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Percolation theory for nonlinear conductors
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Under broad conditions, a network of nonlinear conductors has an I- V characteristic uniquely
determined by Kirchhoff's rules. By means of a renormalization calculation, we show that near the
percolation threshold the details of the microscopic I- V characteristic are averaged out, so that the
bulk material approaches power-law conductor behavior (V=I ). The threshold exponents t(a)
and s(a) are discussed in the limiting cases of two dimensions (where they are related by duality)
and high dimensionality (by solving the Cayley-tree model).

I. INTRODUCTION

In a previous publication' we discussed the behavior of
a random network of nonlinear conducting elements hav-
ing an arbitrary I-V characteristic. We showed that this
system can be discussed in terms of the exponent theory
of the percolation conductivity problem, but with the ad-
ditional complication that the I-V curve for a network is
not the same as that of its component parts; indeed, it is
not clear how it can be calculated in general. There are
two special cases in which the problem simplifies.

(1) Power-law conductors, for which

V=r ~I
~

sgnI,

give a simple generalization of the percolation problem.
The I-V characteristic for a random network of such ele-
ments, all having the same value of a (but arbitrarily
chosen coefficients r), is also a power law in the exponent
CX.

(2) Near the percolation threshold the I Vcharacteristi-c
of any nonlinear network composed of monotonically in-
creasing V(I) reduces to a power-law form:

(1.2)

where L is the length of the sample, A is the cross-
sectional area, and p,ff is the appropriately generalized
resistivity, and in this limit

p.rr- I p p.I—
where the exponent ~ depends on dimensionality and on a
but is otherwise universal. In addition to arguments in
support of these conclusions, we gave some discussion of
dependence of v on a and dimensionality.

In the present paper we will use renormalization
methods to discuss the functional form of the I Vcharac--
teristic near threshold, giving support to the second asser-
tion above; we will find the high-dimensionality limit
form of ~(a) by considering the Cayley-tree model; we
will note the implications of duality in two dimensions;

we will discuss the generalization of the hyperscaling rela-
tion to the present problem.

It is useful to define the conductivity

II. KIRCHHOFF'S RULES AND UNIQUENESS

The current distribution in a random network with
fixed voltage boundary conditions is determined by the
generalization of Kirchhoff's rules: We seek an assign-
ment of potentials to the nodes of the network such that
the currents in each link (determined by the potential
difference across it and by its I-V characteristic) satisfy
the condition that the net current into each node is zero.
With the condition that the dependence of I on V is
monotonically increasing, this assignment is unique, as is
readily shown: define

G;,(V)= f I;,(u)du (2.1)

for each link and construct the function

S= gG,,(V, —V, ) .
17J

(2.2)

Since each of the functions G;t is bounded below, so is S,
and S has a minimum. The existence of this minimum is
equivalent to the existence of a solution to Kirchhoff's
equations, as can be seen by explicitly calculating the par-
tial derivative of S with respect to a site voltage: The

&=IIA =tr, rr ~

V/L
~

' sgn V

and its exponent

trerr-(p pc) ~—
where obviously p,g ——o.,g and ~=at. This is particularly
important because the two limits a~O and u —+ op can be
identified, respectively, with the varistor (or bipolar Zener
diode) and the saturating conductor (it also describes the
critical currents of superfluid or superconducting net-
works); thus the values of w(0) and t(ao) have already
been discussed in those special contexts.
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mathematical statement that the derivative vanishes be-
comes translated into the physical statement that the
currents balance into the node.

To demonstrate uniqueness we suppose that there were
two minima of S for voltage assignments [V;" j and

I V j. Then $ would also have a saddle point at V 'j,
since along any path in t Vj space connecting I V;" j and

[ V 'j the value of S would have a maximum [allowing
V; to depend on a parameter k by the rule
V;=V;"'+A,(v ' —V") generates such a path]. This
saddle point would also be a solution to Kirchhoff's equa-
tions (again BS/BV;=0). In the case that I(V) is dif-
ferentiable with a positive definite derivative, it is readily
shown that no such saddle point can exist, since S can be
expanded in a series

s= s"+ g aG,, /a(v, —v, ) ~, (v, —v,
'"—v, + v,")

l,J

+pa'G, J/a(v, —v, )'~, ( v, —v,
"—v, +v,")'+

(2.3)

where the linear terms must cancel because Bs/BV; does,
and quadratic terms are all positive since
d G(EV)/Bhv =BI(b,v)/Bb, v is positive. Since more
general I(V) can be approximated arbitrarily closely by
differentiable functions, the proof of uniqueness is readily
generalized.

In the limiting cases where BI(b,v)/Bb, v=0 for a
range of its argument, one readily produces examples
wherein the solution set [ V; j is not unique, but the
current distribution is then the same for all solutions; like-
wise discontinuous I( V) (so that Bv/BI =0) can lead to a
multiplicity of current distributions with a unique [ V; j.

The fact that solving Kirchhoff's equations is
equivalent to minimizing S underlies the applicability of
the relaxation method to these problems: For any distri-
bution I V; j that is not the solution set, there must be a V;

for which Bs/8 V;+0; then it is possible to change the V;

so that S decreases. Thus the algorithm must converge.
Redner and Mueller recently claimed that the relaxation
method failed for diode networks, but this claim is based
on a faulty algorithm which failed to check whether the
replacement V; is better (in the sense that S is smaller)
than the original value. A minor change in the algorithm
solves the problem.

III. DUALITY IN TWO DIMENSIONS

Two-dimensional networks, by virtue of their topology,
have a special property ("duality" ) which constrains their
behavior. The underlying geometric principle is as fol-
lows: Consider an arbitrary planar network of sites con-
nected by bonds; the bonds subdivide the plane into
polygons. Now choose the center of each polygon as the
sites of the dual network, and join the dual sites by dual
bonds if the corresponding polygons share an edge. The
dual of the dual network is again the original network,
and every bond intersects exactly one dual bond.

The implications of duality for linear networks have al-

ready been noted, " and the basic construction also ap-

plies to the present problem: Given a potential I V; j de-
fined on the nodes of the original network which satisfies
Kirchhoff's equations, one can construct another function

I W; j on the dual network such that the potential differ-
ence 8'; —8'J between neighboring dual sites is the
current flowing on the bond (of the original network) that
separates the dual sites, and a corresponding dual current
distribution which is equal to the potential difference
V; —VJ between the corresponding network sites. The
dual current is related to dual potential difference by the
same function that relates potential difference to current
in the original problem:

Id~/ ——f(b, 8') ~hv= f(I)~I=f '(b, v) . (3.1)

The implications of this result are best appreciated by
considering a specific problem: a lattice of power-law
conductors [described by Eq. (1.1)], a fraction x of which
have been replaced by nonconducting links, but with

p = l —x greater than the percolation threshold so that the
conductivity is nonzero. The problem dual to this is
another lattice of power-law conductors, but now
described by

V=r ' ~I
~

'~ sgnI (3.2)

[which is the same form as Eq. (1.1) but with a different
power law], a fraction x of which have been replaced by
links of infinite conductivity, but with x less than the per-
colation threshold so that the conductivity is finite. As x
approaches the percolation threshold, the conductivity of
this latter problem will diverge, so that we might define
o - (x, —x )

' to describe it; then it is implied by (3.1) that

or

dual I original (3.3)

s(1/a) =~(a) =at(a) . (3.4)

IV. RENORMALIZATION OF THE I-V
CHARACTERISTIC: THE POWER-LAW CASE

I=g;
~

V~
'~ sgnV, (4.1)

where the coefficients g; are chosen independently from a
distribution P(g). The V characteristic of the cell also
has this form, with

We consider random networks of power-law conductors
in which all elements are described by the same exponent

a, but with randomly varying coefficients r; Since any.
two-terminal network of this sort is electrically equivalent
to a single power-law conductor, ' the renormalization
scheme is relatively simple and very similar to what has
been done in the linear case. Indeed, our principal reason
for discussing this problem is to introduce the concepts
which will be needed to treat the general problem in the
next section.

We then proceed as usual ' a small network ("cell")
is chosen, and also a slightly arbitrary rule for determin-

ing its conductivity. For example, consider the cell shown
in Fig. 1 (inset). Let the four elements of the cell that we
have chosen have characteristics of the form
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til P' also had 6180 nonzero elements. Repeating this
transformation ten times gives a sequence of distributions
with corresponding averages (g)p, and the ratio of suc-
cessive averages

2

0
I

5

FIG. l. Conduction exponents t(a) and av.(a) given by a
simple two-dimensional renormalization transformation. Inset:
the renormalization cell used.

(4.6)

gives a series which converges to A, .
Figure 1 shows the results of performing this calcula-

tion for various values of u. In our previous paper' we

gave another example based on a different cell. The re-
sults look different because in the present case ~(0) is ex-

actly zero [so that t(0) is finite], whereas in the previous
example ~(0) was small but nonzero.

The limit +~0 is best represented by the bipolar Zener
diode ("spark gaps" in Lobb's terminology the item of
commerce is called a varistor}, which switches from non-
conduction to conduction at an onset voltage Vo. A ran-
dom network of such devices would have a critical voltage
whose concentration dependence near the percolation
threshold is of the form

(4.7)

gcell=(g 1 +g2 ) +(g3 +g4 (4.2)

the distribution of values received defines a new distribu-
tion P' (g„~&); the process as a whole defines a transfor-

mation T which generates P' from P.
One of the effects of this transformation is to change

the fraction of elements p for which g is nonzero. This
aspect is described by conventional percolation theory
with the result'

T(P'(g))=AP'(gA, ) . (4.4)

This is also the g distribution of a large network near the
percolation threshold.

The value of the conductivity exponent t(a) can be ex-
tracted from A, by the rule

b t/vb —(d —1)+i/a (4.&)

The second term arises because the g„~~ is the conduc-
tance of the cell (rather than its conductivity), which has
an explicit dependence (g-Al. '/ ) on cell size in addi-
tion to the dependence implied by scaling.

The transformation T was implemented by computer as
follows: The distribution P was represented by an array
of 10000 values (of which only 6180 were nonzero), and
values were chosen from it at random to construct cells.
The conductances of these cells [as given by Eq. (4.2)]
were stored in an array I",new cells were constructed un-

(4.3)

where b is the size of the cell (b =W2 in our case) and v
and p, are approximations to the correlation exponent and
percolation threshold. For the cell chosen, p, =0.618 and
v=0.818, which are to be compared to p, =0.5 and
v= 1.33 for the two-dimensional bond problem. Better re-
sults are obtained with larger cells.

At p, there is a distribution P'(g) for which the only
effect of Tis a shift of scale of g,

Physically, the onset voltage is determined by the shortest
conducting path, and so our result is that the ratio of arc
length to end-to-end distance of the shortest conducting
path is only weakly dependent on P —p, .

The exponent t(0) is almost meaningless: in general,
t(a) describes the concentration dependence of the current
at fixed voltage, but in the limit a—+0, the current is ei-
ther zero or extremely large, depending on the voltage lev-
el chosen. Thus the discrepancy between t(0) 1 (here)
and t(0)= oo (previously) is artificial. Furthermore, in the
present case r(0}=0,because all paths through the renor-
malization cell are of the same length=learly a special
feature of the case chosen. Thus this result should not be
taken as support for Lobb's conjecture' that r(0) =0; the
small-cell renormalization study presented previously does
not contradict it either (Lobb's conjecture was based on
results derived from large renormalization cells).

V. RENORMALIZATION OF I-V
CHARACTERISTIC: THE GENERAL CASE

In the case described above, the functional form of the
I-V characteristic could be described by just two parame-
ters (g and a), only one of which was affected by the re-
normalization, and thus the problem reduced to the deter-
mination of a one-dimensional distribution P(g). More
general functional forms can be treated by the renormali-
zation method by considering a larger parameter set. For
example, it would be very interesting to study the
behavior under renormalization of functions of the form

for chosen values of pi and p2. Functions of this sort can
be represented as a vector (gi,g2), and the analysis would
focus on the evolution under the renormalization transfor-
mation of distributions in this parameter space. This par-
ticular example is unworkable, however, because the func-
tions generated by the renormalization transformation
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will, in general, fail to have a form that can be represented
by two parameters (gi,g2): this subspace of the set of all
functions is not closed under renormalization. It seems
quite likely that the only closed parametrizations are in-
finite, however, it is a reasonable approximation to use a
large finite set and project the functions produced by the
renormalization back in this set. We chose to represent an
arbitrary I-V curve as a vector of values of I for the 30
values

I.Q

V„=2 "i, n=0, 1, . . . , 29 (5.2)

(which spans approximatdy three decades of voltage with
lagarithmically spaced intervals), and determined the
current for other values of the voltage by interpolation or
extrapolation. The function I' was represented by 1000
vectors, which initially was either the function

r

V, /Vf ~1
sgnV, i

V
i
) 1

(5.3)

I.Q

0.9

O. l 0.8
0.5

(with probability p) or the zero function. The renormali-
zatloil transformation chosen was t11e parallel combina-
tion of series elements described above. Unlike the previ-
ous case, however, the fraction of conducting elements
was above (rather than at) the percolation threshold.
Under these circumstances, iteration of the renormaliza-
tion transformation eventually produces a distribution for
which every element has the same I Vcharact-eristic,
which can be taken to be the I-V characteristic for a bulk
sample whose microscopic structure is described by the
initial distribution. These functions for various p are
shown in Fig. 2.

Figure 3 shows another exaiiiple. The I-V cllaracteris-
tic for the conducting elements (the top curve) was chosen
«be irregular in form. Dilution with nonconducting ele-
ments causes the irregularities to be smoothed out.

These results show that far from p, the bulk I-V
characteristic is very similar to that of the conducting ele-
ments, but as p, is approached, it becomes more feature-
less. Power laws, which are straight lines in the logarith-
mic representation, are unchanged by the renormalization

I

0.05
I

Q. I

I

0.5
I

I.O

FIG. 3. Same as Fig. 2, but with a different initial I-V
characteristic. This suggests that near p, arbitrarily complicat-
ed functions give rise to power laws plus a smooth crossover.

(except for a vertical shift), and close to p, the I-V
characteristic has reduced to a high-field power law, a
low-field power law, and a smooth transition between
them.

VI. CAYLEY-TREE MODEL

(6.1)

The Cayley tree is an infinite branching network with
no closed loops. Locally it resembles a regular lattice in
that each site is connected to z others, but globally it does
not, since the number of nth neighbors grows exponential-
ly [as z(z —1)" '] rather than as a power law (=n" ');
the network cannot be embedded in a lattice of finite
dimensionality.

It has often proved useful to study network problems
on the Cayley tree. Owing to the fact that the tree can be
defined recursively, it is possible to find the conductivity
exponents for the linear percolation problem exactly. '

The exponent values received ar'e those appropriate to an
infinite system and therefore also to a system above the
critical dimensionality (d =6). The discussion of con-
duction problems on the Cayley tree is conveniently divid-
ed into three steps.

The first step determines the geometric properties of a
random tree. This does not depend on the nature of the
conducting bonds, and was solved by Essam and Fisher. '
The principal results are that the percolation threshold for
a tree of coordination number z is given by

and that for p )p, the probability that a given site is con-
nected by a particular bond to an infinite cluster is

(6.2)

FIG. 2. Concentration dependence of the I-V characteristic
foI an inhoIIlogeneous conductoI' as given bp a renorIIlallzation
transformation,

The probability that the site is not connected by any of its
outgoing bonds to an infinite cluster is (1—e), since the
outgoing paths are independent.
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For the second step we assume that the tree is grounded
at infinity, apply a unit potential at an arbitrary site, and
define the "conductivity along a bond" as the current that
flows out along one of the outgoing bonds. This quantity
will depend on the environment of the site chosen, so that
we must discuss its probability distribution P(g) In. view
of the results of the geometry problem, we may assume

l

this has the form

P(g) =1 e—+eH(g) . (6.3)

Since an outgoing branch can be decomposed into the first
bond in series with the parallel combination of (z —1)
branches, a recursion relation for P can be written as

P(g)= J@g—Igo(gi+ +g. I)]/lgo+(gi+'''+g 1)—]' )Q(go)P(gi)'''P(g

where the integration is over all the g;, and

Q(g) =(1—p)5(g)+pb(1 —g)

(6.4)

(6.5)

is the distribution of bond conductivities. From this recursion we can derive a recursion for the average of g over H,

(g&H ——(z —1)pe(1 e)' (g—/(1+g )' &H+p(z —1)(z—2)e (1—e)* (((gi+g2)/[1+(gi+g2) ]' &H &H, (6.6)

+p(z —1)(z—2)e (g &H (6.8)

or

P&g +'&H =~(P P. )&g &H— (6.9)

If we now assume that near p, the p dependence of H can
be represented by

H(g) =(p —p, ) "f(g(p —p, ) "), (6.10)

where f is independent of p, Eq. (6.9) determines x to be
1/u, so that

where terms higher than second order in e have been
omitted, and the notation

(f(g)& = J f(g)H(g)dg (6.7)

has been introduced. Near p„ the range of g will be
small, and Eq. (6.6) can be further simplified as

& g &H= (z —1)pe[i —(z —2)~]&g —rz 'g +'&H

This is not the same as the effective conductivity g,ff,
however, which was defined above [Eq. (1.4)] as the aver-
age current density per unit applied field, and which also
determines the average power & dissipated per unit
volume,

H =(I//I )(V!L)=g,rr( V/L )'+' (6.14)

In either case the important point is that the geometry of
the applied field and the boundary conditions at infinity
are completely different from the case just considered.

We can estimate the form of g,rr by an argument simi-
lar to that just given for the conductance along a bond.
The potential difference across a chain will be determined
by the geometrical distance g between the ends of the
chain, which is less than the length W of the chain be-
cause the chain is twisted. In the high-dimensionality
limit, the chain performs a random walk in space. Then

g =W and the current carried by a chain is

I,ha)„(g'V/L W)' ——=(p —p, )' ( V/L )', (6.15)
& g &H—-(P —P.)" (6.11)

( V/2W)'/ =V'/ (p —p, )

which is then an estimate for (g &H.

(6.13)

and

& g &,=(p —p.)"'". (6.12)

This result agrees with that of Stinchcombe' in the case
a =1 that he treated; the method is essentially the same as
that of Heinrichs and Kumar except that the use of La-
place transforms has been avoided.

The results (6.11) can be achieved by a simpler argu-
ment. Near the percolation threshold, the current-
carrying paths are long simple chains, and sites at which
the current divides are relatively infrequent. A simple
agrument shows that the chain length is of the order of
e '=(p —p, ) '. If we ignore the existence of sites where
four finite paths join (which occurs with probability F. ),
then one-half the applied voltage drop is between the ori-
gin and the first branch site, and the current in the chain
1s

p[(p p )1/2a( V/L )1/a]1+a

(p p )(5+1/a)/2( V/L )1+ 1/a

Comparison with (6.14) then gives

)(5+ I/a)/2

(6.16)

(6.17)

To use the definition (6.14) to calculate geff we Illllst
appreciate that the current density J is different from the
current I,h„„carried by the chain, because a given link of
the chain is almost as likely to be carrying current in the
backward direction as forward (as defined by the direction
of the applied field), and because the chain will carry no
current unless both ends are connected to the infinite clus-
ter. The fraction of bonds pointing forward exceeds that
of the backward bonds by ' g/W, and the probability that
the chain carries any current is e, so

except that the chain can carry no current at all unless
both ends are connected to the infinite cluster, which
occurs with probability E =(p —p, ) . Then the average
power dissipated in a link is
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J=(g/W)I, i,„„e=(p p—)"+' ' (V/L)' (6.18)

which agrees with (6.17).
In the linear case it was possible to define and solve a

recursion relation for J; the result was geff (p —p, )
which agrees with (6.18), since a= 1 in this case. The dis-
cussion given here is implicitly present in the former dis-
cussion when one looks at which terms were kept and
which were deleted, except that in that case it was possible
to calculate the required averages in a more explicit
manner. We were not able to treat the nonlinear problem
this way.

A similar discussion can be given for the exponent s,
which characterizes the divergence of the conductivity of
a mixture of unit and infinite conductors as the threshold
for percolation of the "super" elements is approached
from below. Now the relevant geometrical fact is that
highly conducting clusters of average diameter

g=(p, —p)'/ are separated by only a few links of finite
conductivity. Thus the potential drop across these boun-
dary links will be proportional to g and the applied field
V/L, giving a current

The lateral chain spacing is also g, and so the current den-
sity is I/A =(gV/L W}'~ g', giving

t(a) = (d —1)v+ (g—v}la . (7.2)

This model has been criticized on the grounds that the
topology is overly simple. However, it does have the ad-
vantages that (1) Eq. (7.2) fits all estimated values for
t(d, a) with g(d, a) showing very little dependence on d or
a, and (2) the equation correctly predicts the high-
dimensional behavior: it becomes exact at d*=6, with
v'= —, and g" = l. Alternate models that have been pro-
posed are much less satisfactory in this regard.

A corresponding relation for s(a) can be given by as-
suming that Eq. (6.20}, which was derived for the Cayley
tree, can be meaningfully used at finite dimensionality by
defining W=(p, —p) ~ and g=(p, —p) "with the same
exponents as before. The assumption with regard to g is
standard; the other assumption is more suspicious since
the property used in Eq. (6.20) is the arc length, rather
than the resistance (which are the same thing only for per-
fectly one-dimensional chains of the Cayley model). Set-
ting aside the objections, we come to the relation

Iw„„~~—(g V/L )
' (6.19)

s (a)=v+ v/a —g, (7.3)
This current is almost as likely to be antiparallel as paral-
lel to the field; the same argument introduced above im-
plies that the average current in a finite conductivity cir-
cuit element is

which can be combined with (7.2) to give

at(a)+s(1/a) =dv, (7.4)

s(a) =(1—a)/2a . (6.21)

VII. DIMENSIONALITY DEPENDENCE

Skal and Shklovskii and de Gennes have given a
model which describes percolating systems. They en-
vision that the current-carrying parts of the cluster can be
idealized as chains of conductors —possibly multiply
stranded, but essentially one dimensional in nature of
resistance W=(p —p, ) ~, which join at nodes with aver-
age spacing g=(p —p, ) ". The voltage difference across
the chain is approxiinately g V/L, and the current carried
by a chain can then be estimated from the generalized
Ohm's law

(7.1)

J=(g/~)(g V/L )' =(p, —p)' "
( V/L)', (6.20)

giving

which is a generalization of the relationship s+t=dv
proposed previously for the linear case. It is the only
generalization which is consistent with the high-
dimensionality results (6.17) and (6.21).

Equation (7.2), combined with Lobb's conjecture' that
r(0) =0 in two dimensions, would imply g=v=t(a); this
is also forced by the combination of (7.4) and the dual re-
lation (3.4).

In some respects (7.4) strengthens the case for the
hyperscaling relationship, since it includes the functional
forms for s(a) and t(a); however, in other respects it
weakens the case; in particular, the arguments originally
advanced for the relationship would give a different com-
bination of s(a) and t(a).
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