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New view of the two commensurate phases in the typical incommensurate transition sequence
(commensurate phase~incommensurate phase~commensurate phase)
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Transition sequence Pr —+IF~CF in dielectric substances is dealt with, where Pr, IF, and CF
denote prototypic phase, incommensurate ferroic (or distorted} phase, and commensurate ferroic
phase, respectively. The transition (or order) parameters are assumed to be two mutually conjugate
complex quantities depending only on x, not on y or z. They are denoted by Q(x} and Q~(x). In
general, Q(x) can be expressed as a sum of harmonics of the form Q„e'"~. Commonly, the lowest
harmonic adopted is the first harmonic Qle' . In this paper, however, the zcroth harmonic Qo is
taken into account. For simplicity, high harmonics are ignored so that Q(x)=QO+Q, c'~. Three
views of CF are possible, i.e., CF may have I Q„g~O, hg =OI, I Qog~O» Q» ——0, hg indefinite], or
I QogAO» Qlg=O» ~g/OI » whclc Qg»=QO+Ql» Slid 'thc subscript s 111calls sp011'ta11colls. I11 'thc

third vinv, h, is regarded as definite and assumed not to be nearly zero. The first view is conven-
tional, in essence, while the third is new. Three views of Pr are possible, i.e., Pr may have [ Q„,=O,
h, =OJ, I Qo, ——0, Q» ——0, I4 indcfinitcI, or I QO, =O, Q„=O, h, +OI. Only one view of IF is possi-
ble, i.c., IF has only t Qo, ——0, Q~,&0, h, &0]. The transition Pr —+IF and the imaginary direct tran-
sition Pr —+CF are assumed to be second order. The temperatures of the respective transitions are
denoted by T«and l „. It is found that if the third views of Pr and CF are adopted, the transitions
Pr~IF and Pr~CF are strongly second order, i.e., even h, is continuous at T„and Tt,. Let
ql

—=
~ Ql ~

. Lct gp be the spatially averaged free-energy function. The third views of Pr and CF are
thought to be reasonable from the investigation of the T dependence of (8 4/Bq l ), in Pr near T«
and in CF near T,',. A full account of this investigation is given.

I. INTRODUCTION

A considerable number of substances are known to un-
dergo the following successive transitions: prototypic
phase —+incommensurate ferroic phase~commensurate
ferroic phase. ' Sodium nitrite ' and potassium sele-
nate are typical examples of such substances. It is con-
venient to abbreviate the above-mentioned three phases as
Pr, IF, and CF, respectively. Pr is a type of commensu
rate phase. Many authors have thermodynamically in-
vestigated the transition Pr~IF or the transition se-
quence Pr—+IF~CF.

Let us assume that the transition (or order) parameters
are two mutually corrugate complex quantities, and that
they are functions of spatial coordinate x, not depending
on y or z. Let them be denoted by Q(x) and Q*(x). A
phase is, obviously, prototypic or ferroic according to
whether its [Q (x)], (subscript s denotes "spontaneous") is
zero independently of x or not. A phase is commensurate
or incommensurate according to whether its [Q(x)], is x
independent or not. For incommensurateness, however,
the x dependence should not constitute all of the condi-
tions. A second condition, i.e., the condition that the spa-
tial average of [Q(x)), is zero, should be added. This
second condition ensures pure incommensurateness. If a
phase satisfied only the first condition and not the second,
ii mould be mixed, i.e., both commensurate and incom-
mensurate (in the x direction). In general, Q(x) can be
expressed as a sum of harmonics of the form Q„e'""",
where A ls the Incommensurate wave-number parameter

g IF@0 I IF~0

Qi,"+0, h, "=0 . (1.4)

Q i,
' stands for the Qi, of Pr.

The lower the harmonic is, the stronger or the less
negligible its influence is. This may be a general rule. In
the present paper, the zeroth harmonic is taken into ac-
count, so that

Q(»= Qo+Qic' (1.5)

If Ii =0, the right-hand side of Eq. (1.5) becomes
Qo+Qi. We set

Qo+Qi =0
IF obviously must have

Qo". =0 Qi.&0* 11. &0
As for CF, since its [Q(x)], is x independent and
nonzero, it may have either Ig„g"&0, hg "=OI or
Igog"&0, Q»"——Oj. In the latter case, hg" may be re-

and n is an integer. It is common that the lowest har-
monic adopted is the first harmonic Q le' (not the zeroth
harmonic Qo). For simplicity, let the second and higher
harmonics be ignored. Then,

g(x) g cghx

Pr, IF, and CF obviously must have

gPr ()

1984 The American Physical Society



6320 KRITSIRO AIZU

Q„,"@0, hg ——0,
Qo,"&0, Qi, ——0, h, indefinite,

QcF&0 QcF 0 h cF&0

(1.7)

(1.8)

(1.9)

garded either as essentially indefinite or as definite and
nonzero. Thus, the following three views of CF are possi-

le:

Although Qi", ——0 at T„, h,'" is still definite. It is still
nonzero. (According to observations,

l h,
'"

l

increases as
T approaches T„ from below. ) That the transition

Pr~CF is second order means

[Q (x)],"=0 atT,', ,

which amounts to, in gross,

In view (1.9), h,
" is assumed to be not approximately

zero, but so large that

lh l
I.))1,

Q„, =0, h,c"=0 at T,', ,

Q()~ =0, Q)~ =0, h~ lndcflllltc at, Tt~,

Qo, ——0, Qi, ——0, h, "&0 at T,', ,

(1.17)

(1.18)

where l. stands for the length of the crystal specimen in
the x direction; usually, 1X10 &I. &1X10 m. (On
the other hand, it is assumed that

I
h

I ao «1, wh«e ao
stands for the length of the prototype unit cell in the x
direction. ) Although h, " is such a large nonzero, CF is
literally a commensurate phase having a lattice constant
equal to an integer multiplied by ao, because Q 1,

" is zero
or, in other words, the wave Q&,"exp(ih, "x) is zero. Al-
though Q 1,

"——0, the definite nonzero value of h,
"can be

really determined by adopting the two-step method (see
Sec. II).

The view of CF, (1.7), is essentially the same as the con-
ventional view, (1.4). On the other hand, view (1.9) is

As for Pr, since its [Q(x)], is zero independently of x,
it may have either I Q ', =0, h, '=Oj or l Qo,

' ——0,
Q 1,

'——OI. In the latter case, h, ' may be regarded either as
essentially indefinite or as definite and nonzero. Thus, the
following three views of Pr are possible:

PrQ„,=0,
Pr

Qo, =o*
Pr

Qos =o
Q i~

——0, h~ lndcflill'tc,

Q),
' ——0, h, '&0.

(1.12)

Qo", ——o, Ql, =0, h,'"~0 at T«. (1.15)

In view (1.13), h, ' is assumed to conform to inequality
(1.10). Although Qi,

'——0, the definite nonzero value of
h,

' can be really determined by adopting the two-step
method (see Sec. II). Obviously, the three views of Pr,
(1.11), (1.12), and (1.13), correspond to the three views of
CF, (1.7), (1.8), and (1.9), respectively.

Only one view of IF is possible, namely view (1.6). h, "
is definite. For it, inequality (1.10) is assumed.

From the viewpoint of energy, the three views of CF
are equally reasonable. They give an equal free energy of
CF (see Sec. II). The three views of Pr also give an equal
free energy of Pr.

The transition Pr —+IF and the imaginary direct transi-
tion Pr~CF are both assumed to be second order. (Tran-
sition IF~CF is deduced, not assumed, to be first order. )

Let T, T„, and T,', denote temperature, the Pr~IF tran-
sition temperature, and the Pr~CF transition tempera-
ture, respectively. That the transition Pr~IF is second
01dc1 means

[Q(x)], =0 independently of x at T«, (

which amounts to, in net Q 1,=0 at T„and, in gross,

depending on which view, (1.7), (1.8), or (1.9), is adopted.
A second-order transition is referred to as being strong

ly second order, when not only [Q(x)], but its com-
ponents Q&», Qi„and h, are all continuous at the transi-
tion po1nt. An othcrwisc second-order transition 1s re-
ferred to as being weakly second order.

Compare relations (1.15) with relations (1.11)—(1.13).
If the third view of Pr, (1.13), is adopted, transition
Pr —+IF is strongly second order. It holds that h, '=h, "
at T„(see Sec. II). If either view (1.11) or (1.12) is adopt-
ed, transition Pr~IF is weakly second order. As for
transition Pr~CF, if the third views of Pr and CF are
adopted, the transition is strongly second order. It holds
that h, '=h, "at T' («SCSCec. II). In summary, the transi-
tions from Pr to the two ferroics are both strongly second
order if and only if the third views of Pr and CF are
adopted.

I.et qi=
l Qi l, and let @ be the spatially averaged

free-energy function per unit volume. Investigating the T
dependence of (8 @/Bq 1 ), in Pr near T„and in CF near
T,'„ I think that the third views of Pr and CF are reason-
able. The investigation has been performed on K2SCOz as
an example. Its details will be given in Sec. II.

Although the transition sequence Pr —+IF—+CF is ex-
h1b1tcd by NaNO2 as well as by K2ScO4, 1ts IDcchanism 1S

essentially different for the two substances. In K1SCOq it
is sufficient that only a pair of soft modes belonging to a
single irreducible representation is taken into account,
wllllc ln NRNO2 lt ls necessary tllRt, 111 addltlon to a soft
mode, a hard mode which belongs to a different irreduci-
ble representation should be taken into account. The case
of NRNO1 is thus more complicated. The third views of
Pr and CF will be applied to NaNO& in Sec. III.

II. THEGRY: K23cQ4

Upon cooling, potassium selenate undergoes transi-
tion Pr~IF at 129 K and transition IF—+CF at 93 K. Pr
has symmetry of the space group Pnam (or D 1~ ).
Honestly speaking, the I'nam phase is not a prototypic
phase, but a ferroic phase (ferroelastic) derived from a cer-
tain hexagonal structure. However, for simplicity, the
Pnam phase is assumed to be prototypic (the present pa-
per does not deal with the hexagonal~Pnam transition).
CF has symmetry of the space group Pna2& (or Cz„), and
also has lattice constants equal to 3aQ, bQ, and cQ %vhere

ao, bo, and co stand for the lattice constants of Pr. IF is
incommensurately modulated with a wavelength close to
3aQ in the x direction. In the y and. z directions, IF is



29 NEW VIEW OF THE TWO COMMENSURATE PHASES IN THE. . . 6321

commensurate and has lattice constants equal to bo and
co. The transition at 129 K is second order, while the
transition at 93 K is first order. Although there exist a
few thermodynamical theories on the transitions of potas-
sium selenate, ' a retheorization is necessary for the
present subject.

The unmodulated (i.e., x-independent) transition pa-
rameters for the transitions of KqSeO4 are two mutually
conjugate complex quantities, denoted by Q and Q*. The
prototype space group I'nam can be generated by three
elements, one of which is the pure reflection across the
plane through point (0,0, —,

'
co) perpendicular to the z axis.

Another is a ghde reflection with its reflectional part
across the plane through point (0, ,' bo, 0)—perpendicular to
the y axis and with its translational part along the x axis.
The third is the inversion across the origin. By the
respective generators, Q and Q* are transformed as

(2.1a)

g ein/3g Qn e
—in/3gn

Q~Q', Q'~Q
(2.1b)

(2.lc)

From these relations, it immediately follows that the
primitive translation along the x axis transforms Q and' as

g ei2n/3g Qn e i2n/3—gn

and the primitive translation along the y or z axis gives

Q —+Q and Q'~Q . In other words, the wave vectors of

TABLE I. Space-group sequence embodying the transforma-
tions (2.1) of the unmodulated transition parameters.

Rank 2

Pnam

Rank 1

-P 12~/a1-

Pna 2~

Rank 0

P la 1

argQ, = —,
'

km (k =0, 1, . . . , 5),
while the phase of space group Pni2 2i (or C2„) has

argQ, = —,
' n.+ ,

'
kyar (k—=0,1, . . . , 5) .

(2.2)

(2.3)

Although either phase may be realized, the Pna2& phase
alone is realized in K2Se04.

The modulated (i.e., x-dependent) transition parameters
are denoted by Q(x) and Q*(x), which may momentarily
be general functions of x not restricted to any special
form. 4(x), viz. , the free energy per unit volume before
spatial averaging is assumed to be equatable to a power
series in Q(x}, Q*(x), and their first- and second-order
derivatives. Duly considering transformation, the free-
energy equation is found to take the form

Q and Q' are ( —,',0,0) and ( ——,',0,0), respectively. Table
I shows the sequence of space groups that embodies the
set of transforrnations (2.1)." In Table I two phases of
rank 1 appear. The phase of space group P12&/a 1 (or
C2p) has

4(x)= —,
' g/12 6„[Q(x)Q"(x)] [Q(x) "+Q*(x) "]

[Q(x)Q*(x)] [Q*(x) "+'i}„Q(x)—Q(x) "+'i}„Q*(x)]

i ,
' Q—B' —' „[Q(x)Q*(x)] [Q(x) "+'i}„Q(x) Q*(x—) "+'B„Q*(x)]

——,'QC2" 6„+2[Q(x)Q*(x)] [Q*(x) "+'B„„Q(x)+Q(x)"+'i} Q'(x)]

——,
'

AC& ' 6„+6[Q(x)Q*(x)] [Q(x) "+ i} Q(x)+Q*(x) "+ i} Q'(x)]

+ —,
'
QC2 ' 6„+2[Q(x)g'(x)] [Q(x) "+Q"(x) "]B„Q(x)i}„Q*(x)

——,'gC'"' „[Q(x)Q*(x)] lg'(x) "+ [B„g(x)] +Q(x) "+ [i}„Q'(x)] l

——,
' gC',",„„[Q(x)g*(x)] j g(x)'"+4[a,g(x)]'+Q*(x)'"+4[a„g'(x)]2] . (2.4)

Here, g stands for the double summation from in =0 to oo and from n =0 to oo. B„and i} are abbreviated forms of
8/Bx and i} /Bx, respectively. The coefficients A2 6„,. . ., C2 '

6„+6are all real.
For simplicity, let us omit from Eq. (2.4) terms of high degree with respect to Q(x) and Q (x). The reduced equation

1s

4 (x)=Co+& oQ(x)Q*(x)+~4o[Q(x)Q*(x}]'+/16o[Q(»Q*(»]'+—/lo6[Q(»'+Q*(»']

i-,'a,",'[Q'(x)a„g(x) —Q(x)a„g'(x)] —i —,'8"'Q (x)Q'(x) [Q*(x)B„Q(x)—Q(x)B„Q*(x}]

——,
' C [Q*(x)B Q(x)+Q(x)i} Q (x)]——,

' C'"Q(x)Q'(x)[Q'(x)&' Q(x)+Q(x)&' Q'(x)]

+C,",'B„Q(x)B„Q*(x)+C"'Q(x)Q*(x)&Q(x)i} Q'(x}——Co lg'(»'[~ Q(»] +Q(» [i} Q (»] ] . (2.5)

Subscript commas in coefficient symbols have been omitted. Aoo has been replaced by the conventional symbol 4o.
Now, Q (x) and Q*(x) are specialized to the forms
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Q (x)=Qo+ Qie' Q'(x}=Qo +Q i e

the former being the same as Eq. (1.5). We set

I Qo I
—=qo argQo—=~o

I Qi I
=—« "gQi —=~i

(2.6)

The spatial average of @(x) is denoted by 4, i.e.,
L/2@=—I 4(x)dx . (2.7)L/2

The domain of h is restricted to inequality (1.10). The wave Qie' is assumed to be coherent over the whole of L. Ow-
ing to inequality (1.10), the average of e' is approximately zero. The ultimate form of the average of Eq. (2.5) is found
to be

@0+~20(q0+q i }+~40(q0+4qpq 1 +'q i )+~60(qo+9qpq 1 +9qoq i +'q i )+~p6qpcos6~0

+B02hq i +Bzzh(q i +2qoq i )+Cosh q i +Cqqh q i +2Cqqh qoq i (2.8)

where

(&) (&) (&) (3)
Bp2 =Bp2, B22 =B22, Cp2 =C02 +Cp2

C22 =C22 +C22 +C04, C22 =C22 + ~ C22
(1) (3) (4) ~ (&) & (3)

(2.9)

Equation (2.8) does not contain 8,. We repeat that Eq.
(2.8) has been deduced upon the assumption of inequality
(1.10). If

I
h

I
L «1, and especially if h =0, Eq. (2.8) is

invalid.
All coefficients except Aqp (and 4p) are assumed to be

T independent. A2p is assumed to vanish at a certain
temperature To and to depend on T in the form

= —[K(Ti —T)]
2B02 C22 B22

4a40+ —2
C02 C02 B02

(2.17}
As far as IF is concerned, the present theory is the same

as the previous theories, ' except that the previous
theories ignored the coefficients Bqq and Czz whereas the
present theory does not.

Next we consider CF, of which three views are possible.
Relations (1.7)—(1.9) can be rewritten as

I

Eq. (2.13) gives the h, -vs Trelat-ion.
I
h,

I
decreases with

decreasing T. The free energy of IF is found to be

4, —40

Azp ——K ( T —To), K =const & 0 . (2.10)

Coefficients such as A4p are assumed to be positive, i.e.,

A4o &0, A6o&0, Cop &0, Czi &0, Cii &0. (2.11)

q„,&0, h, =0,

qp, &0, qi, ——0, h, indefinite,

qp, &0, q), ——0, h, &0 .

(2.18)

(2.19)

(2.20)

Of the three phases Pr, IF, and CF, let us first consider
IF. It has

qp, ——0, qig&0, h, &0, (2.12)

which are essentially the same as relations (1.6). For h„
inequality (1.10} is assumed. Thus Eq. (2.8) can be used.
The expressions of h, and q i, are found to be

B02 22 B22
1 — — q), (2.13)

2C02 C02 B02
2

B02 C22 B22
2A40 + 2qi, =K(Ti —T)

(2.14)
where T, is a characteristic temperature defined by

K ( T)
—Tp }=Bop /4Cp~ . (2.15)

For view (2.20) since inequality (1.10) is assumed, Eq.
(2.8) is valid. On the other hand, for view (2.18), Eq. (2.8)
is not valid. However, the more basic equation, (2.5), is
valid for all views. The expression of q„, in view (2.18) is
found to be

q„,=(I/2A4p)K(T pT) . (2.21)

The expression of qp, in views (2.19) and (2.20) is found to
be

qp,
——(I/2A4o)K(To —T) . (2.22)

According to Eqs. (2.21) and (2.22), T must be lower than
Tp. In other words, CF is possible only at T & Tp, no
matter which view is adopted. What are the expressions
of |}„,and Op, ? The inequality

Since L &0 and C02&0, we have T~ & Tp. The inequali-
ties

A06 &0

is assumed. Then, in view (2.18),

(2.23)

C22 B22 C22—2 &0,
02 B02 C02

B22
&0

02
(2.16)

e„,=-,'~+-,'k~ (k=0, 1, . . . , 5) .

In views (2.19}and (2.20),

(2.24)

are assumed, the latter of which, however, follows from
the former owing to inequalities (2.11). According to Eq.
(2.14}, T must be lower than Ti,' in other words, IF is
possible only at T & Ti. Substitution of Eq. (2.14) into

8p, ——, sr+ —,km. (k =—0,1, . . . , 5) . (2.25)

The space group of CF is Pna 2i, not P12i/a 1. The free
energy is found to be
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4, —C&0 ———(1/4A40)[K(TO T—)] (2.26)

Taking account of qi &0, we obtain

8o2+822(q i +2qo. }Ii„=—
2 & 2

2C02 +2C22'V 1 +4C22V or

At the hmit as qi —+0, Eq. (2.27) becomes

~02+ 2~22q os
h, =—

2Co2+4cz2e'os

which is approximated by

(2.27}

&O2 C22 &22
I —2

2co2 Co2 ~o2

This is the h, of CF in view (2.20). It differs from the Ii,
of IF expressed by Eq. (2.13). Inequalities

—2 ~0, — ~0
Co2 &o2 Co2 &o2

are assumed, the latter of which, however, follows from
the former owing to inequalities (2.11). Substitution of
Eq. (2.22) into Eq. (2.28) gives the h, -vs- T relation.

~
Ii,

~

decreases with decreasing T.
Following IF and CF, Pr is now considered. Three

views of it are possible. Relations (1.11)—(1.13} can be
rewritten as

no matter which view is adopted.
What is the expression of h, in view (2.20)'? The usual

method of minimizing 4 at point (qp„8o„qi„hs) is to
minimize 4 directly at that point. By this method, h,
cannot be determined because qi, ——0. However, if the
following two-step method is adopted, hs can be deter-
mined. This method is, first, to minimize sp under a fixed
nonzero value of qi and, next, to bring qi to zero. Let
the qo, eo, and Ii determined in the first process be denot-
ed by q0„80„, and Ii„, which are functions of qi. As

qi —+0, we have qp„~q0„80„~&p„and h, ~hs Fo.r h„
the right-hand side of Eq. (2.8) is differentiated with
respect to h and equated to zero, i.e.,

q i [8o2+822(q i+2qo. }+2C0212.

+2C22h„q i +4C22h„q 0„]=0 .

e'~s=o

qps ——0, q» ——0, Ii, indefinite,

qOs=o qis=o

(2.30)

(2.31)

(2.32)

Solving this equation, we obtain

8o2+822(q i+2qo)
2Co2+ 2C22g I +4C22go

(2.33)

At the limit as q0~0 and qi —+0, Eq. (2.33) becomes

Ii, = —8p2/2Cp2 . (2.34)

Instead of first assuming that qp+0 (and that qi+0) and
next bringing qo (and qi) to zero, we may initially set
q0=0. We reach the same result, Eq. (2.34). Equation
(2.34) expresses the?2, of Pr in the third view. This Ii, is
T independent, in cont:rast with the?i, of IF and the?i, of
CF in the third view.

Equations (2.17) and (2.26) indicate that the Pr —+IF
and Pr —+CF transition temperatures are equal to T, and
Tp, respectively. (In Sec. I the Pr~IF and Pr —+CF tran-
sition temperatures were denoted by T«and T„, respec-
tively; we now have T„=Ti and T,', =To.) If the third
views of Pr and CF are adopted, the transitions from Pr
to the two ferroics are both strongly second order, because
at Ti, Eq. (2.13) becomes ?2,'"=—802/2C02 ——?i,

' and at
Tp, Eq. (2.28) becomes Ii = —802/2C02 =?2

IilvcstlgRtlilg tllc T dependence of (8 4/Bq i )s in Pl
near Ti and in CF near To, I think that the third views of
Pr and CF are reasonable. Explanations will follow.

Let the second or third views of Pr and CF be adopted.
If the second views are adopted, Ii, is, for the present, as-
sumed to conform to inequality (1.10) while also being re-
garded as indefinite. Thus Eq. (2.8) is vahd for the second
views as well as the third. The equation

The free energy is st, —40——0, no matter which view is
adopted. As for the expression of h, in view (2.32), the
usual direct method cannot determine it, but the two-step
method can. The right-hand side of Eq. (2.8) is differen-
tiated with respect to h under fixed nonzero values of qo
and q~, and is equated to zero, i.e.,

q i [802+822(q i+2qo)+2C02&.

+2C22h„q i +4C22h, qo] =0 .

—,
' (g2cy/gq', ), =A„+2A (2q'„+3q'„)+ 3A„(3q„+18q„q„+5q„)

+802~s + 2822~s(3q is +qos }+C02~s +6C22~s 'q is +2C22~s 'qos (2.35)

is deduced. First, Pr will considered, and second, CF. In
Pr, since qo, ——qi, ——0, Eq. (2.35) reduces to

—,
' (8 @/Bq i),=A20 —802/4C02, (2.37)

2 (8 0&/Bqi) =A20+802i'2 +C02h

The parameter Ii, is present in Eq. (2.36). Hence, if the
second view is adopted, (8 N/Bqi ), is essentially indefi-
nite. If the third view is adopted, (I) 4/Bqi ), is definite.
In this latter case, Eq. (2.34) takes effect. That is to say,
substitution of it into Eq. (2.36) gives

which, with the use of Eqs. (2.10) and (2.15), we arrive at
the function of T,

—,
' (8 sIs/Bq i )s K( T —Ti ) . ——

Equatloil (2.38) ls thought to bc pllyslcally reasonable.
It is consistent with the conclusion, drawn from Eq.
(2.17), that the Pr~IF transition temperature is Ti. The
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2
Bo21+

4240C02

C22 B22—2
C02 B02

E(T2 —T) .

(2.41)

A characteristic temperature T2 appears in Eq. (2.41).
It is defined by

1 4C02 1 C22 B22+ —2
+(Tp T2} B02 ~40 C02 B02

(2.42)

Taking account of inequalities (2.11) and (2.29), the
right-hand side of Eq. (2.42) is positive. Hence, T2 & Tp.
Combination of Eqs. (2.15) and (2.42) gives

r

T$ —T0 B02 C22 B22=1+ —2
To —T2 424' Co2 C02 B02

(2.43)

Since the right-hand side of Eq. (2.43) is greater than 1,
we have

TO T2+T1 TO ' (2.44)

Now, the direct transition Pr~CF is imagined. Ac-
cording to Eqs. (2.22) and (2.26), CF is possible only
below T0, and the Pr~CF transition temperature is To.
Equation (2.41) is thought to be physically reasonable. It
is consistent with the conclusion, drawn from Eqs. (2.15),
(2.17), and (2.26), that IF intervenes between Pr and CF
(thus the direct transition Pr~CF is not real). The con-

reason for the consistency might be quite obvious to some
readers, but will be set forth, considering a variety of
readers. Equation (2.38) indicates the following. Above
Ti, (8 4/Bqi), is positive, so that Pr is stable against
variation of qi. Below Ti, (8 4/Bqi), is negative, so
that Pr is not stable against variation of q, . Therefore, at
Ti the transition should take place from Pr to a phase
with qi,+0.

If the first or second view of Pr is adopted, Eq. (2.38) is
not deduced. In other words, Eq. (2.38) is deduced only if
transition Pr —+IF is strongly second order.

In CF, when the second or third view of CF is adopted,
we have qi, ——0; thus Eq. (2.35) reduces to
'

(& &'/&qi ) =~20+4~40qQ +9~60qo +B02h

+2B22h, q p, +Cp2h, +2C22h, q p, . (2.39)

The parameter h, is present in Eq. (2.39}. Hence, if the
second view is adopted, (8 4/Bqi ), is essentially indefi-
nite. If the third view is adopted, (8 4&/Bq, ), is definite.
In this latter case, Eq. (2.28) takes effect. That is to say,
substitution of it into Eq. (2.39) gives

—,
' (a'C /aq', ),=~„—B,', /4C„

2 IB02 C22 B22

2C C B02 02 02

(2.40)

which, with the use of Eqs. (2.10) and (2.22), brings us to
the function of T,

—,
' (a'e/aq', ),

sistency is because Eq. (2.41) indicates the following.
Below T2, (8 4/Bqi), is positive, so that CF is stable
against variation of qi. Between T2 and Tp, (a'e/aq', ),
is negative, so that CF is not stable against variation of
qi. Therefore, a phase with qi, &0 should intervene be-
tween Pr and CF, covering some temperature range that
contains the range T2 & T ~ To.

The characteristic temperature T2 is especially impor-
tant to CF because, above T2, CF cannot even be a
metastable phase. It is emphasized that this characteristic
temperature has been discovered in the investigation of
the T dependence of (8 @/Bq i ), in CF upon the assump-
tion of the third view of CF. The equations

(a'e/aq, '},=4E:(T, T), —(a2e/ah2), =0,
(a'C /aq, ), (a'C /aq, ah ),

(a'e/aq, ah), (a2e/ah2),

are easily deduced. It is only (8 4/Bq i ), that is negative
just below Tp. Let T fall from T2. Immediately below
T2, CF is a metastable phase. The most stable phase is
IF. At a certain temperature T3, the most stable phase is
changed from IF to CF, i.e., transition IF~CF takes
place. Since CF is metastable above T3 (and below T2),
transition IF~CF must be first order. Any more discus-
sion of this transition is omitted.

III. THEORY: NaNG2

Upon cooling, sodium nitrite ' undergoes transition
Pr—+IF at 164'C and transition IF~CF at 162'C. Pr be-
longs to point group mmm (or D2i, ). CF belongs to point
group mm 2 (or C2„) with its twofold axis parallel to the

y axis of Pr. The three lattice constants of CF are equal
to those of Pr, i.e., ao, bo, and co. IF is incommensurate-
ly modulated with a wavelength of about 8ap in the x
direction. In the y and z directions, IF is commensurate
and has lattice constants equal to bo and co. The transi-
tion at 164'C is second order, while the transition at
162'C is first order. Although there exist a few thermo-
dynamical theories on the transitions of sodium ni-

trite, '2'3 a retheorization is necessary for the present sub-

ject.
The unmodulated transition parameters for the transi-

tions of NaNO2 are two real variables, one of which is
transformed according to the zero-wave-number represen-
tation B2„, and the other according to the zero-wave-
number representation Big of the prototype point group
mmm. The B2„ transition parameter, denoted by Q, is
soft (or a soft-mode coordinate), while the B,s transition
parameter, denoted by R, is hard (or a hard-mode coordi-
nate). The former is a leading parameter, while the latter
is a supporting parameter.

The modulated transition parameters Q(x) and R(x)
may momentarily be general functions of x. The free en-

ergy per unit volume, N(x), is assumed to be equatable to
a power series in Q (x},R (x), and their first- and second-
order derivatives. Duly considering transformation, the
free-energy equation is found to take the form
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4(x)=QAz~ z„g(x)' R(x)'"+R(x)a„g(x)QBz +i z„+iQ(x) R(x)"

+g(x)a„R(x)gB',"„,„„g(x)' R(x)'"+g(x)a„'g(x)yCi'.~„„Q(x)z R( )z

+R(x)a~R(»QCz~, z~+zQ(x)' R(x}'"+[a~g(x)]'QCz~+z z„g(x)'~R(x)z"

+[a„R(x)]gcz'z„~zg(x) R(x) "+Q(x)R(x)a„g(x)a„R(x)gc' ' „Q(x) R(x) ", (3.1)

g (x)=go+ g i cos(hx —8g ),
R (x)=R p+ R i cos(hx —8ii ) .

(3.3a)

(3.3b)

On the assumption that h is large as expressed by inequal-
ity (1.10), the average of Eq. (3.2) is found to be

@0+ 2 Azp(2Qo+ Q I }+2 Aoz(2Ro+R zi }

+ —,
'
A4p(8gp+24gpg i +3Q i )+ —,'BiihgiR ising 8

+ —,
'

Czph Q i + —,
'

Cpzh R i (3.4)

where

811=F11 —811, C20 =C20 —C20 ~ C02 =C02 C02
(1) (2) (3) (1) (4) (2)

where g stands for the double summation from m =0 to
oo and from n =0 to 00.

For simplicity, let us omit from Eq. (3.1) terms of high
degree with respect to Q(x) and R(x). The reduced
equation is

4(x)=@p+Azog(x) +AiizR (x) +A4pg (x)

+B'i i'R (x)a„g (x)+B'ii'Q (x)a„R (x)

+C,",'g(x)a' g(x)+C,",'R(x)a' R(x)

+Czo'[a„g(x)] +Ciiz'[a„R(x)) . (3.2)

Subscript commas in coefficient symbols have been omit-
ted. App has been replaced by 40. Since the 81g transi-
tion parameter is hard, term R (x) is dispensable. On the
other hand, Q (x) is indispensable.

The case of NaNOz is more complicated than the case
of KzSe04 because in NaNOz the two transition parame-
ters belong to different irreducible representations. In
Sec. II the fourth-degree terms with a„and a~, such as

Q(x)g*(x)'a„g(x) and Q(x)g'(x)'a' Q(x),
were not omitted [see Eq. (2.5}]. However, in this section
the corresponding terms are omitted [see Eq. (3.2)] so that
this simplification may cancel out the above-mentioned
complicacy.

Now, Q(x) and R (x) are specialized to the forms

302 &0, 340 &0, C2p &0, C02 &0 . (3.7)

The allowability of assuming Apz to be T independent
and positive is what the "hardness" of the 81g transition
parameter means.

It is convenient to introduce a quantity p defined as

2(Apz C„)'"
Obviously, p is dimensionless, T independent, and posi-
tive.

Of the three phases Pr, IF, and CF, let us first consider
IF. It has

Qo. =o Qi.&0 (3.8)

For h„ inequality (1.10) is assumed. With the use of Eq.
(3.4), the expressions of h„Q», etc. are found to be

68, =a —,
' n., o = + 1 (3.9)

h, =(Apz/Cpz)(p —1),
R i.=«zo/Coz }(p—1)Q i.

~02C20
oBiih, Rig ———2 p(p —1}Qi, ,

C02

Qi, =(2/3A4p)K(Ti —T),

(3.10)

(3.1 1)

(3.12)

(3.13)

@g—4o———(1/6A4p)[K(Ti —T)] (3.14}

and Rp, ——0, where T1 is a characteristic temperature de-
fined by

K(Ti —Tp) =(Apzczp/Cpz)(p —1) (3.15)

According to Eq. (3.10), p must be greater than 1; in other
words, IF is possible only if p & 1. As p approaches 1, h,
approaches zero. Throughout this section, p is assumed to
be so much greater than 1 that h, satisfies inequality
(1.10). According to Eq. (3.13), IF is possible only at
T & Ti Equation (3..15) indicates Ti & Tp.

As far as IF is concerned, the present theory is the same
as Ref. 13.

Next, CF is considered. %e set

(3.5)

and b,8=8' —8R. Equation (3.4) contains 8~ and 8x
only as the difference b,8.

All coefficients except Azp (and 4p) are assumed to be
T independent. 220 is assumed to vanish at a certain
temperature Tp, and to depend on T in the form

Qp +Q i cos8g —=Q R p +R i cos8g =R~

The following three views of CF are possible:

Q,~O, h, =0,
Qo, &0, Q» ——0, h, indefinite,

Qp~&0 Qig=0 h~&0 .

(3.16)

(3.17)

(3.18)
Azp K(T —Tp), K =co——nst & 0 . (3.6)

Coefficients such as 202 are assumed to be positive, i.e.,
For view (3.18), inequality (1.10) is assumed. The expres-
sion of Q„, in view (3.16) is found from Eq. (3.2) to be
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Q„,=(1/2A40)E(T0 —T) . (3.19)

The expression of Qp, in views (3.17) and (3.18) is found
from Eq. (3.2) [or (3.4)] to be

Qos =(1/2A4o)IC (To T—) . (3.20)

As regards R, we have R„,=O for view (3.16), and
Rp& =R

~&
=0 for views (3.17) and (3.18). According to

Eqs. (3.19) and (3.20), CF is possible only at T & To, of
which view is adopted. The free energy is found to be

4, —40———( I/4A40)[K(Tp T)]— (3.21)

irrespective of which view is adopted.
The expression of h, in view (3.18) can be determined

by the two-step method (this method was explained in
Sec. II). It is the same as the expression of h, ", (3.10). If,
in N(x), some high-degree terms were not omitted, we
would have

(h,'") =(A02/C02)(p —1)[1+a(QF) ],
(h ) =(A02/C02)(p —I I[l+p(Q0 ) ]

(3.22)

(3.23)

where a&0, P&0, and a+P. The above-mentioned
high-degree terms are

A22Q(x) R(x), B3't'Q(x) R(x)B„Q(x),

B,",'Q (x)'B„R(x), C40'Q (x)'&' Q (x),
C"'Q (x)'[B„Q(x)]', C22'Q (x)R (x) & Q (x) (3 24)

C22'Q(x) R (x)B R (x), C22'R (x) [B„Q(x)]

C2 'Q( ) [B„R( )], C22'Q( )R( )a„Q( )B„R( ) .

Equation (3.2) contains none of the terms listed in (3.24).
Consequently we have a=p=O and h,

' =h, "=(Ap2/
C02)(p 1 ).

Following IF and CF, Pr is now considered. The fol-
lowing three views of Pr are possible:

2
Dgg ——A2p+ C2ph, ,

2
DRR ——Ap2+Cp2hs ~

Dgg ———,
' B( ) h, smh8,

(3.28)

(3.29)

(3.30)

are deduced from Eq. (3.4). Parameters h, and b,8, ap-
pear in Eqs. (3.28)—(3.30). The h, of Pr has already been
found to be expressed by Eq. (3.10). The 58, of Pr, how-
ever, has not yet been discussed at all.

In Pr, since Q&,
——R &,

——0, b,8, cannot be determined by
the usual direct method. If 60, is regarded as essentially
indefinite, Dgz and D are also indefinite. In the third
view of Pr, 58, is regarded as definite, in addition to h, .
The definite value of b,8, can be found by the two-step
method. It is the same as the EL9, of IF expressed by Eq.
(3.9).

Substitution of Eqs. (3.9) and (3.10) into Eqs.
(3.28)—(3.30) gives

Dgg =A 2p + (Ap2 C2p/Cp2)(p —1 )

DRR ~p2p ~

DgR (A 02C20/C02 )P (P

(3.31)

(3.32)

(3.33)

[Note that the left-hand side of Eq. (3.33) is not Dgz but
its square. ] From Eqs. (3.31)—(3.33), we obtain

D =A02P[A20 (A02C20/C02)(P —1) ] . (3.34)

By use of Eqs. (3.6) and (3.15), Eqs. (3.31) and (3.34) are
rewritten as functions of T,

(8 4/BQ~), =—Dgg, (8 4/BQ&M&), =—D«,
Dan DaR

(8 4/BR]), =kg, D D
=D .

QR RR

We will investigate the T dependences of D~~, DRR, and
D when the third views of Pr and CF are adopted. It is D
rather than D&~ that is most interesting. First, Pr will be
considered, and second, CF. In Pr, the equations

Q„,=O, hg
——0, (3.25)

Dgg =&(T —Ti )+(A o2C2o/Co2) p(p —1),
D =A02PIC(T —T, ) .

(3.35)

Qp,
——0, Q~,

——0, h, indefinite,

Qo =0 Qi, ——0, h, &0.
(3.26) (3.36)

(3.27) The expression of D~~, (3.32), is T independent.
Equations (3.35), (3.32), and (3.36) are thought to be

physically reasonable. They [especially Eq. (3.36)] are
consistent with the conclusion, drawn from Eq. (3.14),
that the Pr~IF transition temperature is T&. The reason
for the consistency might be quite obvious, but will be set
fourth. Equations (3.35), (3.32), and (3.36) indicate the
following. Dgg and D„z are positive above T~ and also
just below T&. D is positive above T~ and negative below
it. Thus, above T~, Pr is stable against every form of
variation of Q& and R&. Just below T„Pr is stable
against variation of only Q& and of only R~ but it is not
stable against every form of simultaneous variation of
both Q& and R&. Therefore, at T&, the transition should
take place from Pr to a phase with Q~,&0 and R ~,&0.

If the first or second view of Pr is adopted, Eq. (3.36) is
not deduced. In other words, Eq. (3.36) is deduced only if
transition Pr —+IF is strongly second order.

For view (3.27), inequality (1.10) is assumed. As regards
R, we have R, =O for view (3.25), and Ro, R&,——0 for-—
views (3.26) and (3.27). The free energy is N, —40——0, no
matter which view is adopted. The expression of h, in
view (3.27) can be determined by the two-step method. It
is the same as the expression of h,'", (3.10). If the terms
(3.24) were not omitted, h,

'" would be expressed by Eq.
(3.22) with a&0, while h,

' would still be expressed by Eq.
(3.10).

Equations (3.14) and (3.21) indicate that the Pr~IF
and Pr~CF transition temperatures are T& and Tp,
respectively. If the third views of Pr and CF are adopted,
the transitions from Pr to the two ferroics are both
strongly second order, because the h, 's of the three phases
are equal.

It is convenient to set
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In CF, the equation

Dgg ~ 20 +6A 40 Q 0 +C20A (3.37)

Dgg ——2K(Tp —T)+(Ao2C2o/Coz)(p —1) . (3.38)

The ultimate expressions of Dzz and Dgs are Eqs. (3.32)
and (3.33), respectively. From Eqs. (3.38), (3.32), and
(3.33), we obtain

D =2Ap2pK(T2 —T), (3.39)

is deduced from Eq. (3.4). The expressions of Dsz and
Dg~ are the same as those in Pr, i.e., Eqs. (3.29) and
(3.30). Parameters Qo„h„and b,8, appear in Eqs. (3.37),
(3.29), and (3.30). The Qo, and h, of CF have already
been found to be expressed by Eqs. (3.20) and (3.10),
respectively. In the third view of CF, b,8, is regarded as
definite, in addition to h, . The definite value of 68, is
found, by the two-step method, to be the same as the 60,
of IF expressed by Eq. (3.9). Substitution of Eqs. (3.6),
(3.10), and (3.20) into Eq. (3.37) gives

ically reasonable. They [especially Eq. (3.39)] are con-
sistent with the conclusion, drawn from Eqs. (3.14), (3.15),
and (3.21), that IF intervenes between Pr and CF (thus the
direct transition Pr~CF is not real). Equations (3.38),
(3.32), and (3.39) indicate the following. Dgg and Ds~
are positive below Tp. D is positive below T2 and nega-
tive between T2 and Tp. Thus, below Tz, CF is stable
against every form of variation of Q& and R~. Between
T2 and To, CF is stable against variation of only Q~ and
of only R~, but not stable against every form of simul-
taneous variation of both Q~ and R~. Therefore, a phase
with Q~,&0 and R»&0 should intervene between Pr and
CF, covering some temperature range that contains the
range T2 (T(Tp.

A remark is made upon Eq. (3.41). This equation cor-
responds to Eq. (2.43) for K2Se04. Equation (2.43) con-
tains the coefficients B2z and C22. In the case of NaNO2,
the corresponding coefficients have been omitted. In the
case of K2Se04, if analogously Bz2 and C22 are omitted,
Eq. (2 43) becomes

where Tz is a characteristic temperature defined by

+(TO T2) z (~02C20/C02)(p (3.40)

(Ti —To)/(Tp —Tz) =1 .

Obviously, T2& To. The ratio between Eqs. (3.15) and
(3.40) is

(Ti —Tp)/(Tp —T2) =2 . (3.41)

Now, the direct transition Pr —+CF is imagined. Ac-
cording to Eqs. (3.20) and (3.21), CF is possible only
below Tp, and the Pr~CF transition temperature is Tp.
Equations (3.38), (3.32), and (3.39) are thought to be phys-

Compare this equation with Eq. (3.41). It is of interest
that their right-hand sides are different integers, 1 and 2.
(Instead of 1 or 2, another number may appear for a sub-
stance other than either K2Se04, or NaNOz. )

In this paper I have offered new views (i.e., the third
views) of CF and Pr, and have explained theoretical
grounds for their reasonability. I intend to soon investi-
gate the question of whether there can be any conclusive
experimental evidence of the reasonability.

The concepts of prototype, prototypic phase, and ferroic phase
were explained in several papers, including K. Aizu, Phys.
Rev. B 2, 754 (1970); 23, 1292 (1981). For convenience the ex-

planation is repeated here. When a prototype is given as a
structure, any phase that is a slight distortion {in atomic con-
figuration) of the prototype is a ferroic phase. Distortion im-

plies lowering in symmetry. The prototype itself is not a
slight distortion of any other structure. If there exists a phase
that is an equisymmetric slight modification of the prototype,
it is the prototypic phase. The atomic configuration of the
prototypic phase varies with temperature and pressure, while

the atomic configuration of the prototype is fixed. If one

phase, a, is a slight distortion of another phase, P, and P is a
slight distortion of a third phase, y, then p is not recognized
as the prototypic phase of a, but both P and a are recognized
as ferroic phases derived from some common prototypic
phase, which is y if y is not a slight distortion of any fourth
structure. Various terms have been used by different authors.
Prototypic phase is exactly or roughly synonymous with origi-
nal phase, initial phase, parent phase, mother phase, normal

phase, high-symmetry phase, high-temperature phase, etc.
Ferroic phase is exactly or roughly synonymous with distort-
ed phase, final phase, child phase, daughter phase, low-

symmetry phase, low-temperature phase, etc. Some of these
terms are not very clearly defined.
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