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We describe a calculation of T,(p) in a model of a disordered superconductor which is based on
the de Gennes —Skal —Shklovskii (dGSS) picture of the large cluster in a percolation system. The
calculation is done by carrying out successive decimations on the Landau-Ginzburg Hamiltonian de-

scribing the "links" in the model. We calculate T,(p) by evaluating the renormalized Landau-
Ginzburg coupling when the renormalized Landau-Ginzburg length equals the percolation link

length in the dGSS picture. The results reduce to a previous scaling theory in an appropriate limit
but contain effects of variations in the amplitude of the superconducting order parameter. The re-
sults are in good agreement with experiments on Hg„Xe~ „mixtures by Epstein, Goldman,
Dahlberg, and Mikkelson.

I. INTRODUCTION

Inhomogeneous superconductors have been modeled in
at least two ways. ' In one model, ' particularly appropri-
ate for granular superconductors, the conducting paths
limiting sample conductance include gaps between grains
of superconducting material. In a second model, studied
previously by one of us and in more detail here, the limit-
ing conducting paths consist of the one-dimensional (1D)
"links" which the de Gennes and Skal and Shklovskii
picture suggests in the large percolating cluster. In this
second model, superconducting material is assumed to be
microscopically mixed with insulating material in a ran-
dom way so that the geometry can be described by a per-
colation model. Such a geometrical model seems more
appropriate for experimental systems which are produced
by vapor codeposition of an insulating and a supercon-
ducting material. A percolation model for the geometri-
cal morphology of superconducting material does not, of
course, mean that the concentration or temperature depen-
dence of the conductance of a sample can immediately be
deduced. For this, one needs a scaling theory which takes
account of the superconducting nature of the field on the
percolation network. Such a scaling hypothesis was for-
mulated by us earlier, based on ideas of Lubensky and
others. Among other things, the scaling hypothesis sug-
gested that T, (p) ~ p —p, near p„ in approximate agree-
ment with experiments on Hg„Xe1 „by Epstein, Gold-
man, Dahlberg, and Mikkelson. Away from p =p„how-
ever, T, (p) deviated from linearity and saturated to a
value near the bulk value. Here, we describe a calculation
based on the model of Ref. 2 which accounts for this ef-
fect in terms of the average variation of the amplitude of
the superconducting order parameter along the links as p
changes.

&I. DESCRIPTION OF MODEL AND PLAN
OF CALCULATION

(1)
Here, a = ( T T, )a' and —a ', b, and c are the familiar
Landau-Ginzburg parameters for a superconductor (but
since the link is one-dimensional, one must take some care
in relating a', b, and c to bulk values; see Sec. IV). The
partition function of the link is

z (2)

Following Ref. 7 the functional integral is approximated
by defining stepwise constant functions g(x) =P; for x in
a region (of length b,x and labeled i) of x values along the
chain,

in which

auxF= X IA I'+
go

bb,x, c
I A —4+i I'

g +
go ~x ko

(4)

The plan of the calculation is as follows: We rewrite Z&;„z
by decimation (if 1 is even),

Beginning with the de Gennes and Skal and
Shklovskii picture, we will only need a model of the 1D
links of the large cluster. A model of a one-dimensional
superconductor was formulated by Scalapino, Sears, and
Ferrell,

2'
4 d x

Z&;~= f f d gid2&2 d ptexp pF(a, b,c,gi, &2, . . . ,—&t)

= f f d /id $3 d gt iexp PF(a', b', c', fi, g—3 ~ ~ ~ Qt i),
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thus defining a renormalization-group transformation

R(a, b, c)=a '(a, b,c),b '(a, b,c),c '(a, b,c),
or, by iteration,

R(a„,b„,cn) an+irbn+ircn+i . (6)

—pin lp —p, I
+in(lp/)bc)

ln2
(7)

When this number of iterations is reached, T, (p) is
evaluated by assuming that the resulting network of links
and nodes orders like the X-Y' model: Referring to
Eq. (4), the effective node-node coupling is

We obtain T, (p) by iterating this transformation, not at
(or near) a fixed point, as in the most common application
of renormalization-group ideas, but rather until the
(unscaled) length of the bond is equal to the length of the
de Gennes —Skal —Shklovskii link. More precisely, sup-
pose that the initial bond length is b,x [as assumed in Eq.
(4)]. Then, after n decimations the bond length is 2"M.
We write the de Gennes —Skal —Shklovskii link length as
l =lp

I p —p, I
+, so that at the final iteration

2 M = lp
I p —p, I

~, and the required number of itera-
tions is

—2c„
I P; I I g;+i I

. For long links, one expects the fluc-
tuations in the renormalized

I
pl's to become small.

Thus, we take
I g; I

=
I P;+i I

= —a„/2b„so that the
node-node coupling is c„a„/b„T. urning to the X-F
model, one has k&T, =nJ where J is the node-node cou-
pling and a depends on the coordination number and di-
mension of the lattice. Thus, finally,

kii T, = —acnan /b„.
This equation defines T, in terms of p through Eqs.
(5)—(7), once the renormalization (6) resulting from the
definition (5) has been determined. We next turn to an
approximate evaluation of this transformation.

III. APPROXIMATE EVALUATION
OF RENORMALIZATION-GROUP

TRANSFORMATION BY DECIMATION

Here, we find an approximate explicit form for the
transformation (6). We choose periodic boundary condi-
tions so that pi+i fi. Th——is will not affect the result
when l is large. (l must be of the form 2 where m is
greater than the total number of iterations required. )

Then from (3) and (4),

Zlink

l

f dtl' expI 0[F2 (0 —1 0 )+F2 (4 0 2)]]
m=2, 4, . . . , I

(9)

in which

F'"(@0') = '(
I 0 I

'+
I

-O'
I

'&+ -'b(
I @ I

'+
I

O'
I
'&+

I 0 (10)

We obtain an approximation renormalization transformation by comparing the coefficient of the leading terms in an ex-

pansion of F2(g, g') about its minimum before and after decimation. Making this expansion in F'z '(f, P'), we have

F2"(4 0') =F'"+« a) [(~
I 0 I

)'+—(~ O'
I

)']—2c~
I 4 I

~
I

O'
I

— (4 0')'+-
2b

Here,

and

F~ '= a /4b . —

We write Z after decimation as

Zlink
m=3, 7, 11, . . . , I—1

f d4 ex& [ WF"'(4 »—0 )+F'"(-4 0 )]I . (l2)

From Eqs. (9) and (10), Fq" is given by

exp[ —&F2"(@ -i 0 +i)]=exp[ —&[2«+2c&(I@ -il'+ I@ +il'&+ 2b(I@ -il'+ I@ +il')]I
&& f IW ldl@ I f ~4 exp( —&[«+2c)l@ I'+b I@

C m m —1 COS m

+i I
cos(P —P +i)]I ) . (l3)
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The integration on P~ can be done with the use of

e"'"& =I, z,
2m —lr

where Io(z) is a Bessel function of imaginary argument.
Approximating Io(z) by its large argument form one ap-
proximates the remaining integral on

I
tj'j

I
by the use of

the method of steepest descents. The resulting free energy
leads (see the Appendix) to the following form for the
transformation defined by Eq. (6):

Cn+) —~n+) = Cn —&n

c„a„/b„=2 "ciai/bi .

Thus,

k~ T, = —a2 "cia i /b i .

With the use of (7), taking (p=l and supposing that
n»ln(lo/dec ), we have 2 "=(M/lo)

I p —p, I, so that

ks T, = —ab, x(p p,—)ciai/lobi .

By using a i a'(—T— T,' —'), we find
I

8 00

so that

2m

„i2b„&'",4=0'

(14a)

(14b) in which

P Pc ~(p)K( — )

]+X(p—p, )
(15)

cn+ ian+ ]/bn + i cnan /2bn (14c) E=aa'c/kzbgole . (16)

Here, xz is the real positive solution to Eq. (Al) which
gives the lowest free energy. Solving the cubic equation
(Al) explicitly (see Appendix) permits Eqs. (14) to be ex-
plicitly evaluated with results shown in Fig. 1. As expect-
ed, the stable fixed point is completely decoupled for a
one-dimensional system.

IV. RESULTS FOR T', (p)

To compare (15) with experiment we require an esti-
mate of the constant E in terms of experimentally accessi-
ble parameters. To make the required associations we
write the free energy I of a three-dimensional supercon-
ductor as

Af f f dx4dz —I%I'+, IOal'

Comparing (8) and (14) one sees that only Eq. (14c) is
needed for finding T, . Iterating (14c}n times we have

(17)

where the integral is over three dimensions and the quan-
tities A, 8, and Care

-29 ' -10
A =N(0)(T —T,' ')/T, ' ',
B=0.098N(0)/(k~ T,' ')

C=0.49('oN(0),

(18)

-20

(a)

log, ob

-10

-10

-20

where N(0) is the density of states (per unit volume) at
the Fermi level and go is the zero-temperature coherence
length. fs(x,y, z) is the three-dimensional order parame-
ter. We express (17} in terms of averages across the two
directions normal to the chain. (Here, we ignore terms
arising from the curvature of the chain. This can only be
strictly valid when gi & l, that is, on the normal side of the
superconducting transition. Corrections arising from cur-
vature of the chain can be studied, but we have not done
so he«) Writing tt(x) =

I
f(x)

I

e'~'"', where x is the dis-
tance along the chain, we can determine

I
f(x) I, P(x),

and a normalization area W through the three equations

(bl

--1 2 f d r
I @s(r) I

=
I
f(x)

I
2W,

2
d'(('s r dQ(x)

dx dx
(19)

FIG. 1. Results of iteration of Eqs. (14). (a) Shows log&ob vs

log~~ for the starting point (a,b, c)=(—1,1, 1). (b) Shows a vs

logiob for the starting point ( —1,1,1). Solid lines are guides to
the eye and show direction of flow.

f d'»
I gs( r )

I

=
I
g(x)

I
W .

M will be a microscopic area. Because we are studying a
chain of metallic atoms surrounded by insulating atoms, it
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will be of order (atomic size), and is not related to the
zero-temperature coherence length. With the use of Eqs.
(17)—(19), and omitting a term in

By Bz
+

which will not affect the transition, we have

2

0.24
p(VFMI

0.32

d1((x) dx

Comparing Eq. (20) with Eqs. (1) and (4) gives

fiQ=M M 2mC'
2

2

b=hx M
2m

C=
Ax 2m

Combining (16), (18), and (21), one finds

%=10.0 —[WglV(0)ksT, ' '] .
0

(20)

(21)

FIG. 2. T,(p) vs p(VFM}. The solid line is Eq. (15) with the
values given in Eq. (22). The circles show the data of Epstein
et aI. (Ref. 6). All of the experimental T, 's are defined at the
point at which the resistance is O.S times normal resistance.
Data are included for which p was determined from both partial
pressures (open circles) and resistivity (solid circles).

in the de Gennes picture. The difference is that L(p) has
a different geometrical definition, and L(p) ~

I bp
I

where Coniglio estimates y= 1.12 in three dimensions. In
a model consistent with Coniglio's one may again consider
decimation of a chain of length L(p) as done here. The
calculation proceeds as before, except that y&1, and the
equation for T, becomes

X(0) is estimated from the specific heat'
[E(0)=3y/2ks m;y=2. 2. X 10 J/mol(K) for Hg].
For Hg we take go ——1.3X10 cm and T,' '=4. 15 K,
using go hvF /mh, —— 6=2. kI3 T„and estimating
vp ——kp/hX(0)2m . M is not known. We estimate
M=a where a is the lattice spacing of 4—5 A in Hg so
that &=2&(10 ' cm . Thus E=(a/lo)(2370 A).

To compare Eq. (15) with experiment we take p to be
the volume fraction of metal (VFM) and make a least-
squares fit" of Eq. (19) to the data of Epstein et a/. Wi
find that the following parameters optimize the fit:

T,' '=(4.34+0.12) K,
p, (VFM) =0.162+0.002,

K= 157+37 .

The quality of the fit is indicated in Fig. 2. The errors are
estimated standard deviations in the fit.

V. DISCUSSION AND CONCLUSIONS

The fit of the data to experiment is moderately good.
In principle, it would give a measure of /0 if a were
known. Unfortunately, the latter depends on the structure
of the large cluster. For cubic ordered three-dimensional
lattices one has a=5.0 (fcc), 3.25 (bcc), and 2.33 (sc).
With these values one finds lo =(55+20) A. The uncer-
tainties are large but the magnitude is plausible. An in-
teresting question is whether this kind of analysis can dis-
tinguish between the present model of the large cluster
and another proposed by Coniglio. ' In this latter model,
a length L(p) appears such that, at T„g~(T, ) =L(p), as

APPENDIX: DERIVATION OF THE RECURSION
RELATION

After integrating the P variable one finds that the in-
tegrand in Eq. (13) is maximized when

I
=x2 (

I f~ i I I Pm+i I 0 i 0+i»—
where x2~ satisfies

2(a+2c)x2 +4bx2

—~(
I @ -i

I I @ +i I 0 -i —0' +i) =0
Here,

w(x, y, g)=2c(x +y +2xy cosP)'~ (A2)

Thus, using the method of steepest descents, the free ener-

gy 1S

+Ip p I T(0)

1+Zip —p, I~

With y = 1.12, this expression fits the data similarly well.
We note that we have found a variation in T, (p) arising

from changes with p in the average amplitude of the order
parameter along a link and not from critical fluctuation in
the amplitude of the order parameter. The use of a
renormalization-group transformation works here because
the decimation on one-dimensional links is exact within
the de Gennes —Skal —Shklovskii model, and can thus be
used to calculate effects involving variables, such as the
amplitude of the superconducting order parameter, which
are "irrelevant" for calculating the effects of fluctuations
at critical points.
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(,4 +()= 2(a+2c)(IP ) I'+ l0 +) I')+ 2b(lf -(I'+ l0 +) I')

+(a+2c )x2m +bx2m x2mu)(
I 4m-) I I 4m+( l Wm —(

—&m+() . (A3)

Here, x2 is the positive real solution to Eq. (A2) which
minimizes F2"(f (,g +)).

The position xp, xp, pp of the minimum of F2" with
respect to lcm ) l, l g +(l,p 2

—p +) is given by the
equations

gF(1)

I
(It'm+(

I Ik (I = IW +(I ="o & —( 4' +(=&0

=0, (A4)

Thus, using (A2),

xosingo
12=0~2( 1+cosgp) '~2

which has the physically reasonable solution of $0=0.
With the use of this solution and Eq. (A2), we obtain

Bw

xo,xo, go

(3(4'm —( —4m+() I 4 (1=1(b ( I
=xo 4' (

—0 (=No

=0 . (A5)

Thus (A6) becomes

(a+2c)xp+2bxp —2x2m(xp~xp~pp)c =0 . (A9)

With the use of (A3), (A4) becomes

(a +2c )xp +2bx p
—x2m

Bw =0,
"o "o Po

where Eq. (Al) has been used. (A5) is similarly

(A6)

On the other hand, from (A2) u)(xp xp (t 0) =4cxp, so that
(Al) can be written as

( a +2c )x2m(xp, xp, gp) +2bx 2m (xp, xp, gp) 2cxp =—0 .

(A10)

(A9) and (A10) have the solution
W—&2m =0.

"o "o yo
X0 X2m(XpiX0~00)

1/2—a

If x2 (xp xp pp)&0 (as we will assume here and show to
be self-consistent), then, from (A7),

=0.
"o "o &o

We have explicitly confirmed numerically that the solu-
tion (All) (with $0——0) gives a minimum for F2". Ex-
panding (A3) to second order in b,

l f +( l

=
l P +( l

—xp
and (I) +( —P ) then gives

F(()(y qi) F(()
1/2—a

2b

1/2—a 2mBx
+ c —a —c

I(bI = I(b'I =( —a/2b)(~2, /=4'
l:(~ I @ I

)'+«
I
@'

I

)'l

&2m
(4 —4')'+

I @I =
I y I

=( —a~2b)' ', y=4 4b
(A12)

Comparing (A12) and (10) we obtain the transformation
defined by Eq. (6) in this approximation, as given in Eqs.
(14). To evaluate the transformation (14) explicitly re-
quires the analytical solution of the cubic equation (Al).
As is well known, the nature of the solution depends on
the sign of a discriminant which in this case takes the
orm

an+2cnD„=n 64Q2
+

27 2I

When D„&0 there is only one real solution for x2 and
the evalution of

()X2m

9l@l x, ,x, ,p

is unambiguous. When D„&0 there are three real solu-
tion and

&2m

must be evaluated for the solution with lowest free energy.
Results of implementing this program are shown in Fig.
1.
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