetic properties of Mnp
(Ref. 15). A preliminary report based on the mean-field
(MF) approximation has already been published. ' The
present paper contains a detailed account of these results„
as well as a renormalization-group (RG) analysis which
shows that the Hamiltonian used to describe MnP belongs

to the universality class of the uniaxial (m =I) one-
component (n = I) Landau-Ginzburg-Wilson Hamiltonian
as defined and studied by Hornreich et a/. The statistic
ITlcchanlcal calculations 1n thc MF approxlmat1on~ togeth-
er with a RG analysis, give results in qualitative agree-
ment with the above-mentioned experimental features, and
do support the suggestion concerning the nature of the tri-
ple point.

The outline of the present paper is as follows. In Sec. II
we introduce the model system and obtain the relevant ex-
pressions in the MF approximation. In Sec. III we use
these results to examine the conditions under which there
is the occurrence of a LP in this system. In particular,
asymptotic expressions for the transition lines are ob-
tained. The predictions of the model concerning the uni-
form transverse and longitudinal susceptibilities are dis-
cussed 1n Scc. IV. Thcsc results aI'e thcIl compared with
typical experimental data for MnP. In Sec. V we present
a RG analysis of the model Hamiltonian.

Hiyamizu and Nagamiya' have interpreted the mag-
netization process in MnP on the basis of a spin-localized
model which takes into account the competing exchange
interactions along the a axis and the spin anisotropies.
Since our aim is directed towards the understanding of the
phenomenon rather than to the quantitative analysis of ex-
perimental results, we assume a simple model Hamiltoni-
an, and disregard those features of the system which are
not essential to the present work. More specifically, we
suppress single-ion anisotropies and write the X-F aniso-
tI'oplc Hamlltonlan,

where ~:—(~,m, +) is a lattice vector of a simple cubic lat-
tice with N sites in each direction, and S~:—(g +,g» ) are

spin- —, operators. The exchange parameters are
given by

& (&—&')=J(E—7')+D(E —7')5„„, (2.2)

where

where a=x,y, and the plus (minus) sign holds for a=x
(y). The interactions should be ferromagnetic in the
planes (n =n') and competitive along the z direction.

We remark that the choice of spin- —,
' operators is deli-

berate, since the localized spin moments of MnP are not
well defined and also because the magnitude of the spin is
believed to be inessential to the critical behavior. We also
obscrvc tllat a 811111lai' X-F Hainiltoillail llad all'cady bcc11
subjected to a theoretical investigation by Kitano and
Nagamiya' two decades ago, but of course they had not
focused their attention on the problem of the LP.

The MF expression for the Gibbs free energy
G (T,H, N) of this system may be derived via the inequali-
ty

(2.3)
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Go = —kT ln[Tr exp( —PA 0)], (2.4)

P= 1/kT, A o is a trial Hamiltonian, the trace is over spin
configurations, and the average (A —A 0)0 is taken with
respect to A 0. To obtain the MF approximation, we con-
sider the free trial Hamiltonian GMF ( T,H, N) = min 4( T,H, N; I NI„]),

(M„J

where

(2.6)

where r1„ is a variational parameter associated with the
nth layer. It then follows the MF Gibbs free energy

N 4(T,H, N; IM„ I ) = —kT ln2+ g f tanh 'lM dp — g J(n —n')M„M„
Pl S,Pf

——g [(M„")'—(M~)'] ——g M& . (2.7)

In this last equation the effective isotropic exchange con-
stants are given by

J(n n')=—N g g J(1—1',m m', n—n'), —
I, m I', m'

while the effective anisotropic exchange constant is

2D=N 2g g D(1 1',m —m—',0) .

(2.8)

(2.9)

(2.10)

The average layer magnetlzatlon M» =(M», M» ) ls given
by the minimization conditions

The transition from the paramagnetic phase to the or-
dered phases, either ferromagnetic or fan, is characterized
by the onset of a nonzero x component of the magnetiza-
tion. It is then of interest to calculate the wave-vector-
dependent transverse susceptibility X"(q) by considering a
perturbation field H„"=5h„" in Eq. (2.12). Using Eqs.
(2.10)—(2.12) we obtain

5M„" 1+M„
,'kT —ln = g J(n n')5M„"—

n ™n

(3.3)

where

M„=[(M„")'+gg)']'",
«1. =[(n".)'+(V".)']'"
M„=tanhPq„,

(2.11)

vP» = g J(n n')M„—+2DM„+H„, (2.12)

III. TRANSITION LINES

where a=x,y, the plus (minus) sign holds for o, =x (y),
and H„=Q, H„"=H.

—,
' kT ln = g J(n n')M„~—2DM~+H —.

+2D5M„"+5h„" . (3.5)

(3.4)

As the susceptibility is calculated in the hmit 5h„—+0,
which implies M„—+M~=M, this system of equations
may be written in the form

5M„"
[[J(0)—2D]M+HI = g J(n —n')5M„"

M

In this section we will examine, within the MF approxi-
mation, the shape of the transition lines which are expect-
ed to meet tangentially at the jLP.

By defining the Fourier transforms

(3.6)

A. Transverse paramagnetic susceptibility
and seconci-order transition lines

The paramagnetic phase is specified by a uniform mag-
netization, M„=(O,M), along the b(y) axis. From Eqs.
(2.8)—(2.11),M satisfies the equation

M =tanhP[[J(0) —2D]M +H I,
where

J(q)= g J(n)e'«" .

5h"= g e '«"5h"
IP

(3.7)

the wave-vector-dependent paramagnetic transverse sus-
ceptibility X&(q) =5m«/5h«, is found to be given by

Xz(q) = [J(0) J(q) 4D +M "H—]— (3.8)

The transition to the ordered phases is characterized by
the divergence of X~(q), namely, by the condition

J(0)—4D+M 'H = max J(q) =J(q, ) . (3.9)

From this last equation, and since J(q) is independent of
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a=ar(T —TI )+aIr(H HI, ), —

J(0)=Jo+Joz ( T TI )+J—o~(H HI. ) .—
(3.11)

(3.12)

We will further assume that p is a constant positive pa-
rameter. These assumptions are sufficient for the calcula-
tions of the thermodynamic properties of MnP asymptoti-
cally close to the LP.

If a ~ 0, the maximum of J(q) occurs for q =0, and the
system undergoes a second-order para-ferromagnetic tran-
sition. The transition line is determined by Eqs. (3.1) and
(3.9), for q, =0, and is given by

H
h

H [J(0)+2D]
4D 4kTD

(3.13)

By using Eq. (3.12) it is possible to show that the para-
ferro transition line, Ho(T), has the asymptotic form

Ho( T)=HI. —A (b T ) B(b T ), — (3.14)

where b, T =T TI, and A a—nd B are given in Appendix
A. On the other hand, if a&0, the maximum of J(q)
occurs for

either T or H, it follows that only one ordered phase, fer-
romagnetic (q, =0) or fan (q, +0), should be present in
the H T-phase diagram near the border of the paramag-
netic phase. However, it is an experimental fact that both
phases are present. Therefore, in the framework of the
MF approxiIIlation, there 18 Qo altcITlativc but to iIl1posc
the ad hoc dependence of J(q) on T or H. Although
many experiments do support this kind of dependence, the
underlying mechanism which is responsible for this effect
18 Qot as yct coIIlplctcly UQdcx'stood. IQ any cvcnt, Eq.
(2.7) should be regarded as an effective free energy in
which these effects have already been taken into account.
J(q) may thus be expanded about q =0 in the form

J(q) =J(0)—aq —, Pq—
where, due to the occurrence of the Lifshitz point
(TL, ,HI„) for a =0, we write in leading order

[J(q, )+2D]H=tanh
J(q, ) J(0—)+4D [J(q, ) —J(0)+4D]kT

(3.16)

Near the LP the asymptotic form of Hz (T), which may be
obtained using Eq. (3.11), with J(q, )=J(0)+a /2p, is
g1UCQ by

H, (T)=H {T)+C(AT)z, (3.17)

where C is defined in Appendix A.
From Eq. (3.17), it is apparent that both critical lines

meet tangentially at the Lifshitz point, and that the MF
scaling crossover exponent is P= —,. These lines are
drawn schematically in Fig 1. W. e may also conclude,
from Eqs. (3.15) and (3.17), that on the para-fan transition
line the wave vector q, behaves asymptotically as

q, ~ ( T TL ) ~ (H— Hr ) . —
This result, which implies the MF value —,

' for the ex-
ponent pk, is in fairly close agreement with the neutron-
diffraction data. ' Also, RG calculations" predict
pk =

z to ordei' e .

S. Landau expansion and first-order
ferro-fan transition line

In order to determine the ferro-fan transition line we
have to compare the Gibbs free energy in both phases.
This will be done by considering a Landau expansion for
the free energy. Defining M„={5M„",M+5M„"), with M
given by (3.1), the MF Gibbs functional (2.7) may be ex-
panded in the form

q, =(—a/p)'~',

that is, the state of equilibrium in the ordered phase is
spatially nonuniform and there is a second-order para-fan
transition. From Eqs. (3.1) and (3.9) we obtain, for
q, =(—a/p)'~, the transition line

'[C (T,H, X; I 5-M„",5M» j ) G, ]= — g—J(n n')(5M—„"5M„"+5M»5M». )
7

+ g[ (Azo D)5M +(A—oz+D)5M~» +Azi5M 5M»+Aoz5M»

+A 5M„"+A 5M»+A„5M„"5M»+

where Go, the free energy in the paramagnetic phase, and
the coefficients A,z are given in Appendix B.

In the ferromagnetic phase M„ is uniform, that is,
5M„"—:5M", 5M„=5M". By minimizing 4 with respect
to 5M~, we get iQ leading order

N (4'f' —Go) =A (0)5M" + A4O — 5M"
4B (0)

(3.21)

~215M"=—
2[Aoz+D ——,

' J(0)]
(3.20) A (q) =Azo D ——,

' J(q) =—[2X»(q)]

We thus obtain the Gibbs functional up to fourth order in
6M", B(q) =Aoz+D ——,

' J(q) . (3.23)
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This form of the free energy will be useful to determine
the transverse uniform susceptibility in the ferro phase, g$
in the next section. The minimization of 4 gives the
value of 5M" (in the ferromagnetic phase) near the para-
ferro transition line,

. 1/2
5M"= e ' "5m"5 (3.26)

In the fan phase, M„ is spatially nonuniform (modulat-
ed), and the derivation of a Landau expansion in terms of
the order parameter is more complex. It is convenient to
introduce the Fourier transform

A2I

48 (0)

~+ ~H H, (—T) ~'".

This last expression confirms the usual mean-field critical
exponent P= —,'. The leading asymptotic expression for
the free energy in the ferromagnetic phase is given by

By minimizing the free energy (3.19) with respect to 5M„
we obtain

~2~
5m'»= — g 5rnq'5mq" b(q +q —q)+

(3.27)

where 5m~ was defined by Eq. (3.6) and the 6 function,
given by

N 3[G~iF(T,H, N) —Go] =— A 0
(3.25)

A2)

8 (0)

h(q) = g 5s 2„„, (3.28)

expresses the wave-vector conservation modulo 2~. We
can thus write the expansion of '4& ln the form

N [4(T,H, ¹ I5rn~ I ) —Go]= g A (q~)5rns, 5m~, h(q~+q2)

A2) g 5mq, 5m', b,(qt+q2+q)

+240 g 5m~ 5m~ 5m~ 5m~ A(q&+q2+q3+q&)+
i)929394

As in the sinusoidal (Ising) case, ' let us define

5mo ——Mo, 25m„"~ =M„"e'~ (n)1),
and search for a solution in the form

5M„"=MD+M icos(q, +P)+M2cos2(q, +P)
+M3cos3(q, +P)+

(3.30)

(3.31)

These results imply that the leading asymptotic expression
of N is determined by the main harmonic component of
5M„", that is,

N '[C'"'(T,H, N-;M", ) G,]—
= —,'A(q, )(Mf) + 6A4O—8 0

M„"=0 (for neven),

M„"ec (Mf )" (for n odd) .
(3.32)

where MO, M &,Mz, . . . , are real numbers and P is an arbi-
trary phase. Since umklapp terms near the Lp do not
contribute in lower orders (see the discussion in Appendix
A of Ref. 13), we minimize the free energy with respect to
M„"and obtain

2

28(2q, )

By minimizing N' ' with respect to M ~, we obtain
1 j2—A (q, )

I
8 (0) 28 (2q, )

(3.35)

5M»= M»0+M»icos(q, +P)+M»2cos[2(q, +P)]
+M»cos[3(q, +y)]+ (3.33)

On the other hand, using a Fourier expansion for 5M»,
~+ ~H —H, (T) ~'". (3.36)

Thus the leading asymptotic expression for the free energy
in the fan (modulated) phase is given by

N [G~p(T,H, N) —Go]

M»=0 (for nodd),

M»0 ~ (M ~ ), M~» ~ (Mf )" ( for n even, n )2) .
(3.34)

A (q, )

1 1

8 (0) 28 (2q, )

(3.37)
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Now, by comparing the free energies (3.25) and (3.37),
and using Eqs. (3.10)—(3.12), we obtain the following
asymptotic expression for the ferro-fan transition line
close to the LP:

Hi(T)=HO(T) —C(2+v 6)ET (3.38)

Therefore, in agreement with the experimental data, the
three transition lines meet tangentially at the LP. It is in-
teresting to observe that the ratio [Ho(T) —Hi(T))/
[Hi, (T) Ho(—T)] =v 6+2, which was first noticed by
Michelson in a similar but different context, still holds in
the present model. The experimental result for this ratio,
however, falls about 30% short of the theoretical predic-
tion. We tend to attribute this discrepancy to the well-
known limitations of the MF approximation.

IV. UNIFORM TRANSVERSE AND LONGITUDINAL
SUSCEPTIBILITIES

The phase diagram of MnP was determined from mag-
netostriction and differential susceptibility measurements,
as discussed in detail by Shapira et al. Therefore, it is of
interest to examine the predictions of the model concern-
ing the behavior of the uniforin transverse and longitudi-
nal susceptibilities, particularly in the vicinity of the LP.
The derivations will be based on the MF results presented
in the previous two sections.

M
H —4DM ' (4.1)

where M is determined by Eq. (3.1). At constant T, and
near the para-ferro transition line, we can write the
asymptotic expression

where

Cp

H H, (T) '— (4.2)

BM
dH THO( T)

(4.3)

Therefore, X» obeys the usual Curie-Weiss law across the
Ho(T) transition line with an associated MF exponent

7=1.
On the other hand, by considering a perturbation field

5h", which implies an additional term ( —5h "5M") in Eq.
(3.21), we can find, after minimization, the uniform trans-
verse susceptibility in the ferromagnet phase, XF
=5M"/5h",

—M
2(H 4aM)— (4.4)

Near the para-ferro transition line we have the asymptotic
form

A. Uniform transverse susceptibility

In the paramagnetic phase the uniform transverse sus-
ceptibility, X»(q =0)—=X», is obtained from Eq. (3.8) for
q=0,

Cp

2[H (T)—H]
(4.5)

(4.6)

where X»(q) is given by Eq. (3.8) and M is defined in Ap-
pendix C. In the vicinity of the Lifshitz point, we can
write

Cp

[H —Ho(T)] —C'[H —Hi (T)]
(4.7)

where C' is given in Appendix C. From the results de-
rived above we conclude that X" is continuous and shows a
finite cusp across the para-fan transition line Hi (T). As
we move along the para-fan line, X" diverges as

~

hT
~

for T~TI . On the other hand, X" is discontinuous across
the ferro-fan first-order transition line Hi(T). All these
features are in qualitative agreement with the experimen-
tal measurements.

In comparing the theoretical predictions for X" with the
experimental data, we have to consider the demagnetiza-
tion effects, particularly in the transition on the para-ferro
boundary. The transition on this boundary is associated
with a divergence in the intrinsic susceptibility [Eqs. (4.2)
and (4.5)]. However, because of the demagnetization ef-
fects, the measured average susceptibility on this boun-
dary has the upper limit X~, =l/N, where N is the
demagnetization factor of the ellipsoidal sample. In the
ferro phase, the ferromagnetic domains keep X, with the
value I/¹ The main point to observe is that in our
theoretical discussion the field H is the internal field
H =Ho NM, where Ho—is the external field applied
along one of the principal axes of the ellipsoid (see
Shapira et al. for details). In Figs. 2 and 3 we sketch the
predicted MF behavior for X" as a function of the internal
field H, and compare it with sketches of typical data, for
both T& Tl and T& TI, as a function of the applied field
Ho. In analogy to the case of simple ferromagnets, the
discrepancies are explained by the role of the demagneti-
zation corrections (see Shapira et al. for a detailed dis-
cussion of this point).

B. Uniform longitudinal susceptibility

In the paramagnetic phase M„=O and M~~=M. Thus
the parallel susceptibility X»—BM»/BH» may be evaluated
from (3.1) and (3.12),

y
l +~pH

Xp
k T (1 M) '+ 2D —J(0)—

On the other hand, in the ferromagnetic phase we have,

In order to calculate 7" in the fan phase, we have to
consider the uniform component Mo of 5M„", which is
coupled to the uniform perturbation field 5h". By adding

—'(X") 'M" +8 Mo Mi —5h "Mo

to the free-energy functional (3.35), minimizing it with
respect to Mo, and using (3.36), we can derive the uniform
transverse susceptibility in the fan phase,
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(a) T+TL (a) T TL

I

I
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I

!
I

/

xx"

I I I

Hi(T) H~(T) H

~,(T)

FIG. 2. {a) Sketch of the predicted MF behavior for the uni-
form transverse susceptibility P" near the para-ferro second-
order transition Ho(T) as a function of the internal field H. (b)
Sketch of typical experimental data (from Ref. 2) for the average
uniform transverse susceptibility, P"„near the para-ferro tran-
sition as a function of the applied field Ho. Owing to demagnet-
ization effects, g", is bounded by an upper limit 1V ', where N
is the demagnetization factor of the ellipsoidal sample. In the
ferro phase the ferromagnetic domains keep g", with the fixed
value N

Hp
FIG. 3. (a) Sketch of the predicted MF behavior of the uni-

form transverse susceptibility P" near the second-order para-fan,
H~(T), and first-order fan-ferro, Hi(T), transitions as a func-
tion of the internal field H. The dashed lines illustrate the
divergence of g" near the para-ferro transition, H=Ho, when
T & T~ [see Fig. 2(a)j. (b) Sketch of typical data (from Ref. 2)
for the average uniform transverse susceptibility P" near the
para-fan and fan-ferro transitions, as a function of the applied
field Ho As in Fig.. 2(b), in the ferro phase the ferromagnetic
domains keep g", with the constant value N

from Eqs. (2.10)—(2.12), the set of equations

which imply the relation H =4aM~, or

x = 1
f 4D

(4.11)

and

1 —M M
—,
' kT ln =[J(0)+2D]M", (4.9)

(4.10)"1—M M
—,
' kT ln = [J(0) 2D]M»+H, —

In order to determine X» in the fan phase, but near the
Hx(T) line, we must resort to the Landau theory present-
ed in the preceding section. It was shown that the uni-
form component M»c of 5M» behaves asymptotically as
M»c~(Mi) ~(Hg —H) +O(Hg H) . Since M»—=M
+5M», we obtain, at constant T,

(x». —x»), = A2) 1

48 (0)
6a~ —w', , 8 (0) 28 (2q, )

BA (q, )

aa
T,HO(A, )

(4.12)

which means that X~ has a temperature-dependent discon-
tinuity across the para-fan transition line. A similar
analysis, near the ferro-fan transition line, shows that X» is
also discontinuous across the Hi(T) first-order line.

Therefore, the longitudinal susceptibility X» is given by
the constant 1/4D throughout the ferromagnetic phase,
and shows a discontinuous behavior across the transition
lines. Again, these features are in agreement with the ex-
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perimental results. Sketches of the predicted MF
behavior for g» are shown in Figs. 4 and 5. For compar-
ison, we also sketch typical data, for both T & TL and
T & Ti, as a function of the applied field Ho. In the latter
curves, the second-order ferro-para transition is character-
ized by a "shoulder, "while the first-order ferro-fan transi-
tion is signaled by a peak in the susceptibility curve.
Similar discrepancies between the experixnental and the
theoretical curves are known to be found in the case of
small anisotropy antiferromagnets (see, for example, the
discussion about the field behavior of antiferromagnets in
de Jongh and Miedema's).

Mfgcco Mug cc ( T —Tl ) cc (H Hl )— (4.13)

The ratio H(T)/Mi'(T) should be equal to the constant

C. Further suggestions

We may also suggest some expressions that could hope-
fully be subjected to experimental verification. For in-
stance, the discontinuity of the longitudinal magnetization
across the ferro-fan transition line should behave asymp-
totically as

4D along the para-ferro critical line, and tend asymptoti-
cally to 4D as (T —Tl. ) along the para-fan critical line.
The behavior of the wave vector as we penetrate into the
fan phase is also of interest. From the minimization of
the Gibbs functional we obtain at constant temperature
the asymptotic expression q —q, ~ H —Hi ( T), where q, is
the critical wave vector on the para-fan critical line.

V. RENORMALIZATION-GROUP ANALYSIS

~IS I =PA IS~I+ gwI
~ S~ ~ J, (5.1)

where the spin weighting factor is defined by

In this section we use RG techniques to analyze the
simplified Hamiltonian (2.1) which preserves the sym-
metries of the original Hiyamizu and Nagamiya model for
MnP. The main goal is to show that near the LP the criti-
cal properties of this X-F Hamiltonian belong to the same
universality class of the uniaxial one-component Landau-
Ginzburg-VA'lson Hamiltonian.

The effective Hamiltonian associated with (2.1) is

TL

H x"
me

TwT„

Ho

FIG. 4. (a) Sketch of the predicted MF behavior of the uni-

form longitudinal susceptibility P near the second-order para-
ferro transition Hp(T) as a function of the internal field H. It
should be noticed that g~ is constant (=1/4D) throughout the
ferromagnetic phase. (b) Sketch of typical data (from Ref. 2) for
the average uniform longitudinal susceptibility P, near the
para-ferro transition as a function of the external field Ho.

Ha

FIG. 5 (a) Sketch of the predicted MF behavior of the uni-
form longitudinal susceptibility P" near the second-order para-
fan, H~(T), and first-order fan-ferro, H&(T), transitions as a
function of the internal field H. (b) Sketch of typical data (from
Ref, 2) for the average uniform longitudinal susceptibility g~

near the para-fan and fan-ferro transitions as a function of the
external field Ho. The second-order para-ferro transition is
characterized by a "shoulder, " while the first-order fan-ferro
transition is identified by a sharp peak in the p, curve.
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+

z=f~ds e

The partition function of the system is then given by
—Xfs e

(5.2)

(5.3)
S = QS7e'q'

q
(5.4)

where the spin fields are two-component classical vectors.
Introducing the Fourier transform

I

the effective Hamiltonian may be written in the form

2

m[s )= —,
' f y «;(q)s s +—J J f s s s' s' . ... .. —pcs", , (5.5)

where f —=(2~) f d», d is the dimensionality of the
q

system, and

u 2(q)=1 —PJ (q) .

S" —+S» +M5( q ),
where M satisfies the relation

(5.7)

It is convenient to eliminate the linear term proportion-
al to S»0 in Eq. (5.5). This can be done by the shift

pH +—u ',(0)M +bM'=0 . (5.8}

Apart from a spin-independent term, P (S ] is given by

2

A jS J= —,
' f g uz(q)S S +w f f S» g S,S

q a=1 q —q ~q ~q ~ q q q q

where

u2(q)=u 2(q)+bM

u', (q) =u', (q)+3bM',

w =bM, u =b/4.

(5.10)

(5.11)

(5.12)

2

+uf f f gS SS',„S~, „, (59)
q q' q"

I

field, while S is noncritical. We can integrate over the
q

variables S, using a diagrammatic perturbative expan-

sion, to obtain a reduced Hamiltonian A tS" j. The ver-

tices and the relevant diagrams are shown in Fig. 6. The
spin-dependent part of the effective reduced Hamiltonian
may be written in the form

Since u2(q)&uz(q}, we identify S" as the critical
q

I

~tS" ] = —, f u2(q)S" S" +—f f f u4(q, q', q")S"S",S" „S", „+
q

where the ellipses represents sixth-order terms, and where

u (q)= u"(q)+4u f [u»(p)] ' —96u M [u"(0)] ' f [u»(p)]
P P

—48u u" p
' u2 p 'u2 p+q '+0 u

P P

u~(q, q', q")=24u —192u M [u»2(q+q')] ' —96u2 f [u»2(p)] '[u&z(p+q+q')] i+O(u3) .
P

(5.13)

(5.14)

(5.15)

A Hamiltonian of this same form has been used to study
LP points of the uniaxial type. In particular, if we con-
sider the low momentum expansion of u2(q), the coeffi-
cient of q, where a indicates the direction of modulation,
should vanish in order to give rise to a LP. In the present
case this may be achieved by a suitable control of the pa-
rameters T and H (see Sec. III}. The equivalence which
we have shown clarifies the agreement between the experi-
mental crossover exponent, P =0.634+0.03, and the
theoretical value, /=0. 625+0(e ).

VI. CONCLUSIONS

We have presented a theoretical interpretation, based on
a simple spin localized model, for the occurrence of a LP

I

in the phase diagram of MnP. In particular, we have
determined asymptotic expressions for the transition lines
which meet tangentially at the LP. The predictions of the
model concerning the behavior of the uniform transverse
and longitudinal susceptibilities and other thermodynamic
quantities are in qualitative agreement with the reported
experimental data. Finally, a renormalization-group
analysis of the model shows that near the LP the Hamil-
tonian assumes the form of the one-component (n =1)
uniaxial (m = 1) Landau-Ginzburg-Wilson Hamiltonian
appropriated to describe a LP in magnetic systems with
uniaxial symmetry. In conclusion, our interpretation of a
LP in MnP is in agreement with the known experimental
facts about this compound, and in particular supports the
suggestion that its "triple point" is indeed a uniaxial
one-component LP.



kTI HI
& =JoH-

16D (1—Ml )

{A8)

APPENDIX 8

The paramagnetic free energy and the coefficients of
the Landau expansion, Eq. (3.19), are given as

(24 j

FIG. 6. (a) Perturbative vertices in the diagrammatic expan-
sion. The dashed lines represent the variables S~, and the solid
lines the variables S" . (b) Contributions, up to order u, to theq'
diagrammatic perturbative expansion. The numbers indicate the
multiplicity of each diagram.
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APPENDIX A

The values of the coefficients in Eqs. (3.14), (3.17), and
(3.38) are the following:

{Al)

3GO ———kT in2+ —,
' kT[(1+M)ln(1+M)

+(1—M)ln(1 —M)]

—i J{0)M +DM HM, —

A20 ———,[J(0)—2D+HM '],
T

Ao2—
2(1—M )

1 T —IJ(0)+2D—HM—
kTM

3(1—M )

3kT
4M (1—M2)

3[J(0)—2D+HM-']
4M

kT 1+3M'
(1—M )

l
2

A2(
8(o———6A4o—

2 B(q, )

240 ———

2 J(0)+2D—HM-
8M' 1 —M'

A22 —— kT
2(1—M )

(Bl)

(B2)

(B3)

(B5)

Ml kTI
2

—Jo+2D
1 —ML

a b A
~T+2&TII — ~IIa

/0+23~oa-
TL

(A4)

APPENDIX C

The coefficients in the expression for the uniform trans-
verse susceptibility, Eqs. (4.6) and (4.7), aie

2

3A 4o—
2B{q,)

(Cl)
1 Il

8(0) 28{2q, )

BA(q, )C'=2{|0 dH r„aidan
(C2)
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