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Local-phonon model of strong electron-phonon interactions in A15 compounds
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We propose a model in which a single atom interacts strongly with a Fermi gas of spinless elec-

trons. We find that the electrons provide an effective double-well potential for the atom. The
electron-phonon coupling A is renormalized downward with decreasing temperature, provided that
A is large at high temperatures. The model is consistent with the experimental temperature depen-

dence of the Pauli susceptibility and the resistivity as well as with the violation of Mattheissen's rule.
It provides a possible explanation for why the observed martensitic transition is so small. We find
that the violation of Migdal s theorem implies time-retarded interactions between hops of the atom
from one minimum of the double well to the other.

I. INTRODUCTION

The A15 compounds have long been known to have a
puzzling array of physical properties. ' Members of this
group have high superconducting transition temperatures
indicative of strong electron-phonon coupling. The
"saturation" of the resistivity with increasing temperature
implies that strong electron-phonon scattering has re-
duced the electron mean free path to the order of the lat-
tice spacing. In addition, it appears that Mattheissen's
rule is violated in these materials. There is also evidence
for anomalously large zero-point motion as well as anhar-
monicity. ' In fact the shear-mode elastic constant
(C» —C,2)/2 in V3Si softens with decreasing tempera-
ture. Yet, even though phonon softening is seen at tem-
peratures on the order of the Debye temperature 8D, the
martensitic transition occurs at very low temperatures
( T -21 K in V3Si) if it occurs at all. Furthermore, the
lattice displacements associated with this structural tran-
sition are less than 0.01 A. This is about 10 times less
than a typical thermal or zero-point fluctuation, -0.1 A.
Studies of the specific heat indicate that the density of
states at the Fermi surface N(0) is large, e.g., in V3Si,
y=52.8 mJ/molK implies N(0)-2.4 states/eVatom.
The Knight shift and susceptibility have been found to be
strongly temperature dependent for alloys with high su-
perconducting transition temperatures. In particular, the
susceptibility increases as the temperature decreases.

Previous theories have attributed these properties to a
peak in the density of states at the Fermi surface, ' anhar-
monic phonons, and the one dimensionality of the chains
of A atoms in A3B compounds. In this paper we pro-
pose a model in which a single atom on the chain interacts
strongly with a Fermi gas of electrons. We consider one
mode of vibration of the atom, possibly along the direc-
tion of the chain. Neighboring atoms provide an electro-
static restoring force which tends to be screened by the
cloud of electrons. This reduces the bare phonon frequen-
cy and softens the lattice. If we increase the electron-
phonon coupling sufficiently, a simple harmonic potential
well will deform into a double well. It may seem odd to

replace the A15 compounds by one atom. However, if the
electron-phonon coupling is very large, each atom will in-
teract much more with the electrons surrounding it than
with neighboring atoms. This approximation is clearly
even more justiflable in other strong-coupling supercon-
ductors with similar properties such as the Chevrel com-
pounds.

In Sec. II we use Tomonoga bosons to show how strong
electron-phonon coupling can lead to anharmonic pho-
nons. In Sec. III we present the Hamiltonian for the local
phonon. We then proceed in Sec. IV to integrate out the
electrons and to find an effective double-well potential for
the atom. We shall see that a consequence of violating
Migdals theorem is time-retarded interactions between
hops from one minimum to the other. In Sec. V we apply
space-time scaling techniques to show that, if the system
starts with large electron-phonon coupling A, at high tem-
peratures, A, is renormalized downwards as the tempera-
ture is decreased. This is reflected in the downward re-
normalization of the phase shift and the increase in the
tendency for hopping. Essentially the double well be-
comes shallower and gradually transforms into a single
well. In Sec. VI we discuss specific heat and susceptibili-
ty. In particular, we show that our model is consistent
with experimental data on the temperature dependence of
the Pauli susceptibility at high temperatures. In Secs. VII
and VIII we compare the prediction of the local phonon
picture with the temperature dependence of the resistivity
for T) 8& and with the violation of Mattheissen's rule.
We deal with the physical meaning of the increase in the
tendency for hopping with decreasing temperature in Sec.
IX, and we relate this to why the observed martensitic
transition is so small in Sec. X. Concluding remarks are
contained in Sec. XI.

II. TOMONOGA BOSONS

Tomonoga bosons provide a more precise way of seeing
the interplay between large resistivity and anharmonic
phonons. "' Consider for the moment a spherical shell
of atoms or positively charged ions which are surrounding
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FIG. 1. Tomonoga bosons correspond to radial density waves
in the electron gas.
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an electron gas as shown in Fig. 1. In the center of the
sphere sits our atom of interest. Suppose the shell vi-
brates radially. Radial density waves in the electron gas
will result. The quantized version of these s waves are
Tomonoga bosons. We can consider a one-dimensional
problem because we are just dealing with the radial coor-
dinate.

The electron-phonon Hamiltonian can be written

H, iph ——A,Q g C-,C„, (1)
k, k'

where Q is the radial displacement and c is an electron
k

annihilation operator. The electron-phonon coupling A,

can be written, in terms of a dimensionless parameter A,
as

2
Mcoo

A 2
2nN(0)

where M is the mass of the shell, coo is the bare phonon
frequency, and N(0) is the density of electron states of
one spin at the Fermi level in one dimension. A is the
analogue of Migdal's Ao in that A & 1 for ordinary metals.
A typical value for A is 0.2. We cannot use Migdal's pa-
rameter because that was derived for acoustic phonons.
We can write Eq. (1) in terms of Tomonoga bosons by in-
troducing the density operators

+
pk = ~ ~ Cq k/2Cq+k/2,L +q&0

where L is the length of the system. It is of the order of
the lattice constant. The Tomonoga boson creation and
annihilation operators are given by

(ak+ak)
2
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The retarded Green's functions associated with these
fields in the Heisenberg representation are

Dtt (t)= —i8(t)(0
~
[P(t),P(0)]

~
0),

Gtt (k;t) = —i8(t)(0
~
[gk(t), P(0)]

~

0) .

We can calculate the phonon self-energy using the
equation-of-motion method. When we do so, we find

UF k~X
Iig (co) =

2

CO+ UF k~
co ln —2VF k~ —l 7TVFk~X co,

N —UFk~

where x =(A cooL)/(8nuFk, ) is dim. ensionless. The full
phonon propagator is given by

C00
Dti(Oi) =

CO —
COO

—Ilii ( CO )

The real part of II~ (co) is related to the phonon frequency
shift, while the imaginary part gives the phonon decay
rate. Since the phonons decay by scattering off the To-
monoga bosons, the imaginary part is a measure of the
electron scattering rate and, hence, of the resistivity.
Even though the decay rates of electrons and phonons are
not the same, the resistivity of the 215 compounds is so
large at T-eD that we expect the phonon decay rate I
to also be large. From the poles of Dz(co) we see that the
decay rate is

77UFkqxr=
2(1—x)

N(0)=L/nuF .
As Tomonoga showed in his original paper, Qk =uF

~
k

~

.
We assume that the electron density varies smoothly
within the density waves. These long-wavelength varia-
tions are why we introduce a cutoff wave vector k, & kF.
The phonon creation and annihilation operators associated
with the shell vibrations are given by b and b~. Since H
is quadratic, we can solve it exactly. We introduce pho-
non and Tomonoga boson fields as

(b+b')1

2

' 1/2
C00Qk+

jk f (k 4 2m.
(b+b )(ak+a k),

and the renormalized frequency is

[(coo uFk, x)(1—x) —( , ~—uFk, x) ]'—
1 —x
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A, =4m /kFI. . (9a)

since co «U~k, . Lattice stability requires that the
discriminant be positive and this in turn puts an upper
bound on A . The critical coupling A, is given by m'=0.
If k, = —,'kF, 0 AQ ks

&ei-Pk= —g (c-, c-, ) gQ 0
kp

L

(10b)

(10c)

Inserting A, into our expression for I gives us the max-
imum allowed decay rate:

~maX
=~(oio/EF) « 1

Q)o

If coo-oi~, the critical decay rate is small, much smaller
than what is implied by the large resistivity of the 315
compounds, but if we let A exceed A, to increase the de-
cay rate, the phonon will go soft and become unstable un-
less coo is very large, i.e., unless the phonon has a large in-
trinsic stiffness.

Such a large electron-phonon coupling implies that
Migdal's theorem will be violated. ' Among other things,
Migdal's theorem tells us that electron-phonon vertex
corrections will be of the order of N(0)g /coD(m/M)'~
where m is the mass of the electron, M is the mass of the
ion, and coii is the Debye frequency. g is a coupling ener-
gy. In our notation we can take g —iiiA, /Mco
-A fico/2m%(0). In normal metals X(0)g /ron is of the
order of unity. Thus, lowest-order perturbation theory is
sufficient if we include Coulomb corrections. This is the
basis of the Eliashberg equations. If g is roughly an order
of magnitude larger than normal, perturbation theory
does not hold, i.e., free electrons and free phonons are not
a good zeroth-order approximation and are not the proper
starting point in Hilbert space. In essence, Migdal's
theorem is a restatement of the adiabatic approximation
which assumes that one can separate the electrons from
the phonons and that the electrons are always in equihbri-
um with the phonons. We shall see that the violation of
Migdal s theorem implies that there are time-retarded in-
teractions between the electrons which are mediated by
the phonons.

III. HAMIl. TONIANS

Let us now return to our model in which we approxi-
mate the optical phonons by independent Einstein oscilla-
tors. We consider an ion moving back and forth about its
lattice site in one dimension and interacting with an elec-
tron gas. Obviously, it will make no difference if the ion
18 displaced to thc right of to thc left, and thc Hamiltoni-
an must preserve this symmetry, We can imagine expand-
ing the electron wave functions in spherical harmonics
about the lattice site. Denoting the atomic displacement
by Q, the Hamiltonian must be invariant under the
transformations Q ~—Q, s wave~s wave, and p
wave —p wave. Rather than a partial-wave analysis, we
can separate the wave function into two parts with even
and odd paflty.

The Hamiltonian is

H =Hph+He)+H, ) ph „

He)= ~ &k
k ko

A,Q
' 0

k, k'
—A,Q c k—

A physically equivalent Hamiltonian has the form of the
Anderson model for localized magnetic moments. ' We
can imagine an electron localized in the vicinity of the
atom. Th1s clcctI'on, wh1ch has CI'cat1on Rnd annlhllatlon
operators Po+ and Po+, mixes with the conduction-band
electrons via the transition matrix V . Thus we can

kO
write

Hei = g Eke ~ c~ + g Eogo~go~
k, g

g +

+ X (I'-koc
k Coo+ I - folic- ),

k, o'

(13)

As before we can express the coupling in terms of a di-
mensionless parameter A,

Az= A (11)
2m% (0)

where N(0) is the density of states at the Fermi surface
for one type of electron. The minus sign in H, i ~k ensures
that the interaction between the electrons and the atom is
attractive. This term represents the fact that the phonon
scatters even-parity electrons into odd-parity electrons and
vice versa. The diagonal matrix elements have been ab-
sorbed into Hd. I' and M denote the atomic momentum
and mass, respectively. c,c- are the creation and an-

ks ks
nihilation operators for the even-parity electrons of wave
vector k, and c,c are the analogous operators forkp' kp
odd-parity electrons. Under a parity transformation,
c~ ~c~ Rnd c~ ~—c~, E-+ Rnd 6'~ Rrc thc clcc-ks ks kp kp ks kp
tron energies and can be approximated by Uz

~

k ~. For
simplicity we will assume that e =e- =ok. In princi-

ks kp
pie, this does not affect anything; actually, - the Fermi
velocity wiB be anisotropic and both the "s" and "p"
waves will propagate aspherically. With this assumption
we can diagonalize the Hamiltonian by transforming to
thc basis

1c- = (c-+c- ).k+ 2 ks kp

Then the Hamiltonian becomes

AQ 0 6+II.i-ih= —(4o+ Po-) 0 gQ (14)

(10a)
where the + subscripts denote symmetric and antisym-



metric combinations of s and p waves. Eo is the energy
of the unperturbed local electron state. If A, =O, H, ~

in
Eq. (13) should be equivalent to the "free-band*' Hamil-
tonian in Eq. (12). In this case the localized electron state
is entirely fictitious and there should be maximum mixing
with the band electrons. The width of the resonance
b, =mN(0)

~ V-„~ is on the order of the bandwidth. In

other words, if we put an electron on the lattice site, it
mill decay amay by mixing mith the band electrons and its
lifetime ~-1/b, . In terms of 6 and the dimensionless pa-
rameter A, A, can be expressed as

mMQ b,
A (15)

2

In this form it is easy to see the relation between our
model and the Jahn-Teller eff~t. '5 Suppose we ignore the
band electrons and set Eo ——E~——0. Then II,~

——0 in Eq.
(13) and the full Hamiltonian becomes

+ I ~&'Q' —~gfo+fo++~gfo 4o

I cttlng no+ =go+go+ Rlld coIIlPlctlllg thc sqllRIc 1I1 Q, wc
obtain

2 2a= + —,Mnx —,(n, + n, —),P
2MQ

IV. PATH-INTEGRAL FORMULATION

Since the Anderson-model Hamiltonian in Eqs. (13) and
(14) gives the same physics as the "free-band" Hamilfoni-
Rll ill Eq. (12), lf, docs Ilot lllatfcl' w111cll wc clloosc to
study. We will concentrate our efforts on the free-band
Hamiltonian and occasionally cite the analogous results
for the Anderson model. We start by integrating out the
fermions using path-integral techniques similar to those
used by Yuval and Anderson on the Kondo problem, '
and by Hamann' on the Anderson model of locahzed
moments. This mill produce an effective double-mell po-
tential for the atom as well as a retarded interaction be-
tween hops from one well to the other. We can then write
the partition function in a form similar to that found by
Yuval and Anderson for the Kondo problem and apply
space-time scaling techniques to derive scaling relations
for the scattering phase shift and hopping fugacity.

The partition function can be expressed as

P
Z =Zo T~CXp — d7 HI '7

where Zo is the partition function for JIo H, I, HI —i—s in
the interaction representation defined by Ho, T, is the or-
dering operator with respect to ~, and { } is the thermal
average with respect to Ho. III is given by H, ~ ~h in Eq.
(12). This yields

ZoZ+ Z (21)

x=g—
MQ

(n()+ —no ) .

If no+ —no, Q=O is stable. But if no+ ——1 and no
the minimum of the potential is displaced to

Z~ = T~cxp — 'TE~ 'T c -+, 'T c~ 'T

k, k'

E ( Q (r) )= —(r&Q (~) (22)

We can express Q in terms of a dimcnsionless parameter q
as follows:

—5E'= —~'/2~&'= —
2 &qo (20)

Similarly, if no+ ——0 and no ——1, the atom moves in the
other direction. Thus we have the Jahn-Teller effect;
namely, the system is unstable to a distortion which splits
the degeneracy between the local "+" and "—"electron
levels. Tunneling between Qo+ and Qo leads to the
dynamic Jahn- Teller effect.

We can think of q as the number of phonons present, al-

though q is not necessarily an integer. Thus Qo corre-
sponds to

qo IrA'4/—2n .

Noting that no+ ——no+, we can identify the coefficient of
no+ to bc Eo+. Then Eo+ ls lower relative to Eo by

We will integrate out the fermions for a fixed path
Q (~) and then integrate over all paths Q (r). For a parti-
tion function these paths must be dosed, i.e.,
Q (0) = Q (P). Although we should fix the end points, in-
tegrate over all paths between these end points, and then
vary the end points, we will only consider Q (0)
=Q(p)=0. As Halllallll 11Rs sllowll, tllls constraint docs
not seriously alter the physics near T=O. To evaluate the
average in Eq. (22), we follow Hamann and multiply
E (Q) by a coupling constant g. Differentiating with
respect to g, we find

d lnZ~ p=- y f, d E.(g( )){"-„,( ).-„()},,
k, k' (23)

where for any operator 2

(T~A exp —g g f, d~'E (g(~'))c-„,(~ )e „(~')l'-
k, k'

{A }s——
p

Tgexp —g g f dv'E (Q(I'))c-„,(w')c-„(~')
k, k'

(24)



29 LOCAL-PHONON MODEL OF STRONG ELECTRON-PHONON INTERACTIONS. . . 6169

6 „,(r, r')= (—T,c„(r)c'„,(r')), , (25)

The average (c-, (r)c- (r))s is the r'~r+ limit of a
k 'a' kcr

mixed propagator, G' '(r)=—

For long times r»1/gp, 6' '(r) becomes

N (0) N (0)
r+(1/g p)sg nr

(31)

which satisfies Dyson's equation. Integrating Eq. (23)
gives

1 P
Z~=exp —f dg f drE (Q(r))6~(r, r+), (26)

where

G (r, r')= g 6-„-„,(r, r') .
k, k'

6 (r, r') satisfies Dyson's equation,

(27)

G (r,r')=6' '(r r')—
(0)+g dr"G' '(r r")E —(Q(r")}G (r" r') . —

6' '(r) = —N(0) P —+ntan85. (r}
'r

(32)

where

where we have taken f(e) to be a step function, i.e., we
have set T=O. We can treat the ~=0 singularity by re-
quiring that the integral

f dr G' '(r) where a »1/gp

give the same result for the asymptotic form of G' '(r) as
for the exact form. Doing so, we find that we can take
the asymptotic propagator to be

(28)
00 1N(0)tan8= —f deN(e)u (e)P

QO E
(33)

6(P)( )

' [1—f(ek)] r&0
k

ge f(ek), r(0
k

We can find a closed form for 6~(r, r') by using the
"trick" of Nozieres and De Dominicis in which the free-
electron Green's function is replaced by the function it ap-
proaches asymptotically at large times. ' Dyson's equa-
tion then becomes a singular integral equation of the type
solved by Muskhelishvili.

The free propagator has the form

and P means principal value. Approximation (32} is cen-
tral to our calculation. It is asymptotically exact for long
time intervals. For short time intervals, it is wrong; in the
r~0 limit, it leads to spurious divergences in the full
propagator 6~(r) because we have ignored the cutoff gp.
We can handle such divergences by introducing a band-
width cutoff. We assume that N(e)u(e) is symmetric
about eF Oso ——that tan8=0. Inserting (32) into Dyson's
equation (28), we obtain

G (r, r')= —N(0)P

@%ate" e — ~ ue (29)

—gN(0) f P „E~{Q(r")}1

u(e)=e
—I&I ~4p with gp-bandwidth . (30)

I

where N(e) is the density of states for + or —electrons,
f(e) is the Fermi function, and u (e) is a cutoff function,
e.g.,

XG (r",r')dr" . (34)

We can solve for 6 (r, r') by using the method of
Muskhelishivili and by following Sec. III B of Hamann's
paper. We find

. N(0) 1 16(r, r') = i—
4((r) X+(r) X (r)

P
x+(r )+x-(r ) —x+(r) —x-(r)

7

6 (r—r') —— [X (r') —X (r')]1 (o) , 1 1 + , , 1 1
D (r r'), —

1+$2(r) 4 g(r) X+(r) X-(r) (35)

where

g(r) =gnN (0)E(Q (r) ), (36)

X (r) =exp[+—iri(r)]exp —P f „dr",(37)+ 1 ii ri(r")

We have temporarily dropped the a index. In the ~~0
limit, D(r) has a spurious divergence of the sort we dis-
cussed before. D(r) is the asymptotic form of some non-
singular function. If we had not set tan8=0, its complete
asymptotic form would be

D (r) =m.N (0)5(r), (38) D(r)= —N(0) tan8P ——~5(r)1

'r
(40)

7}(r)= —tan 'g(r) . (39)
which is similar to the asymptotic form of 6' '(r). ri(r)
is the "instantaneous phase shift" produced by the dis-
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P
Z =ZpZ+Z =Zpexp dr[ V(r)+ T(7 )j (43)

where

placed atom. Since we do not have a central potential
that conserves angular momentum, we cannot use tradi-
tional scattering theory to define a phase shift. However,
we can consider a constant potential ( V--, =XQ) equal

k k'
to the instantaneous potential. Then, as we show in the
Appendix, ri(~) is the phase shift at the Fermi surface
produced by this constant potential. ' ' ' A constant po-
tential in momentum space is a 5-function potential in
real space. Since only s waves have finite amplitude at
the origin, g(~) corresponds to an s-wave phase shift.

In order to evaluate the partition function given in Eq.
(26), we require the v'~~+ limit of 6(~,~') W.e can use
the exact propagator in Eq. (35) to find 6' '(~=0 ):

6' '(v =0 )= f N(e)u (e)f(e)de=N, (41)

where N is the number of electrons per atom W.e take

D(v=0 ) =D,
where D!N(0) is roughly the bandwidth. This is reason-
able since the bandwidth sets the energy scale. D is a di-
mensionless number and must be of order unity. For sim-

plicity we set D=1. With these two expressions we can
use Eq. (35) for 6 (r,w+) to evaluate Z in Eq. (26). The
first term in (35) in the "transient" part of G~ and is iden-
tical to Hamann's transient term up to a constant multi-
plicative factor. It gives rise to the retarded interaction
between hops. The last two terms in (35) are the "adiabat-
ic" part of G and they give rise to the effective double-
well potential. We have

We have included the terms from II~h. Notice that T(~)
and V(r) are even functions of Q(~). If the coupling A is
large enough, i.e., if

A~1, (48)

then V(r) will be a symmetric double well (see Fig. 2).
.Actually, V(w) is the sum of the potential due to the"+"electrons and that due to the "—"electrons, i.e.,
V(~) = V+ (r)+ V (r), where

V (r)= ,'V(—~)+ tan 'y (~) (49)

and

y (r)=mN(0)E (Q(v))= o'mN—(0)AQ(r) . (50)

The tan 'y term is odd in Q and implies that V(v) will
have more "+" electrons in the right-hand well and
more "—"electrons in the left-hand well. This is physi-
cally reasonable. If we represent s waves by cosQ and p
waves by sin Q, the "+ " electron wave function, which is
the symmetric combination of s and p waves, will have
greater amplitude for positive Q, and the "—"electron
wave function, which is the antisymmetric combination,
will have greater amplitude for negative Q. With Eq. (19)
we see that a phase shift of 45' (y = 1) corresponds to

2
g =

mN (0)QA

This simply says that one phonon can give a large phase
shift if we have a high density of states at the Fermi sur-
face and a large intrinsic phonon stiffness.

The double-well minima +Qp are given by

V(~) = —,'MQ'Q'(~) — ln
~

1+y'(~) ~,
mN 0

(44)
2= 1
0

—,'MQ m.N(0)
(51)

T(~)= —,'M
2 For strong coupling such that A &&1,

and

f «1 ~, , dy(v')

X y(~) 1+y'(r)
d~ y (~) y (r') 1+.y (~')

y(r) =mN(0)E(Q(r))

= —mN (0)A,Q (w)

1/2

(45)

2=-
—,'MQ mN(0)

(52)

v(Q}

which is independent of A. This differs from the Jahn-
Teller result (18), because there we neglected the band
electrons. The formation of a double well implies that the
atom prefers to be displaced from its lattice site if the
coupling is sufficiently strong. When the atom moves to
the right or the left, the positive charge of it and its neigh-
bor attracts an electron cloud, which, in turn, makes the

—MQ N(0)
2

AQ(~) . (46)

T(r)= M—
d

1 ppd, i (,
~

dy(r') dy(r)
(47)

-Qo +Qo

FIG. 2. Symmetric double-well potential.



LOCAL-PHONON MODEL OP STRONG ELECTRON-PHONON INTERACTIONS. . .

& (Q(r)}
g (r)=

1 /2
mMQ

2h
(54)

and h=n.N(0)
~ V„~ is the resonance width and is of

the order of the bandwidth. TAM{~) is identical to T(r)
given in Eq. (45) if y(~} is replaced by

1/2

AQ . (55)25
E(Q(~) )

By comparing the expressions for V(~) given by Eqs. (44)
and (53), we can identify 1/N(0) with 5 from the coeffi-
cient of the logarithmic term. Although, for small g and

y, these equations are the same, their general functional
forms are slightly different. In deriving the effective po-
tential, we used the zero-time limit of the exact free prop-
agator. For the free-band model this is given in Eq. (32).
For the Anderson model it is'

environment seen by the atom more favorable. Qo is the
place where the repulsion of the neighboring atom is ex-
actly compensated for by the attraction of the electron
cloud. If this attraction is sufficiently strong, i.e., if A is
large enough, Qo&0. This idea is similar to that of a
negative- U potential. Notice that the well canno't be in-
finitely deep; the ion can capture at most one or two elec-
trons. If there were no dynamics, i.e., if T(~)=0, then a
charge-density wave would form and the atoms would
dimerize along the chains in the 315 compounds. For the
Anderson model (AM) form of the local-phonon Hamil-
tonian given in Eqs. (10a), {13},and (14), the effective po-
tcnt1al 18

V (r)= —,'MQ Q {r)+—,lgo(r)

—(6/m. )[g (~)tan 'g (~)——,
' »

~

I+/' (&)
~ ],

2/0
y(~) = —go+ (r—&;),

Po
(56)

duces density waves in the electron gas, which, in turn, af-
fect the next hop. This is where we see the breakdown of
the adiabatic approximation: If the electrons were always
in equilibrium with the phonon, there would be no retard-
ed interactions. This is an important difference between
the local-phonon model and the dynamic Jahn-Teller ef-
fect which assumes that the adiabatic approximation is
va11d.

The complete partition function Z is found by integrat-
ing the partition function Z(y) for a particular path over
all paths,

Zo 7Z
Since the paths are weighted by a Boltzmann factor, the
dominant path is the one in which the atom just sits in
onc well. Hopping paths such Rs thc onc 1n Flg. 3 Rrc less
likely to occur because they cost kinetic energy, but their
lessened probability is more than compensated for by the
large number of them, and they make an important con-
tribution to the partition function. In order to evaluate
the dr integral in Eq. (43), we will consider linear hop-
ping paths with y(0) =y(P) =0,

Thus the effective potentials are different because the
ultraviolet properties of the models are different as is re-
flected in G' ' (~=0 ). However, the infrared properties
Rrc thc same.

The second term in T(~) given by Eq. (45) is not local
in time and describes the retarded interactions between
hops from one well to the other. There is a retarded in-
teraction because the Fermi gas provides a "memory" for
the motions of the atom. When the atom hops, it pro-

I

Notice that yo is determined solely by the couphng. The
hop takes place during an interval «. These paths are a
mathematical convenience. It would be more accurate to
use instantons or hops that obey the classical equations of
motion, but this would not change the essential physics.
We are also ignoring fluctuations about the minimum of
each weB and within each hop. This is consistent with the
Nozieres —De Dominicis approximation which is valid at
long time scales. We expect high-frequency fluctuations
to bc important onlY Rt short time scales.

Between hops, when the atom is sitting in a well, the
contribution to the potential energy is

[without the hops)

d~ V(~)= —{P—2n«) —,'MQ'Q', — ln
~

1+y', jnN(0)
(58)

for a path with 2n hops. During a hop, the potential energy gives
V

dv V(~)=—« —,MQ Qo— I
ln

~
1+ye

~

—2+ tan yo
2

fg nN(0) Vo
(59)

our evaluation of I dr T(r} is identical to that used by Hamann in Sec. IV 8 of his paper. We consider paths such that
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the derivative of y(~) is zero unless t; &~&t;+~p. Then T(~) is nonzero only when both r and ~ are inside hops. Up to
small additive constants,

P—I T(~)d~=—4nMQo

Tp

—g ln (yo~ +2
2

2tan-'yo, 2(t, —t, )
( —1)' Jln

7p

where we have assumed that yp is large such that ln
~
yp

~

&&4/m.
~ yp ~

. The first term in (60) comes from integrating the
kinetic energy term —,MQ . To obtain the full partition function we must sum over all possible even numbers of hops
and integrated over the position of each hop. Two hops cannot be closer to each other than ~o. Our result is

r

00 P dt t2„—~P dt2
Z=Zo g exp[ —PV(Qo)1y'" f,

'"
I,

'"

n=p

where V(Q} is given by Eq. (44). We write
2 r '2

tan yp
—1

m. /2

t2 70 dt1
exp a —1 ' Jln

i)j 7p
(61)

(62)

where r)p is the scattering phase shift associated with the displacement Qo. The hopping fugacity is given by

~y2 —2MQO /ro 2y= 2 e exp rp T—MQ Qp— 2— tan yp
FO ~E(0) yp

(63)

This contains contributions from the potential energy,
from —,'MQ, and from the retarded interaction of a hop
with itself. Physically, the fugacity is the tendency or
probability for a hop to occur on a given time scale. We
can determine ~p by varying it to minimize the energy of a
path. The contribution to the energy that depends on 7p is

4nMQo a
E(&o)= —2nroA (Qo)+ —2n —lnv'o

~ (64)
Tp 2

where

y~J+ ~/2, a~2 —e . (68)

There is a logarithmic interaction between flips or hops
such that neighboring flips attract with an interaction
strength a. Since a&2 corresponds to e&0 in Eq. (68),
the local-phonon system maps onto the antiferromagnetic
Kondo problem. We can see this more clearly by apply-
ing the space-time scaling technique of Anderson, Yuval,
and Hamann. ' The resulting scaling relations are

t

Kondo problem. ' Comparing our expression and theirs,
we can identify

A (Qo) = —,MQ Qo — 2——tan 'yo
mÃ(0)

i

yp
(65) da= 4ay d(l—nr),

dy= —,'y(2 —a)d(lnv) .

(69)

(70)
Minimizing E(~p), we obtain

8AMQo

2 A'
(2A/A) . (66)

(We have inserted A' to make it easier to do numerical esti-
mates later. ) Knowing that ~o minimizes the hopping en-

ergy allows us to rewrite the fugacity as

These were derived assuming a small fugacity, y « 1, i.e.,
assuming a rare gas of flips. In general, the average spac-
ing between flips is much greater than ~, i e.,
r «

~
t; tj

~

. As i—n the Kondo problem, we have ignored
the explicit rp dependence of y. If we had not done so, we
would have found

dy =y[ —,
' (2—a) —m (~p) jd (in') .

y =( I/yo)(2e) 'e™,
where the dimensionless measure of the mass is

m =4MQo/~o .

(67)
We shall see that (69) and (70) imply that the second term
is irrelevant, i.e., m (~p) scales to zero.

In the region of y « 1 and a=2, the scaling equations
become

Notice that y no longer depends explicitly on the poten-
tial. The small additive constants [see Eq. (125)t which
we neglected in Eq. (60} will affect y only by a factor of
order unity.

V. SCALING

The form of the partition function given in Eq. (61) is
the same as that found by Yuval and Anderson for the

where

l =lnv. ,

6=2—cx,

(71a)

(71b)

(73)
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0"2

FIG. 4. Scaling diagram.

e —16y =const . (74)
I

and r is measured in units of the Kondo time rx which is
a characteristic time scale. ~It is the average length of the
section of the path dominated by one minimum. Dividing
(71a) by (71b) and integrating yields hyperbolic scaling
curves'

These curves are shown in Fig. 4. They indicate that the
system scales from small to large fugacity and from a
large phase shift to a small phase shift, i.e., from large to
small electron-phonon coupling. It makes sense physical-
ly to have large A associated with low fugacity because it
brings to mind a picture of the atom tied down in one of
the minima of a deep double well by the electrons. To
understand how the coupling is related to the phase shift
and the fugacity, we return to Eqs. (57), (62), and (67). As
gp is renormalized downward, so is

~ yp ~

and hence A.
From (67) we see that y grows roughly as 1/yp. This in-
crease in the fugacity can be interpreted as an increase in
the hopping probability or as a more transparent barrier.
The depth of the double well is determined by ln

~
1+yP

according to Eq. (44). Thus the well becomes shallower as

yp decreases.
The renormalization-group procedure consists of in-

creasing wp, or equivalently, of decreasing bandwidth.
This is related to lowering the temperature of the system,
because the dimensionless quantity which scales is I3/~p
To see this, let t ' = t /~p in Eq. (60),

oo py(g ) p/10 t& —1

z=zo g e 'y "1 dt's J„dt &~ I dfje pxag( —I)' Jln~~f1
n=p l,J

(75)

Setting the ground-state energy V(gp) =0, we see that P
enters Z only in the combination P/~p. Lowering the
temperature of the system (P—hP~P) will change the
parameters ~, n, and y in a way prescribed by the scaling
relations. More explicitly,

Z((13 613)/(~ b~—),y,a) =Z—((P/~), y, a)

Z((13/~), y,a), (76)

where Pdd =(P/r)y d(lnr) gives the shift in the
ground-state energy V(Qp). 7., y, and a are the renormal-
ized parameters. Notice that P contributes to this shift
only in the ratio P/~p. Thus longer time scales corre-
spond to lower temperatures.

We must stop scaling when ~=P The lower .the tem-
perature is, the farther we can go along a scaling trajecto-
ry. When P/~= 1, then I =d (1n7) =d (lnP), and a(l) and
y(l) will depend on the cutoff 7 in the same way that they
depend on the inverse temperature P. Suppose our system
initially has ap-2 and yp ((1. At high temperatures we
are still close to our starting point, the fugacity is still
low, and the average path is ordered in the sense that the
atom is predominantly in one minimum or the other. At
low temperatures we have scaled to large fugacity; the
paths are disordered and the atom tends to flip back and
forth between the wells rather than sit still. This is the
analog of the Kondo singlet.

We should remark that our basic approximation to re-
place optical phonons with Einstein oscillators is applic-
able only at high temperatures T & TD, where TD -40 K
is the temperature associated with the width of the
optical-phonon dispersion curve. The flat dispersion
curve of these independent oscillators means that these

I

phonons are localized with zero group velocity and infin
ite effective mass. The idea that each atom is "unaware"
of its neighbors and "sees" only the surrounding el~tron
gas is consistent with having a large electron-phonon cou-
pling and a large amount of screening at high tempera-
tures. As we lower the temperature and crossover into the
region of the scaling diagram dominated by the weak-
coupling fixed point, the atom begins to interact with its
neighbors and to transfer energy to them, i.e., the local
phonon is able to hop to neighboring sites. Thus we ob-
tain acoustic phonons.

However, our calculation of the partition function in-
volved a zero-temperature approximation in which we re-
placed the Fermi function by a step function. How will
our results be affected by the fact that the local-phonon
model is only valid at high temperatures where thermal
fluctuations dominate the physics? In dealing with path
integrals, we only considered quantum tunneling between
the minima of the double well. This is valid as long as the
time between the ith and jth hops satisfies the inequality

rp« tt —tj «p . (77)

The condition 7p((t; —tJ implies that there is a rare gas
of flips. This assumption was used in deriving the scaling
relations. The other half of (77), t; tJ «P, describes the-
region in which Eq. (61) is a valid approximation for the
partition function. A finite-temperature calculation of Z
with linear hops would result in the replacement

t.—t ~ p ~(t, t,)—.
ln ~ln sin (78)

70 m~p P
for rp«

~
t; —tJ

~
&P. In the spirit of "poor-man's scal-

ing, "we can restate (77) in terms of a band picture. The
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g —4y

Above the separatrix the solution of Eq. (71) is
T

e(I) =a cot P ——I
2

(79)

(80a)

y(I)= —„acsc P ——I
2

(80b)

with

idea is simply to reduce the band cutoff E, down to kz T.
Quantum fluctuations dominate between E, and kii T so
we can eliminate these in our scaling procedure. (We set
eF 0——).We stop scaling at k&T. Below kiiT thermal
fluctuations dominate.

We have also ignored thermal (and quantum) fluctua-
tions about the minimum of each well. This will increase
the hopping fugacity, especially at high temperatures.
This can be quite important if the barrier height is low
which, as we shall see, seems to be the case in real systems
[ V(gp)- a few meV]. The basic conclusion is that our
low-temperature calculation of our high-temperature
model is correct in terms of the basic physics, although a
finite-temperature calculation would change some numeri-
cal factors.

The characteristic temperature below which quantum
fluctuations become large in our problem is given by the
Kondo temperature Tz. To find T~ we follow Young
and Bohr. In the neighborhood of a=2 and y «1, the
scaling equations are (71a) and (7lb). The asymptote or
separatrix of the scaling hyperbolas is given by

and Bohr, we obtain

10
~~ ——Ae

where

Ip ——

2ypsin P

above the separatrix, and

0
Ip

2yosinh 0

(82a)

(82b)

below the separatrix. Ip is the point where e(I) and y(I)
diverge. A is the overall scale factor on the order of 7 p

~z gives the crossover time scale from strong coupling to
weak coupling.

Another way to define this crossover is to ask for the
temperature Tz below which quantum tunneling through
the double-well barrier dominates and above which
thermal activation over the barrier dominates. Affleck
has treated this problem for a one-particle metastable
state (Fig. 5). He considered the competition between
the tendency for the lower-energy levels to be populated
according to the Boltzmann distribution and the tendency
for the majority of the tunneling particles to come from
the higher levels. He showed that the quantum tunneling
rate is equal to the rate of thermal fluctuations at a tem-
perature T~ ——Ace/2mk~, where —Mco is the curvature at
the top of the barrier,

2—Mco = =MA(1 —A ).
dgz

and

cosp=ep/4yp, 0 (P(&

I

e(I)=a'coth 8— I
2

I

y (I)= —,
' a'csch 8——I

2

with

e —16y = —a, a ~0 and real.

Similarly the solution below the separatrix is

(80c)

(80d)

(8 la)

(81b)

Although decay rates are ill defined for a symmetric dou-
ble well, Tz can still give a useful estimate of the cross-
over. However, we should keep in mind that the coupling
A, and, hence, the double well itself, are renormalized as
the temperature decreases.

We now insert a few numbers and make some crude es-
timates. We will consider V3Si as a typical example. In
the cubic phase the lattice constant is 4.72 A. The mass
of a vanadium atom is 51 amu or 5X10 eVsec /A .
As we mentioned before, the specific-heat data implies
that the total density of states at the Fermi surface is ap-
proximately 2.4 states/eV atom. For one type of electron
we take N(0)-1.2 states/eVatom. We can estimate a

and

cosh8 =ep/4yp (81c)
v(x)

e —16y =a', a'&0 and real. (8ld)

Note that all trajectories starting near the point
(e=O,y =0) pass arbitrarily close to some point X on the
separatrix where the fugacity is y'. y* is still sufficiently
small for the scaling relations to be valid. The charac-
teristic length scale /=ax in this region can be found by
relating it to the value g would have for a model with e*
and y'. Since g scales as

we can determine ~z by setting l =l*. Following Young FIG. 5. Potential for a one-dimensional metastable system.
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typical atomic excursion due to thermal vibrations by say-
ing that k&O& is roughly equal to —,'Mco x . Taking the
Debye temperature equi to be 300 K and the phonon fre-
quency co to be 2m. (4X 10' sec '), we obtain x-0.1 A.
Note that this is much larger than a displacement due to
the martensitic transition which is only a few thousandths
of an angstrom. Above several hundred degrees Kelvin,
the elastic stiffness of the 315 compounds is normal.
This means that the mean thermal amplitude of the
atom's vibrations is such that the atom spends most of its
time on the walls of the potential well. The bare or intrin-
sic stiffness, however, will be quite a bit larger than the
renormalized stiffness which is observed. In the 215
compounds the distance between vanadium atoms along a
chain is 10% less than in pure vanadium. This implies
that the intrinsic stiffness must be large. This stiffness is
softened by the strong electron-phonon interaction. As we
have seen in the case of Tomonoga bosons, the large cou-
pling A which is needed to account for the large resistivi-
ty must be accompanied by a sizable stiffness to prevent
the phonons from becoming soft. We have shown else-
where that the ratio 0;„,„;,/Q, b„,d will be comparable
to the ratio A(215)/A(normal metal). To estimate the
intrinsic stiffness —,

' MQ, we note that 50 meV is a typical
optical-phonon energy. We will set the bare energy to be
100 times larger, namely —,

' MQ Q =4 eV. Q -0.1 A im-
plies

—,MQ =400 eV/A

I.et us consider the condition
A=2.

0
Equation (51) gives Qp-0.02 A which roughly corre-
sponds to 1.5 phonons, according to Eq. (19). Equation
(44) gives a well depth of

V(Qp) ——170 meV .

Notice that this is much too shallow for us to be con-
cerned with Hubbard U effects since U-10 eV. It is also
too shallow to localize electrons which have energies on
the order of ez —1—10 eV. Thus it is unlikely that pho-
nons localize electrons. It is useful to compare the barrier
height —V(Qp) with the zero-point energy ,'fico& about—
each minimum, where the curvature at the bottom is
given by

In this case,

i ficob -160 meV,

1— 270

1+yo

(83)

Tg -2m -86 K .
k8 +K

This is in the correct temperature range as far as the
215's are concerned. In the vicinity of Tz we expect to
see the crossover from strong coupling to weak coupling.
Above T~ one should apply perturbation theory about the
A=ao fixed point which corresponds to a=2 and y=0
according to Eqs. (46) and (62). Tlc decreases as A in-
creases because the larger A is initially, the farther we
must go along the scaling trajectory to obtain the cross-
over. Suppose we increase the coupling such that A=10.
This increases the barrier height [ V(Qp)- —960 meV]
and decreases the tunneling rate which depends exponen-
tially on [MV(Qp)]'/. Thus the fugacity drops to

which is comparable to V(gp) and indicates that fluctua-
tions within each well are an important contribution to
the rate of hopping. From Eq. (66) the hopping time is

~o- 1 &( 10 ' sec,

which corresponds to a temperature

Tp-mA/kiivp-2400 K

if ~p is roughly half a period (cop ir/rp——) cc, w.hich is re-
lated to the phase shift, is given by Eq. (62),

+=0.89,
which implies that the phase shift 5-60'. The fugacity
and the dimensionless mass given by Eq. (67) are

y -0.06, m —1.5 .

Setting A = rp in Eq. (82a), we find that the Kondo time

~~ -5.6&& 10 ' sec,

which corresponds to a Kondo temperature of

0
TABLE I. Sample values. M~ ——5 X 10 eV sec /A is the mass of the vanadium atom.

Phase
shift

N {0) Qo I (Qo) T —2~
K k...

eV states
eV atoms

(A) (me V) (meV) (deg) (K) (K)

1.5
2
2
5

10
1.5
1.5

400
400
400
400
400
100

4

1.2
1.2
0.5
1.2
1.2
1.2
1.2

0.019
0.022
0.035
0.025
0.026
0.038
0.19

—68
—170
—410
—600
—960
—68
—68

140
160
160
180
190
70
14

48
60
60
78
84
48
48

0.57
0.89
0.89
1.5
1.8
0.57
0.57

0.25
6X10-'
5X10-'
3 X10-'
9X10

0.09
2X10-'

1.8
4.0
8.6

18
40

3.0
7.0

1700
2400
2700
3500
4000
1000
220

590
86

1

1X10-4
3X10-"

99
2X 10



-9&10 . The Kondo temperature, which in turn de-
pends exponentially on y, decreases dramatically to
3&10 ' K. Thus T~ is very sensitive to A. We also
note the phase shift 5-84', which corresponds to a-1.8.
We can estimate Tz flu—/—2ffkz, which is the crossover
temperature between thermal and quantum fluctuations.
Using the same set of parameters as above with A=2, we
find Tz -850 K. The order of magnitude of Tz is large-
ly determined by the intrinsic stiffness of the well. Sam-
ple values are listed in Table I for convenience. The input
parameters are A, —,'MQ, and N(0). According to Eq.
(57), the phase shift, and hence a, are determined solely by
A and are not affected by the stiffness or the density of
states. Increasing the stiffness causes y, Tp, and T» to in-
crease and Qp to decrease. Decreasing the density of
states results in an increase in Qp and Tp and a decrease
iii y Rnd T».

VI. SPECIFIC HEAT AND SUSCEPTIBILITY

We now turn to a rough comparison of our model with
experimental data. The parameters in the Hamiltonian,
and thus o, and y, depend on time scale and temperature.
The initial parameters include fluctuations on time scales
shorter than vo which is the shortest time scale in the
problem. Once we have renormalized a and y to include
all fluctuations on time scales shorter than P, we have the
temperature-dependent quantities a(P) and y(P). To cal-
culate the specific heat, we first scale the partition func-
tion until l =In',

2kII 1 2 2C =C„+

2kII 1 3 10 12 T
4 2lp lpi lp4T»

where C,l is the specific heat due to a free gas of electrons
with two spin components. The terms which depend on
lp are a negligible correction to C. Using

28 1 8
2yo sinh8

' (88)

This will give us a temperature-dependent density of
states. Even though y(T) comes from the specific heat
for the entire system consisting of electrons plus a local
phonon, most of the contribution to the specific heat
comes from the electrons. Thus, N,ff(0) really is an elec-
tron density of states.

Tlic PRuli sllsccptlbillty is pl'oportioIial to tllc density of
stRtcs RIld tllcicfoic will bc tcIIlpciatuic dcpcIldcIlt in tllc
case of the local phonon,

we see from Table I that A=10 corresponds to ap ——1.8
and lp ——40. As a result, the lp terms are a negligible con-
tribution to the specific heat. We can use the specific heat
to define y(T) and an effective density of states for one
spin species and both types of electrons as

kII &.ff(0)
C 2'
T (89)

2
~Pauli =2PII+eff(0), (90)

Z =exp g nT' Z (84) where the factor of 2 is for two spins states and @II is the
Bohr magneton. In the region a=2 and y»» 1, we have

where the exponential factor is the shift in the ground-
state energy which we noted in Eq. (76) and where

Z=Z((p/7. )= l,y, Ix} .
If the fugacity is low, we can expand the partition func-
tloII III Eq. (61) to lowest ordci' III y &( 1,

2 kg
XP,„I;——2pII X (0)+ —+—+-

a. kIIlp 8 lp lp
l

6lJII 1 3 10 12» I
T/~»

I

~'k, l,' 4»p l,' l,"

-pvig l y' 1 p p
1 —o. 2—n r 7

(85)

The corresponding "high-temperature" specific heat is
given by

C k p2B'Inz
82

Near a=2,y «1, we can expand our expressions (80) and
(81) for e(l) and y(l) to lowest order in l/lp, where
lp ——2$/a is the point at which e'(1) and y (l) diverge. We
assume that P —(a /2)l ((1 which implies that the scaling
trajectory is near the separatrix, i.e., e(l)=4y(l). We can
also assume that a is small such that a (&P—(a/2)l.
This means that y is small and that the scaling relations
are still valid. Then for (l/lp) (&1 and l =1nP,

d(
—T3' ~ (92b)

The scaling trajectories are parabolas satisfying the rela-
tion

where b is a constant. Denoting the initial values of l, a,
and y by l, = lump Ixp and yp, we can exPress the solution
of (92) as

Once again, the large value of lp means that the Pauli sus-
ceptibility will have negligible temperature dependence.

We can solve the scaling relations in the vicinity of
a= l,y»»1 and again determine the temperature depen-
dence of the susceptibility and the specific heat. In this
neighborhood the scaling equations become
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FIG. 6. Fit to the V3Si susceptibility data of Maita and Bucher (Ref. 31).

{I—I )/2y(l}=y e ', y(r)=y,
7Q

1/2

(94a)

2 2 {l—lc~ 2a(l) =ap+4yo —4yoe ', a(v) =1+4yo 1 ——
~0

2ktiyoTO 4kiiyoT 0~ =&.i+ +
(T —To}~

6piiy OTO 12payoT o
Xp,„i; 2peN(0)+——

2 2 +
n keT n keT(T —To)

where

(95)

(96)

To fi/ke ~0 . ——
This differs by a factor of ~ from our previous definition
of To in Table I. Notice that the specific heat and the
susceptibihty diverge at T =Tp. This is a spurious diver-
gence which is symptomatic of the breakdown of the
Nozieres —De Dominicis approximation near the cutoff.
Equation (77) implies that our calculation is only valid for
T ((Tp.

Although specific-heat measurements have been made
on A15 compounds up to 400 K, we make no attempt to
compare our results with experiment because of the diffi-
culty in separating the lattice and electronic contributions
to the specific heat. ' In addition, the anharmonic lo-
calized oscillators constitute only a few of the 10—20 de-
grees of freedom in the unit cell. However, we do show a

(94b)

Taking w=P and using Eqs. (84)—(86), (89), (90), and (94),
we find, to order yo,

fit in Fig. 6 to the high-temperature susceptibility data for
VsSi. ' The solid line is given by Eq. (96) with X(0)=4.7
states/eV atom, To ——2400 K, and y6 ——6.1&(10 . Con-
sidering the crudeness of our approximations, the fit looks
reasonable in the high-temperature region (T&200 K)
where we expect our model to be valid and where the
fugacity is small. A similar fit can be made to the NbiSn
data of Rehwald et al. Notice that if yo is very small in
Eqs. (95) and (96), then the specific heat and susceptibility
will only be weakly temperature dependent. From Table I
we see that small values of yo result from small values of
N(0) and —,MQ . The coupling strength is such that
a=1. Thus the small susceptibility of Nb&Sb and its weak
temperature dependence are consistent with a low density
of states. 3 However, we shall see later that this material
is quite stiff.

We can view the g-versus-T curves as N, tt(0)-versus-T
curves, i.e., they show how the density of states depends
on temperature. The physical reason why the susceptibili-
ty increases with decreasing temperature is quite simple.
Suppose that at high temperatures the coupling is large,
the double well is deep, and the fugacity is low. The elec-
trons which make the well deep must pair their spins in
order to increase their density in the vicinity of the mini-
ma. These are resonant, not bound, states. As the well
becomes shallower with decreasing temperature, the local
electron density decreases and hence, fewer electrons are
paired. Thus it is easier for an external magnetic field to
polarize the spins, i.e., the susceptibility increases as the
temperature decreases. A magnetic field stabilizes the lat-
tice because it inhibits the ability of the electrons to pair.
Thus the double well is shallower and the lattice is more
stable. This stabilization is seen experimentally. '

Clogston and Jaccarino showed that the Knight shift
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has the same temperature dependence as the Pauli suscep-
tibility up to a minus sign,

These describe vertical lines in the y-a plane. Following
the same procedure as before, we find

Kv( T)=K, —BXp,„l;(T), (97) 2k TB3p p
el (100)

(98a)

(98b)

The solution of these equations is

a( l) =const=0, (99a)

where Kv(T) is the Knight shift of vanadium, K, is due
to temperature-independent contact interaction between
the s electrons and the nucleus, and 8 is a constant that
depends on the material. The last term arises from the ex-
change polarization of the inner s-shell electrons by the d
electrons. The d electrons contribute to the temperature-
dependent Pauli susceptibility. When we apply an exter-
nal magnetic field, the d electrons are polarized and at-
tract the inner s-shell electrons of the same polarization,
leaving behind antiparallel s electrons. Thus there is a
negative contribution to the Knight shift. The exchange
interaction is ferromagnetic because parallel spin particles
see an "exchange hole" which comes from the antisym-
metry requirement of the exclusion principle and, as a re-
sult, are less repelled by Coulomb interactions than anti-
parallel spins.

Finally we can determine the specific heat and suscepti-
bility near u=o and y ((1,where the scaling relations be-
come

2 2 2
2 6PBPP T P

Xp,„i;=2psN(0)+
mk T

(101)

In Fig. 7 we show a fit to the susceptibility data of
Nb3Sn. The solid line is given by Eq. (101) with
N (0)=4.3 states/eV atom, To ——2400 K, and

yp ——1.3~ 10
For a=0, 1 and y «1, Eqs. (95) and (100) indicate that

the correction to the specific heat due to the local phonon
increases as the temperature decreases. This makes sense
physically because it simply says that, as the double well
becomes shallower with decreasing temperature, the elec-
trons which make the double well deep are less localized
and have more degrees of freedom. Thus the specific heat
increases. We do not see this happening for a=2,y «1
because the double well is very deep and does not become
much shallower until the extremely small Kondo tempera-
ture is reached.

How does this compare with traditional electron-
phonon perturbation theory'7 According to Grim vali,
yi(T)=y(T) y, &

has t—he form shown in Fig. 8 for an
Einstein phonon spectrum. At high temperatures
Grimvall's y(T) approaches the free-electron value y, i,
while at low temperatures, y(T)=y, i(1+A, ), where the
conventional electron-phonon coupling

(I —I )

Vp
(99b) X=2f

"~
N

I I I I I I I

2.6

2.O-
O

2.2—

&50100 200 250 500
T (K)

FIG. 7. Fit to the Nb3Sn susceptibility data of Rehwald et al. (Ref. 32).
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where V is the volume, fo(e) is the equilibrium electron
distribution, and N(0) is the density of states for one spin
and both types of electrons. ri(e) is the time associated
with relaxing back to the equilibrium distribution via
scattering. For elastic s-wave scattering,

4mn,
sin go(k),

ri k mk
(104)

where n, is the density of scatterers, m is the electron
mass, and qo(k) is the s-wave phase shift. Elastic scatter-
ing is a reasonably good approximation since ez »coD im-
plies that the electrons basically "see" static phonons and
scatter elastically off them. Taking the Fermi function
fo(e} to be a step function leads to

(b) Local
Phonon

p
25(e—eF )—, (105)

where the factor of 2 is for spin. Inserting Eqs. (104) and
(105) into (103), we obtain, for the resistivity,

3n, V

me N (0)u
(106)

Noting that

I I I I I I I I I I I I I I I ~ a I I ~ ~ I ~ I

I 000 2000 5000 4000

FIG. 8. (a) Grimvall's function y~(T)=y(T) —y,&. y&(T) is
normalized to 1 for T=O. (b) y l( T) for the local-phonon model.

For n 0,1 and y «1, the local-phonon model predicts
that the electron-phonon interaction leads to a specific
heat which is greater than the free-electron value. How-
ever, Grimvall's result leads to a specific heat which is
less than C,i for T& 0.30@ where 8@——irido/k~ is the Ein-
stein temperature. Grimvall uses a sum-rule argument to
explain this. The entropy S(T) is given by

T C„S(T)=f, dT'= f [yo+yi(T'))dT'

(107)

we can use our solutions to the scaling relations in the vi-
cinity of a=2,y «1 to find the temperature dependence
of p. In some sense we can view the p-versus- T curves as
demonstrating the downward renormalization of A with
decreasing temperature. As we discussed before, we sim-
ply scale our cutoff to l =d (in') =d (1nP), where the tem-
perature dependence of a(l) and y (l) is a(lnP) and
y (lnP). We expand the expression (80a) for e(l) to lowest
order in l/lo, where lo ——2P/a is the point at which e(l)
and y(l) diverge. We assume that tI) —(a/2)l «1, which
implies that the scaling trajectory is near the separatrix,
i.e., e(l)=4y (l). We can also assume that a is small such
that a «P —(a/2)l. This means that y is small and that
the scaling relations are still valid. Then for l/lo « 1,

=So+ f yi(T')dT' . (102)
1a(l)=2 1 ———— (108)

Grimvall claims that, for T »8E, the electron-phonon
interaction is negligible and hence, S(T) approaches So at
high temperatures. This implies that the integral in Eq.
(102) involving the electron-phonon correction is zero and
that the area under the curve in Fig. 8 vanishes. This ar-
gument is a bit questionable because it ignores the phonon
contribution to the entropy.

VII. RESISTIVITY

Since the phase shift is related to a(l), we can use the
scaling relations to find the temperature dependence of
the resistivity. With the help of the Boltzmann equation,
the conductivity can be expressed approximately as

e u~N(0) Bfo(e)L— f de~i(e) (103)

We would have obtained the same result using Eq. (81a).
ExPanding sin go about rlo ——~/2 and using Eq. (108), we
find that the resistivity depends logarithmically on the
temperature,

~2 m.2 T
p( T)=po 1 —

2 + 3 ln
16lo 8lo

(109}

where

3n, V

m.N (0)e uz
(110)

n, is the density of scatterers, which in this case are local
phonons. %'e take the volume V to be 1 cm and
n, =5.7& 10 vanadium atoms/cm . Let the Fermi ener-

gy be 1 eV, which corresponds to uF-6X107 cm/sec.
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FIG. 9. Logarithmic fit to the V3Si resistivity data of Marchenko {Ref.38). The solid line is given by Eq. {109).

The temperature T is measured in units of the Kondo
temperature TIr. The above expression for p(T) is valid in
the vicinity of a=2 which corresponds to unitarity limit
scattering (go ——m/2). Most of the electron scattering is
off of the quantum rather than the thermal fluctuations
of the atom.

Testardi et al. have fitted their data for Nb3Ge and
V3Si with a lnT function up to 300 K. In Fig. 9 we
show a fit to Marchenko's data using Eq. (109) with
Tx ——300 K, po ——105 pQcm, and lp ——1.43. This value of

po implies that X(0)=0.7 states/eVatom according to
Eq. (110) since h/e =25000 Q. Using Eq. (88), we see
that lp ——1.43 is consistent with o.=0.2 and yp ——0.3. To
get a closer to 2, say +=1.9, we would need pp=550
pQcm, Io ——2.5, and Tz ——5&&10 K if yo=0.3. Thus it
appears that the resistivity of the A15 compounds does
not have logarithmic temperature dependence.

We can use our solution of the scaling relations in the
vicinity of a= l,y « 1 and again determine the tempera-
ture dependence of the resistivity. Expanding sin rjo
about rji ——n. /2V2, which corresponds to a= 1, we obtain,
via Eqs. (106), (107), and (94b) with r=P,

I'

p( T)~ppsln 7)i 1 —t/2IrJpocotY/i —1 +pi T i
2 2 1

7pT

turn fluctuations.
Figure 10 shows resistivity data for V3Si (Ref. 38) fitted

to a function of the form

B'
p( T) =A' +pi T,—

T
(112)

where A'=88 pQ cm, B'=8.1)&10 pQ cm K, and

p& ——4.6X 10 pQ cm/K. Notice that pI is at least 3 or-
ders of magnitude smaller than A' and 8', which is con-
sistent with our assertion that most of the scattering is
from quantum fluctuations in the case of strong electron-
phonon coupling. Comparison of Eqs. (111) and (112)
yields

A'=posin g, (1+v 2mpocotgi),

2
ypB'=~ 2mpp sin gIcotgI .
Tp

(113)

(114)

If yo ——0.1, the empirical value of A' implies that po ——108
pQ cm, which is consistent with X(0)=0.7
states/eVatom. Using these values, we find that the fit
for 8' gives To-4200 K.

Woodward and Cody found that the resistivity of
Nb3Sn could be fitted in the range 18—850 K by the func-
tion

where po is given by Eq. (110). The linear term has been
put in "by hand" to compensate for our neglect of
thermal fluctuations. pI is a parameter to be determined.
It is small but not negligible since scattering from quan-
turn fluctuations is not near the unitarity limit. The term
which goes inversely with temperature arises from quan-

T1
p( T) =p, +ppT+p, exp (115)

where p, =10 pQcm, pb ——4.66X10 p, Qcm, p, =74.7
pQcm, and T, =85 K. Notice that T, is on the order of
the Kondo temperature. Since the local-phonon model is
valid at high temperatures T» Ti, we can expand the ex-
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FIG. 10. Another fit to the V3Si resistivity data of Marchenko (Ref. 38). The solid line is given by Eq. (112).

ponential to lowest order in Eq. (115}to recover Eq. (112).
The values of the parameters for Eqs. (112) and (115) are
of the same order of magnitude. Fisk and Webb found
that Nb3Sb has the same high-temperature resistivity as
Nb3Sn, which implies that these two compounds have the
same bare coupling A. However, Nb3Sb has a much lower
T, (T, -0.2 K) than Nb3Sn. ' This would be consistent
with Nb3Sb having a higher Kondo temperature at which
it crosses over from strong to weak coupling. A large Tx
could result from a large bare stiffness. This is consistent
with the observed absence of phonon softening in
Nb3Sb, ' though the bare stiffness may be as much as 2
orders of magnitude larger than the observable stiffness.

Finally, we can determine the resistivity near u=O and

y &&1 via the solution to the scaling relations given by
Eqs. (99). Since a=0, the phase shift due to quantum
fluctuations is roughly zero. Thermal phonons will make
a contribution to p that is linear in T as we would expect
for weak coupling.

VIII. VIOLATION OF MATTHEISSEN'S RULE

The effect of radiation damage on resistivity has been
the subject of much experimental and theoretical activity.
Mattheissen's rule is clearly violated in that the resistivity

I

where L is the asymmetry parameter. Ignoring the quar-
tic term for a moment, we see that this is just the Hamil-
tonian for a displaced oscillator. We can remove the
linear term by completing the square and expressing II in
terms of

Q=Q+~a
Then

p2

(117)

(118)

where we have dropped the constant term L /2MO, 2, —
which simply shifts the energy scale downward. In terms
of Q, the electron-phonon interaction in Eq. (10c) be-
comes

curves tend to saturate at high temperatures at roughly
the same value ( —125 pQcrn) even though the residual
resistivity increases with increasing damage. We can
simulate the effect of damage by making the Hamiltonian
asymmetric in Q, e.g., by adding a term linear in Q to
H~h in Eq. (10a),

p2
Hph

—— + , MQ Q +L—Q,

k, k'

A,L,

MQ

A,L'Q
Mn

C~k+
(119)

We can integrate out the fermions just as before and we find the same result as in Eqs. (43)—(45) if we replace Q by Q
and y by y, where
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y=mN(0)E(Q)= —nN(0) AQ-
MQ

Since y does not become —y under the transformation Q —+ —Q, the double-well potential V(Q) will be asymmetric as
shown in Fig. 11. Assuming that there are linear hops between the minima Qi and Qq, we can do the path integral in
much the same way as before. We obtain

t~ —ro dpi
cxP A —1 J1Il

0 T0 T0lqJ

—EVE ( —1)'r;

(122)

b V= V(Q2) —V(Qi) .
The b, V term in Eq. (121) takes into account the potential energy difference between sitting in the upper well versus sit-
ting in the lower well. Notice that a reduces to a in the limit yq ———yi ——yo. The fugacity y is given by

(Qz —Qi)'
y=exp(S~+Sb+S, )exp —2M +A(Qi, Q2)ro

70

A(Qi, Qp)= —,
'

—,'MQ (Q2 —Qi) — (ln
I 1+y P +ln

I 1+y, I )~X(0)

+2, , — ly2» I
I+y z I

—yi» I
I+y i I

m N (0)A(Q2 —Qi)

+2(tan 'y2 —tan 'y i)—2m%(0)A (Qg —Q i )]

lnly2 —yi I
(tan 'yz —tan 'yi)

«» y t» —y )»ly I +, (»I yl
—»Iy I)

1 i i z 1 1 +Y 1

-&a~&1 1 —x l+y )x ~

dx In
1 i lnll —xl I+ye

&~~&z 1 —x2 l+y 2x2

S,=- ' "dydy ' l. '+y'
P 2 t2

1 t2
. 'V —'V +'V

lnl 1+x I
1

1 —x
1"

S„Sb,and S, come from the interaction of a hop with it-
self. In the symmetric limit, Ss and S, reduce to
Ha,mann's results, '

—a'+[a' —SAM(Qz —Qi) ]'~
10—

4A
(126)

tal]I. y0
lnyo —

2
(1.20),

2

S,~lnyo — + ~ . . +(const=0. 852),4
(125)

where A =A(Qi, Q2). Knowing that ro minimizes the
hopping energy allovrs us to res&rite the fugarity y as

M(Q2 —Qi)2
y =exp(S, +Ss+S, )exp (127)

To 2

for yz ———y i ——yo and yo &~ 1. We can find an expression
for ro by minimizing the energy of a hopping path:

Just as before, we can apply space-time techniques to ob-
t81D sc$11Ilg rclatioM,
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FIG. I I. Asymmetric double-mell potential.
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I

d(76V) (1 2 2) gV
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(128b)

(128c)

The scaling relations imply that, if the system initially
has very strong coupling, the double mell will be reason-
ably deep and the local phonon will be anharmonic at
high temperatures. As the temperature decreases, the
double well becomes shallower and the fugacity increases,
indicative of anomalously large zero-point motion. This
is consistent with the well-documented experimental evi-
dence for anharmonic phonons' and for anomalously
large zero-point motion. X-ray measurements indicate
anharmonic motion of the vanadium atoln in V&Si and a
tendency for V atoms to localize -0.1—0.2 A off the lat-
tice sites at 78 K.

The reason why the ground state can be associated with
infinite fugacity is best understood within the context of
quantum coherence. Recently, there has been interest in
the problem of quantum tunneling and quantum coher-
ence with dissipation. ' "Quantum tunneling" refers
to an atom coupled to other phonons which is trying to
tunnel out of a single well. "Quantum coherence" refers
to an atom coupled to other phonons which is trying to
tunnel between two wells in a double-well potential. If we
go back to our Tomonoga-boson Hamiltonian (3) and in-
troduce canonically conjugate-coordinate and momentum
operators

' 1/2

(a +a ),
k —k

P~PO(sin f) i+Sill lip)~PO, (129)

where po is given by Eq. (110). This is consistent with the
violation of Mattheissen's rule. Notice that the resistivity

sin Bi+sin 7l&) whereas a'-(
I l)i I + I F12 I ) is

the quantity which scales. The resistivity does not vary as

sin2(
I v]i I+ I l12I }/2

because the atom cannot be in both minima at once. Such
an expression would imply that there are interference ef-
ects.

where we assumed rhV «1. If yo «1, Eq. (128c) im-
plies that the asymmetry initially grows as we proceed
along a scaling trajectory. In the a-y plane the scaling
trajectories are identical to what we had before. The pic-
tufc that emerges ls onc ln %'hich thc asymmetric double
well gradually transforms into a displaced harmonic oscil-
lator potential as y and rhV grow. Extended x-ray-
absorption fine-structure (EXAFS) measurements of
Nb3GC indicate that as the damage to the sample is in-
creased, the near-neighbor distance of 2.87 A splits
symmetrically into two distances, 2.77 and 2.97 A. At
T=O we have a displaced single well which is associated
with a residual resistivity p(T =0) and a phase shift

llo ——tan '[nX(0)AL/MQ ] .

At high temperatures, if the trajectory starts near the
singularity cto 2,yo ((1, the scatterlllg is very close to
thc unitaflty llnllt and thc resistivity saturates at thc same
value -po, as in the undamaged case. In other words if
( I gi I+ I g2 I

)=~/2 then th«e»stl»ty ls

QkP-= —i
k

(a- —a ),k —k
(130)

(b+b ), p= i—COO

2
(b b t), —

then the Hamiltonian is essentially the same as that used
by Caldeira and Leggett, ' and Bray and Moore. ~ Name-

ly,

H = —,
' g (~'-„~-„+IIkQ'-„Q-„)+—,(S 'S +~+*a)

k

+—,
' g ck(Q'-„e+Q-„e*), (131)

k

where Ck AQkcoo/4n'~ .——Our Tomonoga bosons are the
phonons of Caldeira and Leggett (CL). CL deliberately
added a counterterm to their Hamiltonian to cancel the
softening of the local phonon, and then manually inserted
a double-weil or a single-well potential V(Q}. Using
path-integral techniques, they integrated out the Tomono-
ga bosons. Chakravarty, and Bray and Moore, applied
space-time scaling techniques and found that if the viscos-
ity ll was large enough (ll & 2), they could map their prob-
lem onto the ferromagnetic Kondo problem. Since g is
related to the coupling constant Cl„this means that if the
coupling is sufficiently strong, the atom gets stuck in one
well and the symmetry is broken.

Why do they find symmetry breaking whereas we do
not? The basic reason is that their atom is coupled to bo-
son degrees of freedom, whereas ours is coupled to fer-
mion degrees of freedom. Consider the bose'case first. If
the coupling is sufficiently strong, the atom can pull all



6184 CLARE C. YU AND P. W. ANDERSON

the bosons into the vicinity of one well where they are
able to bose-condense. Thus the fugacity goes to zero at
T=O if g & 2. In the case of fermions, the Pauli exclusion
principle does not allow enough electrons to pile into one
well and to make it so deep that the atom gets stuck. At
T=O, the ground-state wave function is symmetric and
the atom has an equal probability of being in either well.
Equivalently, the double well has become a single well.
Either way, the fugacity flows into the y = Oo fixed point
as the temperature goes to zero. If there were more kinds
of electrons, then the local charge density in the neighbor-
hood of one well would be sufficiently large to trap the
atom. We can map the fermion case onto the ferromag-
netic Kondo problem and obtain self-trapping of the atom
by merely adding spin to the problem. If we ignore U
terms and simply introduce two spin species, then a is
doubled and the coefficient of the anharmonic term in the
effective potential of Eq. (44) becomes 2/vrN(0). We now
have 0&2a&4. In the range 0&2a&2, the fugacity
scales to infinity and the double well disappears as the
temperature decreases. For 2 &2a &4, the fugacity scales
to zero and the atom becomes trapped in one well. But
this is a moot point; even without spin, if the coupling is
so strong that 1&a&2, the fugacity is so low that the
atom is stuck until the temperature is on the order of Tx,
which is very small. This is consistent with Nozieres and
Blandin who have argued that the Kondo system scales to
a finite coupling if n & 2S, where n is the number of orbi-
tal channels of the conduction electrons and S is the spin
of the impurity. Their arguments have been confirmed
by numerical calculations and the exact solution.

X. MARTENSITIC TRANSITION

The fact that the flipping fugacity scales from small to
large explains why the martensitic transition, if it occurs
at all, occurs at such low temperatures ( T~ &&SD) and
with such small lattice displacement ( Q~ -0.005 A
« Qth, ,~

-0.1 A), even though there are anharmonic ef-
fects at T-OD. ' The martensitic transition corresponds
to the softening of an acoustic shear mode, but the crystal
structure of the A1S compounds couples this acoustic
mode to the optic mode associated with our Einstein oscil-
lator. ' We can write a schematic form for the Hamil-
tonian,

~- g ~~oQ-„+2 gk c 5-+ ggk5-Q-, (132)
k k k

where Q-„ is the optic-mode displacement, coo is the

optic-phonon frequency, c is the speed of sound, 5 is the
k

acoustic-mode displacement, and g is the coupling be-
tween these modes. We can diagonalize this Hamiltonian
by choosing the appropriate linear combinations of Q-

k
and 5 . The point is that the "new" acoustic mode which

k

undergoes the martensitic transition has the "old" local-
phonon mode mixed into it.

As we have shown, strong electron-phonon coupling
leads to an effective double-well potential and anharmonic
phonons. Without the kinetic term in the Hamiltonian to
describe hopping between the wells, we would predict a
large displacive transition occurring at a rather high tran-
sition temperature. But, with the kinetic term of Eq. (45),

the depth of wells diminishes with decreasing tempera-
ture. Thus the kinetic term causes the transition tempera-
ture to be lowered and the lattice displacement to be re-
duced. This picture has some features in common with
McMillan's theory of phonon entropy in which the
thermal fluctuations of the phonons, rather than quantum
fluctuations, cause the transition temperature to be lower
than that predicted by mean-field theory. Varma and
Simons have recently extended McMillan's idea to include
anharmonic phonons and strong electron-phonon cou-
pling.

XI. CONCLUSIONS

In this paper we have examined a local-phonon model
in which a single atom interacts strongly with a Fermi gas
of spinless electrons. By integrating out the electrons, we
found that strong coupling leads to anharmonic phonons.
In particular, the electrons provide an effective double-
well potential for the atom as well as time-retarded in-
teractions between hops from one minimum to the other.
Such time-retarded interactions reveal the breakdown of
the adiabatic approximation and of Migdal's theorem due
to strong coupling. Using space-time scaling techniques,
we found that if the electron-phonon coupling is large at
high temperatures, it is renormalized downwards. The
crossover from the region dominated by the strong-
coupling fixed point to that dominated by the weak-
coupling fixed point occurs at T~-90 K. The fugacity
scales upward and the phase shift scales downward as the
temperature decreases. This implies that the double well
becomes shallower and eventually transforms into a single
well. The ground state is symmetric and the atom does
not get stuck in one of the double-well minima, no matter
how strong the coupling if the electrons have no spin.

By expanding the partition function to lowest order in
the fugacity, we found a temperature-dependent density of
states for a & 1 which is consistent with the experimental
data on the temperature dependence of the Pauli suscepti-
bility for T & OD. The scaling relations for the phase
shift implied that the resistivity goes logarithmically with
the temperature if ao-2 and yp «1 as in Eq. (109). If
ao-1 and yo &&1, the high-temperature resistivity varies
as p&T B/T accordin—g to Eq. (112). Both of these cases
can be fitted to the experimental data. However, numeri-
cal estimates indicate ao is closer to 1 than to 2. In the
numerical estimates the intrinsic stiffness of the
harmonic-oscillator potential was large. This was needed
to prevent the phonon from becoming soft due to the
strong electron-phonon coupling. By introducing a
symmetry-breaking term LQ into our Hamiltonian to
mimic the effect of damage on a sample, we found that
our model is consistent with the violation of Mattheissen's
rule. If the scattering from quantum fluctuations of the
atom is near the unitarity limit, i.e., if ao 2, then the
resistivity of the damaged and undamaged samples satu-
rates at the same value po, even though the residual resis-
tivity of these samples is different.

The fact that the flipping fugacity scales toward y = Oo

as the temperature decreases explains why the martensitic
transition has such small lattice displacements and occurs
at such low temperatures even though there are phonon
anharmonicities at much higher temperatures. Strong



electron-phonon coupHng leads to anharmonic phonons
and an effective double-well potential. Normally, we
would expect that lowering the temperature would cause
the atom to get stuck in one well. This corresponds to a
displacive transition. But as the temperature decreases,
the hopping fugacity increases and the double well be-
comes shallower, thus preventing a transition from occur-
ring. It should be interesting to probe such a high-
temperature double well via x-ray-diffraction and
EXAFS techniques. A crucial experiment is to show that
the Debye-Wailer factors are anomalously large at T=O
compared to the DcbYC prcciiction.¹tetidded in proof. This concerns Eq. (40). Another
way to handle the divergence of the adiabatic part of the
Green's function in Eq. (40) is to solve Dyson's equation
for a constant potential. This leads to an effective poten-
tial which has the same functional form as the Anderson
model in Eq. (53).
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APPENDIX

In this appendix we show that a 5-function potential at
the origin

Following Kohn, ' we introduce the sine transform

X(r)= I dp X(p)»n(pr),

Uppp = P' Sln Pt' U P' 81Il P P'

Then we obtain

(A7)

(p' k')Xo(p)+—f, dp')(0(p)U~~=O. (A8)

The singularity behavior of Xc(p) can be expressed by

Xo(p) =5(p —k)—8(k) 1

2k p —k" (A9}

where we have neglected regular terms which vanish as
x~ ao. 8(p) is a nonsingular function given by

&(p)= I dp'U Xc(p'). (A10)

TransfoH111ng Xc back to cooI'dlI1R'tc SPacc RIld llslIlg

sin(px)P cip ~&co8 x as x~ 00
p —k

we find the phase shift to be

m8(k)
97——

2k

If the potential falls off more rapidly than r ', X(r)
satisfies the boundary conditions

X(0)=0, lim X(r) =sin(kr)+tauri cos(kr) .

V(r) =AQC5(r)

gives an s-wave phase shift of

Iie ———tan '[IrN(OQ, ge]
to the electron wave function at the Fermi surface.

We start with the wave function

(r)= +XI(r)PI(cose),
I

kp'

{A1)

(A3)

NcRr tllc Fermi surface Ep Up
~

k
~

so that (A9) becomes

Uptantf
Xe(p) =v~5(e~ ek }+--—

'V

Substituting (A10) and (A12) into (Al 1), we have

IO

(«ng= «N(0) f d««V««5(«~ —«—k)

where the 1=0 component of the radial part satisfies
r

U{r)=2m V(r)

(A4)
(A13)

where P denotes principal value. In our case,
V~s =A,ge ——const. Thus the second term in (A13) van-
ishes and we finally obtain

tango ———IrN (0)A,Q() .
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