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The leading curvature correction 5 to the surface tension of a large spherical fluid drop at equili-
brium is defined by o.=o.„(1 —25/E + ), where 8 is the drop radius. When the two coexisting
phases are symmetric, 5 is shown to vanish exactly at all temperatures T. By using Landau theory
and expanding in powers of 1 /R, we derive an explicit expression for 5 in terms of the planar inter-
facial profile. In the presence of asymmetry and within Landau theory, 5( T) approaches a constant
value 5, (of the order of atomic dimensions), as T~T, . We propose a scaling hypothesis for the
exact critical behavior of 5( T) beyond Landau theory, when fluctuations are important. There are
two terms: One arises from field mixing and goes as

~

t
~

' o ", depending on bulk relevant ex-
ponents only [t =(T T, ) /T,—]; the other arises from true, non-Ising asymmetry and goes as

85—v

~

t ~, where 85 is the leading asymmetric correction-to-scaling exponent. Observation of the crit-
ical behavior of 5( T) would provide information about the irrelevant exponent Oq.

I. INTRODUCTION

In recent years much progress has been made in under-
standing the statistical properties of planar fluid inter-
faces. ' By contrast, the theory of curved interfaces, al-

though given a solid thermodynamic base more than 30
years ago, has received comparatively little attention.
Here we address spherical fluid interfaces and focus in
particular on the curvature correction 5 to the surface ten-

sion, defined through

cr=cr [1 2(5/R)+ —], R ~ oo

where R is the radius of curvature and cr„denotes the
planar surface tension. We restrict our attention to one-

component fluids.
In Sec. II we recall briefly some standard thermo-

dynamic results ' for the surface tension of a spherical
drop. We study a general Landau or square-gradient
theory in Sec. III A and derive the expression

It is argued in Sec. IV that the vanishing of 5 for sym
metric systems is a general result and not merely an ar-
tifact of Landau theory. On this basis we propose in Sec.
IV B a scaling hypothesis for the critical behavior of 5(T)
beyond Landau theory, where fluctuations play an impor-
tant role. There are two terms. One is associated with the
asymmetry which at the Landau-theory level takes the
form P(V'P) . This leads to field mixing and gives a con
tribution to 5 of the form

~

t
~

' ~ ", which has a weak
critical divergence in three dimensions. The other arises
from the asymmetry which at the Landau-theory level is
expressed in the P term of the free-energy density. This
gives a contribution of the form

~

t
~

' near criticality,
where 85 is the leading odd correction-to-scaling exponent.
85 has been computed ' to order e' (for dimensionality
d =4—e), but the series is poorly convergent, so that it is
not clear which of the two terms dominates the critical
behavior of 5(T).

II. THERMOD YNAMICS

Z ZPO Z

f dz po(z)

ZZ Pp Z

f dz [po(z)]
(1.2)

which involves only the derivative of the planar density
profile po(z). This and related Landau-theory results are
found to be consistent with various thermodynamic ex-
pressions for 5.

It follows from (1.2), as discussed in Sec. IIIB, that
within Landau theory 5 vanishes identically for systems
which are symmetric under interchange of the two phases
(e.g. , an Ising system, but not a real liquid-gas system). A
description of real fluid drops consequently requires the
retention of asymmetric terms in the Landau theory. As
T~T, , the curvature correction 5(T) is then found to
approach a constant value.

It will prove helpful to review some of the standard
thermodynamic results for spherical drops. ' Consider a
large spherical drop in the interior of a fixed volume V
containing X particles at an overall temperature T and
chemical potential p. The conformation of the drop is
fixed by X, V, etc.; however, on a microscopic level the
density profile varies smoothly across the interface, and so
the "radius" of the drop is only defined geometrically to
within a distance of order the interfacial width and must
therefore, be fixed by convention. The usual approach is
to introduce a spherical Gibbs dividing surface with a ra
dius R which is deemed to separate the bulk phase within
the drop from the external phase. The surface tension and
other properties are defined with respect to the particular
dividing surface chosen. For example, the surface tension
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where o„ is the planar surface tension. The thermo-
dynamic analysis ' now allows us to make two state-
ments. The first is that, for fixed N, V, and T (i.e., fixed
R, ), cr[R] has a minimum at R, with

R —R,
cr[R]=o; 1+0

JR$
(2A)

so that, when R differs from R, by a small distance such
as the interfacial width, o[R] differs from cr, by order
I/R, . This means that 5 (but not, for example, the coeffi-
cient" a) should be independent of the choice of R. The
second thermodynamic statement relates 5 to the separa-
tion in the planar limit between the surface of tension R,
and the equimolar dividing surface R„'3

5= lim (R, —R, )—=z, —z, .
ao

(2.5)

Here, the z axis is taken perpendicular to the interface,
with positive z pointing away from the center of curva-
tllre. Assuming tliat, tlM llIIlit exists, Eq. (2.5) demon-
strates explicitly the convention-independence of 5.

%'e note in passing that some doubts have been ex-
pl'essed abollt relatioII (2.5) aIlcl the qllaIltltles it coiltaills.
The issue is that certain quasithermodynamic argu-
ments'"' have lead to apparent ambiguity in the evalua-
tion of z„which would then infect 5 via Eq. (2.5). Rowl-
inson and Widom' argue that the difficulty probably lies,
not with the thermodynamic result, but rather with the
mechanical definition used for z„which differs from Eq.
(2.2). Recent numerical mean-field results for the pene-
trable sphere model' find consistent values of 5 from
(2.3) and (2.5) and tend to confirm this view. In the next

for the drop o can be defined through the total Helmholtz
free energy

F= p—~V~ p—~V~+pN+4IrR cr[R], (2.1)

where p,p~ and V, V~ (V + V~= V) deiio'te tlie ples-
sures and volumes of the two bulk phases The di»ding
surface is introduced strictly for computational conveni-
ence, and observable physical quantities such as E, p,p~,
and p must be independent of its placement (for fixed N,
V, and T). If these variables are to be independent of R,
it is clear from (2.1) that the value of the surface tension
must depend on the choice of the dividing surface. This
dependence is normally denoted o[R], where the square
brackets are used to stress that the variation of R is just
that of the radius of the Gibbs surface and does not corre-
spond to a change in the size of the physical drop.

Suppose we choose for reference that particular divid-
ing surface (the "surface of tension") which makes the La-
place equation exact (a is the interior phase):

2o [R,]
~$

We are certainly free to hypothesize that, for large
drops,

o, =o[R,]=cr„—1—25 a

section we calculate 5 from (2.3) and, independently, z,
and z„all within the context of Landau theory. We find
that the equality (2.5) is satisfied .Hence, within the ap-
proximations of Landau theory, there seems no reason to
doubt the validity of (2.5) or the existence of the limit on
which it rests.

III. LANDAU THEORY

A. General

In Landau theory one assumes the existence of a
Helmholtz free-energy functional of the form

F[p( r )]= f 1 r [m ( V'p)2+ f(p)], (3.1)

where p(r) is the single-particle density. The Helmholtz
free energy per unit volume for a fluid constrained to have
uniform density p is denoted f(p) and below criticality is
assumed to have the usual double-well structure. The
temperature dependence enters through m and f(p). In
the canonical prescription used here one must perform a
functional minimization of F over p(r) under the con-
straint that the total number of particles is fixed. This
yields an equilibrium density profile and the correspond-
ing Helmholtz free energy. With the free energy F in
hand, one may use (2.1) to determine the surface tension.

Before using (3.1) to describe equilibrium spherical
droplets, we briefly discuss the appropriate statistical en-
semble needed to insure the formation of an equilibrium
drop. In most problems in statistical mechanics the grand
ensemble and the canonical ensemble give identical re-
sults; however, when dealing with two-phase coexistence,
this is no longer true. As noted by % eeksl7 18 in his dis
cussion of planar interfaces, the canonical ensemble is
both more practical and more natural than the grand-
canonical ensemble. Indeed, when a physical system is in
contact with a particle bath of chemical potential p, a
stable equilibrium droplet will not form. The device of
introducing a small gravitational field, often used when
modeling a planar 1nterface j.n the grand-canonical ensem-
ble, has no convenient generalization for spherical drops.
Even in the canonical ensemble it is impossible to stabilize
a finite-size droplet in equilibrium after taking the ther-
modynamic limit. The free energy can always be reduced
by spreading the excess density due to the droplet uni-
formly throughout space. In a system of finite volume
with a fixed number of particles, however, one can have a
spherical drop in stable equilibrium. It is important to
realize that the difference between the two ensembles
when discussing two-phase equilibria is not an artifact of
statistical mechanics, but rather a refiection of the fact
that the physics of a system in contact with a particle
bath will indeed be different from that of one with fixed

In the canonical ensemble we look for solutions describ-
ing a spherically symmetric droplet which minimizes E
while maintaining a fixed number of particles in the sys-
tem. The method of Lagrange multipliers requires us to
make stationary the functional

Q[p]=F[p]—p J d rp(r), (3.2)
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where p is chosen so that the profile satisfies the canoni-
cal restriction. When the need arises, we shall assume the
cell to be spherical in shape with 0&

i
r

i
&L and

V =(4m/3)L . We require L ))R for all drops, so that
the interface is always far from the cell boundary. Denot-
ing the chemical potential required for formation of a pla-
nar interface between the two phases by )((,„,and defining
f (p) =f(p) pp —yields

Q[p]= f d r[m()7p) +f(p) App]—, (3.3)

where Ap =p —p„. The quantity

Notice that, although r is restricted in the original prob-
lem to 0& r &L, the functions po(r), p, (r), and p2(r) have
natural continuations to —oo &r & 0(). In what follows
we shall frequently use the extended boundaries r —++ 00
in place of r~O, L, anticipating errors which are ex-
ponentially small for R and L —R large.

Results for R ~ 00 follow directly from po(r). Equa-
tion (3.9) shows that m (po) —f is independent of r. Sub-
stitution in (3.1) and comparison with the definition (2.1)
gives the Landau-theory result for the planar surface ten-
sion,

o)(p) =f (p)—p~p— (3.4) (T =2m f dr [p()(r)] (3.12)

is the grand free energy per unit volume, which for a uni-
form system equals the negative of the pressure. Assum-
ing spherically symmetric solutions with the center of the
droplet at the origin and setting 5Q/5p(r)=0 gives the
Euler-Lagrange equation,

p"(r)+ 2p'(r) 1 Bf
2m Bp

—hp (3.5)

To compute the free energy we must, in principle, solve
for the density profile with appropriate boundary condi-
tions and insert it into (3.1). Comparison of (3.1) with
(2.1) then gives 0.[R], once the drop radius R has been re-
lated to hp.

To find the curvature correction 5, it suffices to study
large drops, which suggests treating 1/R as a small pa-
rameter. In this spirit we expand'

p, (r) p, (r)
p(r) =p()(r)+ + +R R2

(3.6)

and

(3.7)

1 1 r —R1— + ~ ~ ~

r R r

Using Eqs. (3.6)—(3.8)
1/R, we find

1 ()f
p()(r) =

2m Bpo

in (3.5) and collecting powers of

(3.9)

1 d'f ~p)
p) (r)—,p)(r) = —2po(r)—

Bp() 2m
(3.10)

Ap] hp2
Ap=

The zero-order term po(r) is the profile for an appropri-
ately centered planar interface (1/R =0). The zero-order
term in h)M vanishes, since Laplace's equation (2.2) shows
that hp —I/R-b, )M. Finally, we expect that, far from
r =R (the interface), g(r) will be constant up to correc-
tions of order e i" ii~. Thus, over the interesting re-
gion r-R we may expand in the second term on the left-
hand side of (3.5),

To obtain an expression for hp&, which is needed to com-
pute 5, we multiply (3.10) by po(r) and integrate by parts
twice to obtain

00 () 1 8'f
rpi r

2
—

2 po r
(X) ()r 2m ()p()

00 Ap i ao= —2 f dr [po(r)] — f dr po(r) .

(3.13)

The contributions from the end points of integration van-
ish under the assumption that p)(+ 00 ) is finite. The left-
hand side of (3.13) vanishes identically, since the bracket-
ed part of the integrand is just the derivative of (3.9).
Hence, using (3.12),

hp, i
———20 „ f dr p(')(r) . (3.14)

Notice that a droplet of the dense phase has hp» 0, since
po(r) is negative for all r; conversely, hp& &0 for a droplet
of the less-dense phase.

Specializing to the case of an a-phase drop, we now ex-
press F in the form

F[p]=4m. f dr r [m[p'(r)] +co(p) —co(p ) j

+4' rr m p r +co p —N pp

+ V o)(p )+ V~~(pp)+p&,

where V =—', n.R, V~= —', n.(L —R ), and the integrands
have been arranged to decay to zero far from the interface
at r =R. The densities at the two minima of (o(p) [Eq.
(3.4)] have been denoted p and pp and satisfy
p = —(o(p~) and p~= —(o(p&). Comparison of (3.15)
with (2.1) shows that the sum of the first two terms on the
right-hand side must be identified with 4~R o[R]. In or-
der to pick out 5, we now expand these terms in powers of
1/R, using (3.6)—(3.8). We can then extend the limits of
integration to +~, introducing an error which is only
0 (e i~) and has no effect on the 1/R expansion. ' The
surface tension is finally found to be

()2
p2'(r) —

& p2(r) =2(r —R)po(r) 2p')(r)
2m ~po2

+
2 2, [P)(r)] —~) 2

1 1 df
2m 2 Qp0

(3.11)

o[R]=o 1 — +O(g'/R')+0(e '&)25

o „is given by (3.11), and 5=I) +I2+I3 with

(X)

I) ——— dr p) (r) +2m pop'(
2(T ()po

(3.16)

(3.17)
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+pi R

po r —po —00 r
247 ~

+ f [pp(r}—pp(+ ~ )]dr (3.18)

I3 — r r —R 2m po r cr . 3.19

Expression I, is seen to vanish after integrating the
second term by parts and using (3.9}. Integrating Iz by
parts and using (3.14) for hp, gives

f dr (r —R)pp(r)
(3.20)

rpo r

The apparent R dependence cancels between (3.19) and
(3.20), and the result for 5 reduces to Eq. (1.2), which is
independent of choice of the Gibbs dividing surface, as
expected from the thermodynamic arguments discussed in
Sec. II.

Integrating by parts on both sides and solving for z, gives

f dr rpp(r)

rpo r
(3.22)

To obtain an expression for z„ the position of the surface
of tension, we must compute the pressure difference hp
across the surface of the drop as a function of R and then
choose the special radius R, which satisfies (2.2). The
analysis, presented in the Appendix, yields

Because of the controversy discussed in Sec. II, it is
perhaps instructive to check directly, within Landau
theory, the validity of the thermodynamic relation
5=z, —z, [Eq. (2.5)]. To this end we now obtain expres-
sions for z, and z, . The equimolar dividing surface for a
planar interface, z„ is expressible in terms of the planar
profile as

Ze 00f dr [pp( —00 ) —pp(r)]= f dr [pp(r) —pp(+ oo )] .

(3.21)

20~ 1bp= " 1+—
R R

f dr(r —R)[pp(r)] 2 f dr(r —R)pp(r)

f «[po«)] f drp,'(r)
+O(g'/R') (3.23)

Upon using (3.16) this can be rewritten,

2g f dr(r —R)[pp(r)]
bp= — „+O(1/R ) .

R dr [pp(r)]

(3.24)

The radius R is then chosen such that the second term on
the right-hand side vanishes, giving

f dr r [pp(r)]
R, = +01 R, (3.25)

dr [pp(r)]2

or, in the planar limit,

2*= I dr r [pa(r)]
(3.26)

r por

Using (3.22) and (3.26), we see immediately that the ther-
I

I

modynamic expression (2.5) reproduces our original result
(1.2). This confirms within Landau theory the consisten-
cy of the thermodynamic results and gives us confidence
in their more general validity.

It is shown in the Appendix that 5, given by (1.2), can
alternatively be written

2@i5= — dr pp(r)pI(r) . (3.27)

Upon insertion into (3.16), this gives

a=2m f dr[p'(r)] +O(g /R ),
where

(3.28)

p( r) =pp(r)+ p, (r) /R +
It is instructive to compare (3.28) with an exact expression
for the interfacial tension of a curved interface recently
derived by Hemingway et al. ,

' namely

~kT 00 00

dr& dr2p'(r&)p'(r2) dr&2riq[ri2 —(ri —rz) ] (Cri rz&, r )+2O(o (rp/R) ), (3.29)

m(p)= f d rr C(r;p) .
12

(3.30)

where C(r&z, r r |)i2s the direct correlation function for
two points at radii r& and r2 with respect to the center of
the drop and at a separation ri2. In the error term, ro
denotes the range of the direct correlation function. If we
approximate (3.29) with a local kernel (precisely as done
by Rowlinson and Widom' on the exact expression for the
planar surface tension), it indeed reduces to the form
(3.28) with m given, as in the planar theory, by the expres-
sion

In the next section, (1.2) is used to determine the sign,
magnitude, and, in particular, the critical temperature
dependence of 5.

B. Critical properties

When studying critical behavior within the square-
gradient Landau theory (3.1), it is usually argued that, as
T +T, , it is sufficient —to keep only quadratic and quar-
tic terms in the expansion off (p) about the critical densi-
ty p, . Such a quartic double well satisfies
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po(z) = —po(2z, —z)+po(+ oo ) po( —oo ),
and so, consequently,

po(z) =po(2z, —z) .

(3.32)

(3.33)

Inserting (3.33) into (1.2) and changing variables
z —+z'=2z, —z gives

f dz(z —2z, )po(z) f dzlz —2z, )[p'0(z)]
+

zpo z z poz

f(p p—,)=f(—p+p, )

and, hence, describes a two-phase system which is sym-
metric under interchange of phase. We now show that the
presence of the special symmetry (& 31) causes 5 to vanish
identically within Landau theory. I'his symmetry mani-
fests itself in the planar interfacial:nsity profile as

1/2

( —l)'"+ —. ..r+O(~'"),
2ug (u4)

(3.40)

f(p+,&)=f(p,r)+O(r') .
The change of variables,

(3.41)

allows f to be factored,

f($)=A +8(1+A/)(p —1) +O(rl),
where A is a constant,

A = 9 skP/Q4,

8 =u4(bp)

(3.43)

(3.45)

y(z) = [p(z) —(p ++p )/2] /[(p + —p ) /2], (3.42)

(3 34) and

The two terms containing z, cancel, giving 5= —5, i.e.,
5=0. Real liquid-vapor systems do not, in general, pos-
sess the special symmetry (3.31). Consequently, a correct
theory of 5 near the critical point must include odd
powers of p —p, . It will be instructive to formulate such a
the)ory here and to develop its consequences within Lan-
dau theory. This will set the stage for the scaling hy-
pothesis of Sec. IV. Let us consider expanding the
Helmholtz free-energy density about the critical density

p, and temperature T„

bp=[u'/(2u )]'~ ( t)'~ . — (3.46)

"(z)=
2m (p, hp)

(3.47)

This expresses f(P) as a symmetric quartic well multi-
plied by a small asymmetric correction. It is precisely this
small asymmetry which determines the sign and tempera-
ture dependence of 5 near criticality.

To determine the planar interfacial density profile po(z),
we use the Euler equation (3.9), which in terms of P(z) is
g1ven by

f(p, &)= Q u, (&)p'

u~(t)=uj. +uj't+O(t ), (3.36)

where p=(p —p, )/p, and r =(T T, )/T, . We sha—ll re-
quire

(3.37)

Multiplying by P'(z) and integrating gives

[P'(z)]'=, ( I+&/)(P' —1),

2m

Q2

where g is the Landau-theory correlation length,
1/2

( —t)-'" t (0.

(3A8)

(3.49)

in order that the function f=f p„p should have —a
unique minimum at p=0 for r =0 and exhibit the charac-
teristic single- (double-) well form for t ~ 0 ( &0). A sim-
ple linear shift in p,

u,'
P i' P .r+O(r»— (3.38)

4u',

eliminates the cubic term in (3.35) and leaves all the other
coefficients unchanged to leading order in r; hence, we
may take u3 ——0 without loss of generality. It is crucial,
however, to include u 5&0, which is the leading odd-order
term.

To obtain a planar interface we must choose the chemi-
cal potential such that the double well of f=f pp has-
both minima at the same depth (i.e., p =)M ). If

p(z)=go(z)+Apl(z)+O(A, )

into (3.48) and comparing powers of A, gives

(3.50)

[4o(»]'=, t [Oo«)1' —1 j' (3.51)

24oko 0oNo
(3.52)

Specializing to the dense droplet, whose planar limit has
P' negative, we find the analytic solutions

Since A, is of the order t '/, we solve (3A8) perturbatively,
as an expansion in small A, . Introducing

2

p~ =Q ( )l+rtl5
0 Qp

2Q4

then f(p, t) has two minima at

(3 39) and

())o(z) = —tanh(z/g')

ln cosh(z/g) kz — +
2 cosh (z/g') cosh (z/g)

(3.53)

(3.54)
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For a droplet of the less-dense phase, 5 would take the
same form but with opposite sign. Note for future refer-
ence that (3.55) is linear in both us and g. Eliminating g
using (3.49) gives, finally,

5=[(—,', )p, m' (u ) /]u„ t 0 (3.56)

&s the critical point is approached, 5 tends to a finite
nonzero value. Near criticality, the sign of 5 is deter-
mined solely by the sign of us, the coefficient of the
fifth-order term in the free-energy expansion.

We may compute a rough magnitude for 5 at criticality
by obtaining f(p) from a Van der Waals theory. z' The
partition function for N classical particles is computed by
treating the long-range intermolecular attraction in
mean-field theory and approximating the hard-sphere
configurational integral as an ideal gas with excluded
volume Nb (b =2ma /3 with a the hard-sphere radius).
The well-known result for the Helmholtz free-energy den-
sity is

f(p)=pT ln —1 —p e,pA 2

1 —pb
(3.57)

00

where e=2n dr r u(r) measures the strength of the
attractive tail, and A is the thermal de Broglie wave-
length. From this we deduce a critical density p, = (3b)
and a critical temperature T, = ,', (a/b). Exp—anding in a
power series in p leads to u 4

——,' (a /b ) and-
us ———, (a/b ) I—nsertin.g these expressions into (3.56)
gives, for a dense-phase drop,

5= —0.02(ra/a )' (3.58)

where m, defined in (3.30), has been approximated by
m —

,
', ra(a!b), —with ro the range of the direct correlation

function. Since ra-a, 5 within Van der Waals theory is
negative and somewhat smaller than a hard-sphere radius.
Of course, the magnitude of this number is irrelevant for
real three-dimensional drops, where the critical behavior
will differ from that found in Landau theory (see Sec. IV).

Notice, finally, that in addition to asymmetric terms in
f (characterized by the coefficients u3, us, etc.), asym-
metry may also be introduced into the gradient term, via
contributions such as p(Vp) . Landau-theory treatment
of such gradient coupling would take us beyond the con-
text of the free-energy functional (3.1) and therefore re-
quires modification of the expression (1.2) for 5. Near
criticality, it can be shown that such a term produces,
via a field-mixing mechanism, an additional additive
contribution to 5, which, like (3.56), goes to a constant as
t~0 . We shall discuss this term further in Sec. IV B.

where k is a constant of integration. Since
p'(z) =(p, hp)P'(z), the p'(z) appearing in expression (1.2)
for 5 can be replaced directly by P'(z). Substituting the
expansion for P(z) into (1.2) and rescaling z~gz gives, for
the denser phase drop,

1/2
5 Q2

2(u4)'

IV. BEYOND LANDAU THEORY

A. Symmetry considerations

In order to go beyond Landau theory, including fluc-
tuations which are certainly important in three dimen-
sions, we must show that the vanishing of 5 for sym-
metric two-phase systems is a general result, not merely
an artifact of Landau theory. The argument rests on the
thermodynamic relation (2.5), linking 5 to the separation
between the equimolar dividing surface and the surface of
tension. Imagine a planar interface separating two fluid
phases a and P, which as yet have no special symmetry
property (Fig. 1). In writing (2.5) we have already accept-
ed the proposition that the positions z, and z, are well de-
fined in the planar limit. z, and z, denote, respectively,
the positons of the equimolar dividing surface and the
surface of tension, as they intersect the z axis. The addi-
tional assumption here is that z, and z, vary continuously
as the system moves smoothly between configurations A

and C in Fig. 1, passing through the planar configuration
B. For a system which is symmetric under phase inter-
change a~P [e.g. , (3.31)j,

(z, —z, )~ =—(z, —z, )c, (4.1)

where subscripts refer to the configurations shown in Fig.
1. In the limit Ra —moo, configurations A and C become
planar and indistinguishable, and so, assuming continuity,
Eq. (4.2) gives 5=0. Of course, the argument fails if the
limit (2.5) does not exist or if z, jumps discontinuously
from one side of z, to the other in passing through config-
uration 8. This symmetry property of the curvature
correction does not appear to have been previously noted
in the literature.

a phase

K /
ht
1I

Z$ ll Ze
I')

/
/

A 8 C

P phase

FIG. 1. Plane B is an interface between a and P phases. z,
and z, denote, respectively, the positions of the equimolar divid-
ing surface and the surface of tension, as they intersect the z
axis. When the system is symmetric under phase interchange
a~P, then z, =z, in the planar limit by the continuity argument
given in the text.

B. Scaling of 5 near criticality: asymmetry and field mixing

In d =3 (bulk) and more generally for d &d*=4 (the
upper critical dimension) fluctuations near criticality can-
not be ignored and, in fact, are expected to modify the re-
sults of the Landau-theory analysis. Rigorous treatment
awaits a full e-expansion analysis of 5 or some other non-
perturbative treatment. &e content ourselves here with
formulation of a scaling hypothesis for the singular
behavior of 5 near criticality.
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Landau theory suggests that there are two terms to con-
sider: (a) the contributions (3.55) and (3.56), which arose
from the asymmetry of the local free-energy density and
which we now denote 5„and (b) the contribution arising
from perturbations of the form p(Vp) (as mentioned at
the end of Sec. III), which we now call field mix-ing
effects and denote 5f. Both 5, and 5f are constant at cri-
ticality within Landau theory; however, when fluctuations
are included (d &d*), there are two separate effects,
which scale differently. What happens is that the three
most important asymmetric perturbations, p, p, and
p(Vp), get mixed for d &d* in the formation of the odd
eigenoperators. One of the resulting linear combinations
(the analog of u3p in Landau theory) can be eliminated
at the Hamiltonian level by a simgle shift analogous to
(3.38). A second [the analog of p( Vp) in Landau theory]
can also be eliminated to leading order, but only at the ex-
pense of a skewing of the (bulk) temperature (t) and
chemical-potential (hp) directions. This "field-mixing"
effect is well known in the discussion of bulk properties
such as the asymmetry in the coexistence-curve diameter
and in that context has been treated in detail by Nicoll.
Inclusion of field mixing leads to a term in the curvature
correction,

(4.2)

which involves the relevant (in the renormalization-group
sense) bulk exponents only. The remaining (third) eigen-
operator 05 cannot be eliminated by a rewriting of the
Hamiltonian. 05 is irrelevant at bulk criticality and asso-
ciated ' with a corresponding scaling field u5, eigenvalue
exponent A, 5, and correction-to-scaling exponent
05———A, sv. 05 is the leading source of true, non-Ising
asymmetry in the problem, and its contribution to the cur-
vature correction is the term 5, . The scaling field u5
reduces to u5 as d~d* from below and enters into ther-
modynamic functions in the scaling combination

8
uz

i
t

i
. With this background we are in a position to

propose a scaling hypothesis which generalizes (3.55) in
the presence of fluctuations. Our proposal is that

5, -$W(u5
i
t

i
'), (4.3)

with a scaling function 8'(x) which varies linearly with
x, as x ~0, so that

(4.4)

The rationale for Eq. (4.3) is that 5, (which is dimension-
ally a length) should scale as g, which is the only relevant
length near criticality, but must vanish linearly with the
asymmetry parameter u5 in accordance with the syrnme-
try considerations of Sec. IVA. 0, is irrelevant, and so
the effect of asymmetry shrinks as t —+0 via the scaling

e,combination u, i
t

i

'.
For d&d, a=0, p= —,', v= —,, and 85 ———,', so that

both (4.2) and (4.4) are constant at criticality in agreement
with Landau theory. For d =3, the bulk exponents are
quite accurately known, and 1 —a —P—v= —0.06, indi-
cating a weak divergence at criticality. On the other
hand, for d &4 we know of no analytic work on 85
beyond the e-expansion (e=4—d), which gives

85= 2 +e —
36 e +(3.20. . . )e'+0(e ) . (4.5)

The oscillatory behavior of this expansion makes it ex-
tremely difficult to obtain a reliable estimate for 8& for
d =3. If we take e= 1 in (4.5), the sequence of approxi-
mations at 0(e), 0(e ), and 0(e ) are, respectively, 1.5,
0.64, and 3.84. A simple (1,1) Pade approximant, on the
other hand, gives 1.04, while (2,1) and (1,2) Pade approxi-
mants give 1.32 and 2.36. These numbers tend to suggest
that for d =3, 85 —v is positive; however, even the sign of
05—v cannot be reliably determined.

In view of the uncertainty of 05, it is not clear which
contribution to 5(T)=5f(T)+5,(T) will be dominant
near criticality. Rowlinson has reported a temperature
dependence of the form (4.2) for the penetrable-sphere
model. Contributions like (4 4) were not found; however,
it seems likely that u 5

——0 because of the special symmetry
of this model. We can, in any case, predict with some
confidence that 5(T) will diverge at T, . Perhaps this will
encourage experimental interest in its measurement. Ob-
servation of a divergence stronger than (4.2) would
demonstrate the dominance of 5, and provide an experi-
mental determination of 85 (which has not been possible
up to now). If, on the other hand, observation confirms
(4.4), then 5f is dominant and the bound 85) 1 —a —p is
established.
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APPENDIX

In this appendix an expression for the pressure differ-
ence bp across the interface between a dense-phase droplet
and the external phase is derived which to 0(g /8 ) de-
pends only on the planar profile pa(r). Because co(p) = —p
in a uniform phase [see (3.4)],

(~@i)'
+ 282 (A2)

with

EI (
~P

(A3)

(A 1)

where p and ptt are the densities at the two minima of
co(p). Expanding in inverse powers of R gives
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where the densities at the two minima off(p) are denoted
p„and pi. Recall that we obtained an expression for hest
in terms of po(r) by analyzing (3.10). Likewise, to relate
EI22 to the profile, we study (3.11). Multiplying (3.11) by
po(r) and integrating by parts twice on the first term gives

00 8 1 dfrp2r —
2 po r

C0 ()p 2m ()po
2

=2 r r —R po —pop'I

, a'f ,+ f «po, pi — (p„—pt) . (A4)
4m 00 QPo 2m

The left-hand side vanishes by the same argument used
after (3.13). The second term on the right-hand side can
be rewritten and integrated by parts to give

f Q2f $2f 00 $2f
dr 2 pi =

2 pi —2 dr 2 plpi,
t)po t)po " t)po

~PI(PI —P.}
hp=

R

f d" [(' —»(po'}'—2popi l

+O(1/R ) .

The final step is to eliminate all dependence on pl(r).
»tegrattng by parts, we find

r r pop~+pogI (A10)

which can be rewritten using (3.9) and (3.1()) as

Use of (AS) to eliminate hp, 2 from (A2) gives, for the
prcssure difference,

which, when inserted into (A4), yields

bp2(pt —p„)=4m f dr [(r —R)(po) —pop', ]

+—,j&„[pl(+~)] —&i[pi( —~)]2I
00 2

2 PIpl ~

Bpo

(A5)

+P ) O0+ «popi+
2

— f drrpo .

The second term, after a partial integration, can be com-
bined with the left-hand side, and, after eliminating ~PI
with (3.14},finally yields

To eliminate the explicit dependence on f, we multiply
(3.10) by pi and integrate to obtain

00 2 00

dr 2 pipl ——4m dr popi
00 Qp 00

+hp, i[pl(+ oo }—pi( —e) )], (A7)

00

bp2(p„—pi)=4m dr[(r —R)(po) —2popi]
r

——,'( )'
v

(AS)

which can be used to chminate the last term in (A6).
After replacing pi(+ oo) by dpi/E„and pi( —oo) by
hlsl/Kt [which can be deduced from (3.10)] in (A6) and
(A7), WC fl11d

dr popl = 0'
00 2@i

(A12)

2 „«—~no
f" drp,'

+O(1/R') .

(A13)

where o „and 5 are defined in terms of po(r) in (3.12) and
(1.2}, respectively. Subsf1tutlng (A12) 111to (A9) gives tlM
desired formula for the pressure difference, namely,

2o $ r r —R po

R R J gz( ')z
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