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Many-body properties of a one-dimensional Bose liquid
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The elementary excitations of one-dimensional Bose liquids interacting via a soft potential with a
Lennard-Jones-type attractive tail are evaluated in the ring-diagram approximation. Starting with
this potential, we have evaluated the structure factor, thermodynamic functions, pair-distribution
function, ground-state energy, and sound velocity explicitly. The energy spectrum and structure
factor resemble the bulk cases, but the minimum energy is much lower and the first peak of the
structure factor is higher. The pair-distribution function decreases as r at large distances, which
is characteristic of phonons in one dimension. The ground-state energy is expressed analytically in
powers of a dimensionless parameter. The expression agrees with the one obtained from a 5-
function-type potential.

I. INTRODUCTION

In many-body theory there are a few one-dimensional
models of Bose or Fermi gases or liquids with two-body
interactions among the particles. For instance, in the
pioneering work of Bijl, ' the ground-state energy of a
one-dimensional system was estimated. Later, Rubin,
Girardeau, and others developed more reliable ap-
proaches. Lieb and Liniger considered a one-
dimensional Bose gas with a two-body repulsive 5-
function potential and obtained the exact eigenfunction,
ground-state energy, and other quantities. In dealing with
a many-body system, it is worth evaluating the pair-
distribution function because it yields not only the ther-
modynamic functions, which can be derived from the par-
tition function, but also the structure factor. Therefore,
we have recently treated the pair-distribution function of
two- and three-dimensional liquid helium in the chain-
diagram approximation.

It is the purpose of the present paper to derive the pair-
distribution function of a one-dimensional Bose liquid,
and then its excitation spectrum, and thermodynamic
functions. The interaction potential is assumed to be
given by a soft potential with a Lennard-Jones attractive
tail. In Sec. II, we shall treat the pair-distribution func-
tion and present some basic formulas, which will be used
in the following sections. The excitation spectrum and the
structure factor will be evaluated in Sec. III. The thermo-
dynamic functions and fluid density will be given in Sec.
IV. %e shall evaluate explicitly the pair-distribution
function and ground-state energy in Sec. V. Finally, in
Sec. VI, we shall discuss our present results in comparison
with related works.

Throughout this paper, we sha11 take the units such that

I2(x)= —f dp f(p)e™2' (2.2)

The eigenvalues of the effective propagator are obtained
from

&,(q)= f dpf"'(p)[1+f'"(p+q) j

X f dct exp f a[p' —(p+q)'] I

2&l
Xexp jo. (2.3)

A'= 1 and 2m = 1, where m is the particle mass, except for
the case in which explicit restoration of A' or 2m is desir-
able.

II. BASIC FORMULAS

In this section, we present the formula for the pair-
distribution function in the ring-diagram approximation
and related formulas, and then derive the excitation spec-
trum.

In the ring-diagram approximation, the pair-
distribution function of a one-dimensional Bose liquid is
given by

] oo u (q)XJ(q)
p, (x)=n'+I, (x)— g f dq

' e'&,2' 1+u (q)AJ. (q)

(2.1)

where n is the number density, 13=1/k~T, u(q) is the
Fourier transform of the interaction potential, AJ is the jth
eigenvalue of the effective boson propagator representing
the unit of a chain, and I2(x) is the ideal-gas contribution
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where f' '(p) is the Bose distribution function

ze-»'
(2.4)

A (q)= dP ~ z

(0)

2'' —p +g + 2''E J

Performing the x and a integrations and changing the in-
tcgIat1on vRr1ablc floIIl p +g to —p» wc obta1n thc c1gcn"
values as follows:

U(T)=UO(T)+ —,'m'L f dx p(x) ——,'nL, f q „(q)
2m

dq u (q)AJ(q)+— dg2 dp J
0 2Ir 1+gu (q)AI (q)

{2.10)

where u (q) is the Fourier transform of the interaction po-
tential. In the j sum, we may use the formula

(2.11)

jo)(p)
[(p +q) p]+(2—Iri/P)j

d f(0)( )
q +2pq

(q2+2pq) + [(2Iri/p)j]

Neglecting higher-order terms, we arrive at

(2.5)

to obtain

u(q)A, (q)

1+gu {q)AJ(q)

cothI —,
' P[q4+2nu (q)q g]' I=n pu (q)q-

[q4+2nu (q)q g]'~

The final cxprcsslon foi' tllc internal cllcrgy ls

(2.12)

q +[(2~/P)j]
(2.6) U(T)= ,'n'L f d—xP(x)+—f [e(q) —q' —nu(q)]

2 2m

Thc iIltegrand of Eq. (2.1) call bc lcwrlttcll Rs

u (q)Aq(q) &J(q)
=A~(q)—

1+u (qg,, (q) ' 1+u (q)&, (q)

The first term on the right-hand side yields

g AJe''I" = —I2(x)—n 5{x) .

e le
p2(x)=n —n5(x)+ g f dq

The structure factor is given by

A.J (q)
&(q) =

Pn . 1+u (q)A~(q)
(2.8)

+I, -eq eq

where f(e)=1/eI' 1 is thc B—ose distribution «n«lon
and

e(q)=[q +2nu(q)q ]'~ (2.14)

1S thc cxcltat1on cIlcI'gy which ag1 ccs with thc
Bogoliubov-Zubarev form.

In the expression of the internal energy given by Eq.
(2.13), the first and second terms correspond, respectively,
to the ground-state energy and the quasiparticle excitation
energy. The latter demonstr'ates that a Landau-type
quasiparticle excitation ls possible even for a one-
dimensional Bose system.

If the quasiparticles move with an average drift velocity
with respect to the rest frame, the total momentum of the
quasipartlclcs 1s I'clatcd to thc clcIlslty g1vcIl by

e

This result, is correct w'ithin the chain-diagram approxi-
IllRtloll. When tllc pair-d1strlbutlon fllllctloll 111 tins ap-
proximation is used for the evaluation of the internal ener-

gy, the I'csult corresponds to thc r1ng-d1agram approx1IDR"
tion because the graphical bonding between the two
representative particles in the pair-distribution function is
completed.

In terms of the pair-distribution function, the internal
energy is given by

U(T) = Uo(T)+ —f dg f dx p(x) [pp2(x, p, g)],
I

(2.9)

where g is a coupling constant, Uo is the ideal-gas energy,
L ls tllc onc-dlnlc118101181 volllIIlc, Rnd {b(x) Is tllc llltcrRC-
tion potential. Using the Eq. (2.1) for the pair-distribution
fullct1on» %'c obta1n thc Internal cncI'gy as fo110%'s:

&f(e(q))
p)v T= q dq

2Ir {)e(q)
(2.15)

till'cc dimensions, R slII111RIly dcflllcd quantity
represents the normal-fluid density. In our case, there is
no such normal-fluid density, but since this density is re-
lated to the net momentum of the excitations, it character-
izes certain kinetic properties.

e(q)=q [2nu (0)]'~2 . (3.1)

The excitation energy given by Eq. (2.14) is a one-
dIIIlcnslonal vcl s1on of thc Bogo11ubov-Zubarev cxpI'cs-
sion and consists of phononlike and rotonlike parts. The
energy spectrum is meaningful for u(0)+ac and is re-
duced to the free-particle type if u(0)=0. For small
momentum, Eq. (2.14) becomes phononlike,
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2r

e(q)=q +nu(q} —— +1 2nu(q)
8 q

(3.2)

Note that u (0}, assumed to be finite and positive, deter-
mines the sound velocity [2nu (0)]'~ .

For large momentum, Eq. (2.14) depends strongly on
the potential u (q) and can be expanded to

To investigate the energy explicitly, we introduce a soft
potential with a I ennard-Jones tail,

Vp, /x/&a
(x)= '

ep[(a/x)' —(a/x) ], ~x
~

)a . (3.3)

We find the Fourier transform of Eq. (3.3) in one di-
mension as follows:

u (q) =2a Vp —2a ep
sin(qa)

qa

(qa)" (qa)'+, sin(qa)

+2aep g ( —) + '(qa)'"+' g—( —} +'k+ i (9—2k)l 2k+ i
'

k+ i (3—2k)!
k=0 11I k=0 Mo

( ) (qa) —g ( —)
'
(qa) cos(qa) .k (10—2k)! pk k (4—2k)' 2k

k=0 11! k=0
(3.4)

Expanding the right-hand side of Eq. (3.4), we obtain a
series e(q) =

2mS (q)
(3.10)

A p
——4na ( Vp ——

55 &p), A i =4na
~o &o

3t 9

2nu (q) =Ap+A iq'+A2q'+Aiq'+A4q'+ ' ' '

where

(3.5)

$2q 2

S(q) = coth[ —,
'
Pe(q)] .

2m e(q)

Hence, for absolute zero,

(3.11)

In our case, a reverse relation is obtained from Eq. (2.8),

Vo
A 2 ——4na

51

2

28
' 5f

3 3
——2na —eo,

S(q) = —
2

[q +2nu (q)]'~
(3.12)

For small q, we obtain the excitation energy as follows:

e(q)=Apq+Bq +Cq +Dq +
where the coefficients are given by

1+3 ) ApB=,C= 3(1+A i) A3

830 ~o

(3.6)

(3.7)

Note that Eq. (3.6) represents an anomalous dispersion be-

cause 8 is positive.
For large momentum, we can take only the first term in

u (q), which is dominant, and express the excitation energy
as follows:

' 1/2

e(q)=q q +4naVp2 sin(qa)

qa
(3.8)

The energy e(q) is oscillatory. Let the first minimum
occur at qp. Around this qp, Eq. (3.8) may be replaced ap-
proximately in a Landau form,

e(q)=5+, (q —qp)
2m

(3.9)

where b, and m' are the energy gap and effective mass,
respectively.

According to the theory of Feynman et aI. for liquid
helium, the excitation energy is related to the structure
factor S(q) as follows:

IV. THERMODYNAMIC FUNCTIONS

We follow Landau's theory to obtain the phonon and
roton energies. For small q, we obtain

Eph(T) = 1

2m.
(k T} 'B(k T—)

g4o

C(ks T)6+
0

(4.1)

For large q, we take Eq. (3.9) to obtain
1/2

m k~T —6,/k~ T
E„t(T)= 2M' .

(b.+ ,' ksT)e—(4.2)

Figure 1 illustrates the Fourier transform u(q) of the
interaction potential. The potential parameters have been
chosen in correspondence with the bulk values which we
have adopted earlier. They are a =2.55 A, Vo ——5 K, and
co=6 K.

Figure 2 represents the excitation spectrum. The solid
curve corresponds to Vo ——5 K and the double-dashed
curve to Vp

——6 K. These curves are similar to the fami-
liar three-dimensional (3D) excitation spectrum. Howev-
er, the roton energy is much lower.

The structure factor S(q} is shown in Fig. 3 as a func-
tion of dimensionless variable qa. In comparison with the
3D case, the first peak is higher. This corresponds to the
reduction in the roton energy.
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FIG. 1. Potential Q (g) Rs R fulMtion Gf dimcnsionlcss parRID-

eteI' aq with the numerical parRIDeters: a =2.55 A, Vo ——5 K,
eo ——6 K, and n =0.167/A (This corresponds to n =2. 18

X 10 /A in three dimensions. )

+ 6'&(,6' C(k, r)5+

' I/2
m kyar2'

(4.3)

alas T—
4

kyar

kyar

(4A)

Using Eqs. (4.1) and (4.2), we obtain the corresponding
specific heats

8 2((2) (k T)
X g( ) g(k

2~

FIG. 3. Stnlcturc factor against dimcnsionlcss parameter gQ.
Solid linc, Vo ——5 K; double-dashed line, Vo ——6 K.

We note that the phonon specific heat is an odd function
of temperature with the first linear term which is charac-
teristic of one dimension. The roton energy gap 5 and the
roton minimum characterize the roton specific heat. The
exponential factor makes its contribution very small for
10% tcmpcI'stUI'cs.

Our theoretical expressions for various thermodynamic
fllnctioils aie glveii by

~ (r)= — ~( )(k r)' '~ &(k&r—)'
2~

{4.5)

(4.6)

+ '~(, 'C(k, r)'+ ~ ~ ~ (4.7)

Pph(T) = — (kg T)
l 3 g(2)
VT 0

3!g(4)Bi{kgT)4+. . .
Ao

Flo. 2. Excltatlon spectrum vs dlIDcnslGIllcss pRI'RIDctcr QQ.

Tbc Solid Rnd double-dashed Hncs Rrc thc spectrum fGI' Vo=5
Rnd 6 Ks fcspcctlvclps vAth thc Other pa1'RIDctcfs fllxcd.

m (k&T)
+z()g(r) =

2 2m62
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5A )+7
B& ——

230

The phonon and roton parts of the normal-fluid density are

1
p h(&) = 2' 3 B g6 B + 8 B +(k T)

' —&(k T') ' C(k T)
0 0 Ap

(4.11)

px, -t(T) =
' 1/2

Vl —6/k~T

2~kg T qe (4.12)

V. PAIR-DISTRIBUTION FUNCTION AND GROUND-STATE ENERGY

In this section, we evaluate the pair-distribution function explicitly and show the characteristics of one-dimensional
phonons in the Bose liquid. Introducing Eq. (2.6) into (2.1), we have

bpz(x) =n —f y dy cos(xy) f dz—oo y +Z
1

, 4 z z, bpz(x) —pz(x) —Iz(x),
[y +2nu y y +z (5.1)

where we changed the variables

z =2m.j/P, y =q .

easily,

I~ ———,'n L, f P(x)dx =dna(VO ——,', eo)=EnaV" . (5.5)

Performing the integration, we obtain

2 n 1
bpz(x)=n ——f dy 1— cos(xy) .

[y +2nu (y))'~

(5.2)

The exact evaluation of the pair-distribution function de-

pends strongly on the potential u(q), which is given by

Eq. (3.4). It is very difficult to evaluate Eq. (5.2) analyti-
cally for a soft potential with a Lennard- Jones tail.
Therefore, we retain only the constant term of u (q) to ob-

tain the asymptotic expression of the pair-distribution
function. Replacing u (q) by u (0) and integrating by
parts, we obtain

~pz(x) 2u (0) 1 " (2n —1)!!(2n+ 1)!!=1— 1+
n ~a (ax) „& (ax) "

(5.3)

We insert Eq. (3.6) into (5.4) and take up to order q for
the second integral. We then obtain

L f dq [~(q) q' nu —(q)]-
4m —&o

L~o nI. V'
(5.6)

where

V" = Vo —„Eo, —A 0
——4na V* .

To evaluate the remaining integral for large momenta,
we use Eq. (3.2) and choose only the dominant term to ar-
rive at

I 2 3 2
~ Sln Xna Vo — dx, ao ——qoa

X4

where a is [2nu (0)]' . The x proportionality of the
pair-distribution function at large distances is a charac-
teristic property of one-dimensional phonons.

Taking only the ground-state energy in Eq. (2.13), we
have

Eg= —,'n I. f dxP(x)+- ,'I. f + f '+ f—
&& [e(q) —q —nu (q)]dg 2

2'

8 Q
cL, Vp,

ca
VoEo naV 1 ——— ——

where c =1.3290.
Adding these results, we finally obtain

(5.7)

(5.8)

=I) +I2+I3 ~ (5.4)
%'e note that the ground-state energy obtained by Lieb

and Liniger is given by
To evaluate these integrals, we use Eqs. (3.6) and (3.2) in
the integral of Eq. (5.4) for small and large momenta,
respectively The fir. st integral I& of Eq. (5.4) is obtained

1/2
Eg 4 c

= AC I—
N 3m n

(5.9)
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where 2c is the strength of the 5 function.
Equation (5.8) gives the ground-state energy per particle

for the soft potential. The first term agrees essentially
with the first term of Eq. (5.9). Our second term includes
the contribution from the attractive potential so that it
differs from Eq. (5.9). The third term is mainly deter-
rnined by the hard-sphere diameter and the soft potential.
A similar calculation for the 3D case yields the same
ground-state energy as Lee, Huang, and Yang.

VI. RESULTS AND DISCUSSIONS

It is well known that Bose-Einstein condensation does
not exist in two and one-dimensions because of the forms
for the average number of particles. The same eigenvalue
expression can be used for two and three dimensions in
the neglect of higher-order terms, but the number density
appearing in this expression for reduced dimensions does
not include the condensate.

By adopting a soft potential, we have obtained the exci-
tation spectrum as a function of dimensionless parameter
qa in Fig. 2 with parameters n, a, eo, and Vo. The
behavior of this spectrum is analogous to Landau's case:
for small momentum, it is phononlike, while it is rotonlike
at around qo for large momenta. Passing the roton
minimum the slope of the dispersion is slightly steeper
than that of phonons. We note that as the numerical
values of three parameters n, a, and Vo increase, the pho-
non part becomes steeper, followed by the concave part
which is depleted progressively. Finally, the roton
minimum disappears and eventually becomes an inflection
point. Thus, the excitation spectrum becomes that of the
pseudopotential.

It is interesting to note that, if the attractive potential is
neglected in Eq. (3.4), the one-dimensional excitation
reduces to the 3D excitation spectrum of Brueckner and
Sawada. ' In this case, the energy gap and the effective
mass are given by

' 1/2
sin(qoa)5=qo qo+4na Vo

qo
(6.1)

(q 0 +4n Voqosinqoa)
'

m
6qo+ 2na Vo(2 cosqoa —qoa sinqoa)

(6.2)

and qo can be determined as follows:

2qo+n Vo[sin(qoa)+(qoa)cos(qoa)] =0 . (6.3)

detailed analysis of Eqs. (6.1)—(6.3) for the
Brueckner-Sawada spectrum was given by Pathria and
Singh.

I.ieb" showed that the excitation spectrum of the one-
dimensional Bose gas interacting via a repulsive 6-

function potential could be analyzed by a double spec-
trum: type-I excitation (so called Bogoliubov spectrum),
and type-II excitation ("hole" states). Our excitation spec-
trum Eq. (2.14) is just Bogoliubov type and thus type-II
excitation does not appear.

The structure factor corresponding to the excitation
spectrum of Fig. 2 increases linearly as q/[2nu (0)]'i for
small momenta, and reaches the peak which corresponds
to the roton minimum. The slope is more or less the same
as those of two and three dimensions.

The thermodynamic functions [Eqs. (4.1)—(4.11)]based
on the phonon spectrum Eq. (3.6) agree with what was ob-
tained by Padmore, ' who used the simple two- and one-
dimensional models of restricted dimensionality: fluid
flow in two parallel plates and also in the straight rec-
tangular tube. If we take only the first term, the specific-
heat and the norinal-fluid densities in two and three di-
mensions are obtained as follows: For three dimensions,4 4!((4)(k y), 1 4g'(4)(k y)4

u, Ph 2 ~3» P&,Ph 6 2 &5lT 0 '1T 0

and for two-dimensions,

k»'g(3) 2 1 3!g(3)
~u, ph 2 (kB~) ~ P1V,ph= 4 (kg+)

2m g ' ' 4~

Let N be the dimensionality. Then the specific heat and
the normal-fluid density can be written as T and T +',
respectively. In the case of the roton part, both are not
different from those of other dimensions except for small
modifications. We have shown elsewhere that the second
and third terms play important roles in two-dimensional
fluid density. ' We expect a similar role played by these
terms in the one-dimensional case.

We have evaluated the pair-distribution function of the
one-dimensional Bose liquid with the soft potential in the
small-momentum region [Eq. (5.3)]. This pair-
distribution function is subject to the condition
x ))v 3!a. It decreases as r at large distances and rap-
idly approaches unity as x~oo. We note that the pair-
distribution functions' of two- and three-dimensional
hard-sphere Bose systems decrease as r and r, respec-
tively, at large distances. The x proportionality is the
main long-distance behavior of one-dimensional phonons
in a Bose liquid. We expect that the pair-distribution
function at short distances will oscillate and tends to unity
as x~ao. This will be mainly due to the contribution
from the core part of the soft potential.
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