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The elementary excitations of one-dimensional Bose liquids interacting via a soft potential with a
Lennard-Jones-type attractive tail are evaluated in the ring-diagram approximation. Starting with
this potential, we have evaluated the structure factor, thermodynamic functions, pair-distribution
function, ground-state energy, and sound velocity explicitly. The energy spectrum and structure
factor resemble the bulk cases, but the minimum energy is much lower and the first peak of the
structure factor is higher. The pair-distribution function decreases as » 2 at large distances, which
is characteristic of phonons in one dimension. The ground-state energy is expressed analytically in
powers of a dimensionless parameter. The expression agrees with the one obtained from a &-

function-type potential.

I. INTRODUCTION

In many-body theory there are a few one-dimensional
models of Bose or Fermi gases or liquids with two-body
interactions among the particles. For instance, in the
pioneering work of Bijl,! the ground-state energy of a
one-dimensional system was estimated. Later, Rubin,
Girardeau, and others developed more reliable ap-
proaches.” Lieb and Liniger® considered a one-
dimensional Bose gas with a two-body repulsive &-
function potential and obtained the exact eigenfunction,
ground-state energy, and other quantities. In dealing with
a many-body system, it is worth evaluating the pair-
distribution function because it yields not only the ther-
modynamic functions, which can be derived from the par-
tition function, but also the structure factor. Therefore,
we have recently treated the pair-distribution function of
two- and three-dimensional liquid helium* in the chain-
diagram approximation.’

It is the purpose of the present paper to derive the pair-
distribution function of a one-dimensional Bose liquid,
and then its excitation spectrum, and thermodynamic
functions. The interaction potential is assumed to be
given by a soft potential with a Lennard-Jones attractive
tail. In Sec. II, we shall treat the pair-distribution func-
tion and present some basic formulas, which will be used
in the following sections. The excitation spectrum and the
structure factor will be evaluated in Sec. IIl. The thermo-
dynamic functions and fluid density will be given in Sec.
IV. We shall evaluate explicitly the pair-distribution
function and ground-state energy in Sec. V. Finally, in
Sec. VI, we shall discuss our present results in comparison
with related works.

Throughout this paper, we shall take the units such that
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fi=1 and 2m =1, where m is the particle mass, except for
the case in which explicit restoration of # or 2m is desir-
able.

II. BASIC FORMULAS

In this section, we present the formula for the pair-
distribution function in the ring-diagram approximation
and related formulas, and then derive the excitation spec-
trum.

In the ring-diagram approximation, the pair-
distribution function of a one-dimensional Bose liquid is
given by

igx
b

1 @ u(q)?»z(q)
(x)=n+I,(x)— —— dg——1"_
pP2x)=n 2lx zﬂ_ﬁlz f q1+u(q)kj(q)e

2.1

where n is the number density, S=1/kzT, u(q) is the
Fourier transform of the interaction potential, A; is the jth
eigenvalue of the effective boson propagator representing
the unit of a chain, and I,(x) is the ideal-gas contribution
2

L= |5 [ do f(pre® 2.2)

The eigenvalues of the effective propagator are obtained
from

1
M@= [ dp fOPN+1 P +9)]
B
X fo daexp{a[p*—(p +9)*1}
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where f%(p) is the Bose distribution function

—Bp?
FOp)= Tie;;k? ) 2.4)

Performing the x and a integrations and changing the in-
tegration variable from p +g to —p, we obtain the eigen-
values as follows:

1 f(O)(p)
rlg)=— [ d
)=, [ dp [p’—(p +971+(2mi /B);j
_ f(O)(p)
[(p +9)*—p21+2mi /B)j
1 >4+ 2pg
=— [ dp fOp) g . @5
rf e S (q*+2pg)*+[(2mi /B)jT?

Neglecting higher-order terms, we arrive at

2nq*

Mg =—"TT——. (2.6)
T g @a/BIT
The integrand of Eq. (2.1) can be rewritten as
u(II)KJZ-(q) (@) Ai(q)
+u@h 7T Trulgne)
The first term on the right-hand side yields
*— _I,(x)— .
217_3 EA et 2(x)—nd(x)
Hence,
5( e @.7)
PRy =n b0+ 3 3 [y orgy @
The structure factor is given by
A;(q)
S(g)= Bl > 9 2.8)

1+u(g)h;(q)

This result is correct within the chain-diagram approxi-
mation. When the pair-distribution function in this ap-
proximation is used for the evaluation of the internal ener-
gy, the result corresponds to the ring-diagram approxima-
tion because the graphical bonding between the two
representative particles in the pair-distribution function is
completed.

In terms of the pair-distribution function, the internal
energy is given by

UD=UT)+ 5 [ d [ dx g(x) 2= 1Bpalx,B801

(2.9)

9B

where £ is a coupling constant, U is the ideal-gas energy,
L is the one-dimensional volume, and ¢(x) is the interac-
tion potential. Using the Eq. (2.1) for the pair-distribution
function, we obtain the internal energy as follows:

6227

UD=UoT)+$7L [ dxgx)—tnL [ My

u(q)A;(q)
2 f §f 27 14-8u(q)r;(q)

j=—o0

LLo
2 o8
(2.10)

where u (g) is the Fourier transform of the interaction po-
tential. In the j sum, we may use the formula

ke 1 T
=—coth 2.11)
nzm e <0 (mx) (
to obtain
i u(q)?x,-(q.)
jot e 1+Eu(gA;(q)
coth{ +Blg*+2nu (q)g*£]"?
—nBu (@) {zBlg 9)9°€1"""} 2.12)

[g*+2nu (9)g°€1'?
The final expression for the internal energy is

L dq
UM =1n’L [ dx¢(x)+7 [ S lelq)—q*—nu(q)]

+L [ B agsiegn, 2.13)

where f(e)=1/eP —1 is the Bose distribution function

and
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with the

e(q)=[q*+2nu(q)q

is the excitation energy which agrees
Bogoliubov-Zubarev form.

In the expression of the internal energy given by Eq.
(2.13), the first and second terms correspond, respectively,
to the ground-state energy and the quasiparticle excitation
energy. The latter demonstrates that a Landau-type
quasiparticle excitation is possible even for a one-
dimensional Bose system.

If the quasiparticles move with an average drift velocity
with respect to the rest frame, the total momentum of the
quasiparticles is related to the density given by

_ 3ftelg) ]

I S
py(T)= 27 fq dq delq)

(2.15)

In three dimensions, a similarly defined quantity
represents the normal-fluid density. In our case, there is
no such normal-fluid density, but since this density is re-
lated to the net momentum of the excitations, it character-
izes certain kinetic properties.

III. EXCITATION SPECTRUM

The excitation energy given by Eq. (2.14) is a one-
dimensional version of the Bogoliubov-Zubarev® expres-
sion and consists of phononlike and rotonlike parts. The
energy spectrum is meaningful for #(0)s4«» and is re-
duced to the free-particle type if #(0)=0. For small
momentum, Eq. (2.14) becomes phononlike,

e(q)~q[2nu (0)]'/%. (3.1)
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Note that u(0), assumed to be finite and positive, deter-
mines the sound velocity [2nu (0)]/2.
For large momentum, Eq. (2.14) depends strongly on
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To investigate the energy explicitly, we introduce a soft
potential with a Lennard-Jones tail,

the potential u (¢) and can be expanded to Vo, |x|<a
; ¢(x)= eo[(a/x)lz—-(a/x)6] , |x l >a. (3.3)
e(q)=q2+nu(q)—l 2nul(q) 4o (3.2) We find the Fourier transform of Eq. (3.3) in one di-
8 mension as follows:
|
u(q)=2aV, Eiil(q—a)—Zae UL)”_’_(q_a)_s_ sin(ga)
" ga ol T s ?
4 —2k) ! -
+2aey | 3 (k1 B2 gppierr 5 yert BZ2RN gt i ga)
“~ 11! “~ 51
5 _ 1 2 — ]
+2a¢ | 3 (—)"M(qa)z"— > (—)kw(qa)Zk cos(qa) . (3.4)
= 11! = 5!
l
Expanding the right-hand side of Eq. (3.4), we obtain a #q?
series =5 5@ (3.10)

2nu(q)=AF+Ajq> +A5q* +43¢°+4ig°+ -+, (3.5
where
V. €
Ad=4na (Vo—Le), A}=4na’ ——3—?—}——99 ,
V €
2_4..5] 20 50 2_5,, 6T
A5=4na 5 "2 | A3=2na 5!60,

For small g, we obtain the excitation energy as follows:

elq)~Aoq +Bg>+Cq°+Dg+ - - -, (3.6)
where the coefficients are given by
p_ltal 43 _3a+4b AT
240 24, 843 24, °
(3.7)

Note that Eq. (3.6) represents an anomalous dispersion be-
cause B is positive.

For large momentum, we can take only the first term in
u (q), which is dominant, and express the excitation energy
as follows:
. 172
g%+ 4nay, 099 (3.8)

e(q)=gq 4

The energy e(q) is oscillatory. Let the first minimum
occur at gg. Around this g¢, Eq. (3.8) may be replaced ap-
proximately in a Landau form,

ﬁz,., (g —q0), (3.9)

elg)=A
1 * 2m

where A and m* are the energy gap and effective mass,
respectively.

According to the theory of Feynman et al. for liquid
helium,” the excitation energy is related to the structure
factor S'(g) as follows:

In our case, a reverse relation is obtained from Eq. (2.8),

2
S(q)=—f12—q—coth[—;-Be(q)] .

Ime(q) (3.11)

Hence, for absolute zero,

S(q)= (3.12)

__q
[4®+2nu ()]

Figure 1 illustrates the Fourier transform u(g) of the
interaction potential. The potential parameters have been
chosen in correspondence with the bulk values which we
have adopted earlier. They are a =2.55 A, V=5 K, and
€0=6 K.

Figure 2 represents the excitation spectrum. The solid
curve corresponds to Vy=5 K and the double-dashed
curve to Vy=6 K. These curves are similar to the fami-
liar three-dimensional (3D) excitation spectrum. Howev-
er, the roton energy is much lower.

The structure factor S(g) is shown in Fig. 3 as a func-
tion of dimensionless variable ga. In comparison with the
3D case, the first peak is higher. This corresponds to the
reduction in the roton energy.

IV. THERMODYNAMIC FUNCTIONS

We follow Landau’s theory to obtain the phonon and
roton energies. For small g, we obtain

!
Eph(T)=L 5(2) (kpT)2— 3X3.4§(4)B(kBT)4
217' Ao AO
|
+ 288 ey - (4.1)
Ao
For large g, we take Eq. (3.9) to obtain
1/2
m*kpT —A/kgT
E(T)= | ——3 (A+5kgT)e 727 . (4.2)
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FIG. 1. Potential u(g) as a function of dimensionless param-
eter aq with the numerical parameters: a@ =2.55 A Vo=5 K,
€=6 K, and n=0. 167/4 (This corresponds to n =2.18
% 10~2/A3 in three dimensions.)

Using Egs. (4.1) and (4.2), we obtain the corresponding
specific heats

I HE4
CopnlT)= _LA?—)B%T?
0
+ 86O oyt : 4.3)
A§
m*ky T 172
Cv,rot( 1= )
2
3, A A ~A/kgT
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(4.4)
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FIG. 2. Excitation spectrum vs dimensionless parameter ga.
The solid and double-dashed lines are the spectrum for V=5
and 6 K, respectively, with the other parameters fixed.
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FIG. 3. Structure factor against dimensionless parameter ga.
Solid line, V=5 K; double-dashed line, V=6 K.

We note that the phonon specific heat is an odd function
of temperature with the first linear term which is charac-
teristic of one dimension. The roton energy gap A and the
roton minimum characterize the roton specific heat. The
exponential factor makes its contribution very small for
low temperatures.

Our theoretical expressions for various thermodynamic
functions are given by

__ 1 | 8Q2) o pp 3CW) g e
F(T)= =5 | S5 TP — =5 B kg T)
+ 2O oy - J , 4.5)
A5
m*(kyT? | _
Fro(T)=— ——2;;2— e AT (4.6)
Spn(T)= —L(k T)-———g—B ky TV
61£(6
+ A(6)C(kBT)5+-" ] @7
0
172
m*kpT 3, A | —askgT
Srot(T)= 7 5 +7(;7 ,  (48)
1 (322, .
(D)=>— (kpT)
Pon 2 4,
]
- 3;4‘f’31(kBT)4+~-- ] : 4.9)
0
172
1 | m*(kpT)? —A/K
P T) =" —27;;— e AT (4.10)

where P represents pressure and
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_ 54i+7

B,
24,

The phonon and roton parts of the normal-fluid density are

1| 22 516(4 1
o D)= | 2D ey 2 B gyt 4 O ey | @.11)
w Ao Ao AO
m* 12 A/k
ro = B BT-
PN, T) 2wk, T (4.12)

V. PAIR-DISTRIBUTION FUNCTION AND GROUND-STATE ENERGY

In this section, we evaluate the pair-distribution function explicitly and show the characteristics of one-dimensional
phonons in the Bose liquid. Introducing Eq. (2.6) into (2.1), we have

Apz(x)=n2—£; fo y2dy cos(xy) f_wdz

where we changed the variables
Z=21T_]/B y Y=4q .
Performing the integration, we obtain

1

B S—— (xy) .
7t 2ni )] 72 cos(xy

n -]
Apz(x)=n2——1; fo dy |1

(5.2)

The exact evaluation of the pair-distribution function de-
pends strongly on the potential u(q), which is given by
Eq. (3.4). It is very difficult to evaluate Eq. (5.2) analyti-
cally for a soft potential with a Lennard-Jones tail.
Therefore, we retain only the constant term of u (g) to ob-
tain the asymptotic expression of the pair-distribution
function. Replacing u(g) by u#(0) and integrating by
parts, we obtain

Apy(x) 1 2u(0) 1

n? ma  (ax)?

& 2n—1M2n 4+ 1N
,2'1 (ax)®

(5.3)

where a is [2nu (0)]'/2. The x ~2 proportionality of the
pair-distribution function at large distances is a charac-
teristic property of one-dimensional phonons.
Taking only the ground-state energy in Eq. (2.13), we
have
q —q, ©
E,=+n’L fdx¢(x)+—;—L[f_(;o+ f_w°+ \ J

(8]
Xgl[e(q)—qZ—nu(q)]
27
=I+1,+15. (5.4)

To evaluate these integrals, we use Eqgs. (3.6) and (3.2) in
the integral of Eq. (5.4) for small and large momenta,
respectively. The first integral I, of Eq. (5.4) is obtained

1 1

Va2 Drampyieay] |0 AP =p =L, 6.1
[
easily,
I,=3n’L [ ¢(x)dx =Nna(Vo—s€)=NnaV* . (5.5

We insert Eq. (3.6) into (5.4) and take up to order q* for
the second integral. We then obtain

L q
I,= o f_:o dqlelg)—g*—nu(q)]

__i%__"_l‘ﬁ (5.6)
T 4ma r ’

where
V*=Vy— ey, Ai=4naV* .

To evaluate the remaining integral for large momenta,
we use Eq. (3.2) and choose only the dominant term to ar-
rive at

re 2+ 1]

L © sinx
=———n2(13V(2) fa 4 dx , Qp=4goa
T )

x
)3 (5.7)
Li=—22 cLv},
T
where ¢ =1.3290.
Adding these results, we finally obtain
E 1 ca?
Ey=—2=nav* [1———— 2 .
N na mna p* Vo (5.8)

We note that the ground-state energy obtained by Lieb
and Liniger is given by
172

Eo='_g"=nc

N ; (5.9)

4 c
1__ =
37 | n
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where 2c¢ is the strength of the § function.

Equation (5.8) gives the ground-state energy per particle
for the soft potential. The first term agrees essentially
with the first term of Eq. (5.9). Our second term includes
the contribution from the attractive potential so that it
differs from Eq. (5.9). The third term is mainly deter-
mined by the hard-sphere diameter and the soft potential.
A similar calculation for the 3D case yields the same
ground-state energy as Lee, Huang, and Yang.?

VI. RESULTS AND DISCUSSIONS

It is well known that Bose-Einstein condensation does
not exist in two and one-dimensions because of the forms
for the average number of particles. The same eigenvalue
expression can be used for two and three dimensions® in
the neglect of higher-order terms, but the number density
appearing in this expression for reduced dimensions does
not include the condensate.

By adopting a soft potential, we have obtained the exci-
tation spectrum as a function of dimensionless parameter
ga in Fig. 2 with parameters n, a, €, and ¥V,. The
behavior of this spectrum is analogous to Landau’s case:
for small momentum, it is phononlike, while it is rotonlike
at around g, for large momenta. Passing the roton
minimum the slope of the dispersion is slightly steeper
than that of phonons. We note that as the numerical
values of three parameters n, a, and V|, increase, the pho-
non part becomes steeper, followed by the concave part
which is depleted progressively. Finally, the roton
minimum disappears and eventually becomes an inflection
point. Thus, the excitation spectrum becomes that of the
pseudopotential.

It is interesting to note that, if the attractive potential is
neglected in Eq. (3.4), the one-dimensional excitation
reduces to the 3D excitation spectrum of Brueckner and
Sawada.! In this case, the energy gap and the effective
mass are given by

sin(goa) 12

A=q, |g§+4naVy—, , 6.1)
d0
(g3 +4nVogosingga)'”?
m*— 90 090819 : ’ 6.2)
6490 +2naVy(2 cosqoa —qoa singga)

and q, can be determined as follows:

293 +nV,[sin(gea)+(goa )cos(goa)]=0 . (6.3
The detailed analysis of Egs. (6.1)—(6.3) for the

Brueckner-Sawada spectrum was given by Pathria and
Singh.

Lieb!! showed that the excitation spectrum of the one-
dimensional Bose gas interacting via a repulsive §-
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function potential could be analyzed by a double spec-
trum: type-I excitation (so called Bogoliubov spectrum),
and type-II excitation (“hole” states). Our excitation spec-
trum Eq. (2.14) is just Bogoliubov type and thus type-II
excitation does not appear.

The structure factor corresponding to the excitation
spectrum of Fig. 2 increases linearly as g /[2nu (0)]'/? for
small momenta, and reaches the peak which corresponds
to the roton minimum. The slope is more or less the same
as those of two and three dimensions.’

The thermodynamic functions [Egs. (4.1)—(4.11)] based
on the phonon spectrum Egq. (3.6) agree with what was ob-
tained by Padmore,'? who used the simple two- and one-
dimensional models of restricted dimensionality: fluid
flow in two parallel plates and also in the straight rec-
tangular tube. If we take only the first term, the specific-
heat and the normal-fluid densities in two and three di-
mensions are obtained as follows: For three dimensions,

ks 41£(4) 3 1 415(4) 4
v,ph = 20r A?) (kBT) » PN,ph= 617'2 A(s) (kBT) ’

and for two-dimensions,

kg 13
ey
0

v,ph= 2

1 315(3
’ pN,ph=E A(g )(kBT)3 .

Let N be the dimensionality. Then the specific heat and
the normal-fluid density can be written as TV and TV +1,
respectively. In the case of the roton part, both are not
different from those of other dimensions except for small
modifications. We have shown elsewhere that the second
and third terms play important roles in two-dimensional
fluid density.”®> We expect a similar role played by these
terms in the one-dimensional case.

We have evaluated the pair-distribution function of the
one-dimensional Bose liquid with the soft potential in the
small-momentum region [Eq. (5.3)]. This pair-
distribution function is subject to the condition
x >>V3/a. It decreases as r ~2 at large distances and rap-
idly approaches unity as x— . We note that the pair-
distribution functions!* of two- and three-dimensional
hard-sphere Bose systems decrease as 7 ~> and r ~*%, respec-
tively, at large distances. The x ~2 proportionality is the
main long-distance behavior of one-dimensional phonons
in a Bose liquid. We expect that the pair-distribution
function at short distances will oscillate and tends to unity
as x— . This will be mainly due to the contribution
from the core part of the soft potential.
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