
PHYSICAL REVIEW 8 VOLUME 29, NUMBER 11 1 JUNE 1984

Theory of the upper critical field in antiferromagnetic superconductors
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We compute the temperature T dependence of the upper critical field H, 2(T) in antiferromagnetic

(AF) superconductors. Using a strong-coupling formalism we explicitly treat the effects of the
molecular field H~, inelastic and elastic spin-fluctuation scattering and magnetic as well as nonmag-

netic impurities. A sum rule is used to relate the T dependence of H~ to that of the spin-fluctuation
scattering. The decreased pair breaking observed below the Neel temperature in SmRh484 and the
increased pair breaking seen in the AF Chevrel compounds will both occur in our theory for a
reasonable choice of parameters. For larger values of the dimensionless spin-exchange coupling con-
stant 1V(0)J'~, spin-fluctuation-scattering effects dominate over those of H~ and decreased pair
breaking is observed below T~. For smaller values of the coupling constant, the converse is true.
Impurity scattering is treated in a self-consistent fashion. As a consequence, the molecular field H~
is altered by nonmagnetic impurities. This leads to important pair-breaking effects in H, 2. A physi-
cal manifestation of this pair breaking is a qualitative change in the shape of the H, 2 versus T
curve, as nonmagnetic impurities are added. %"e give detailed predictions for the expected effects of
these impurities on H, 2 which can be tested experimentally.

I. INTRODUCTION

It is now well established that superconductivity and
antiferromagnetic order coexist in numerous ternary al-
loys. The Chevrel compounds, for example, GdMo6Ss,
TbMo6Ss, and DyMo6Ss, become antiferromagnetic at a
temperature Ttt which is below the superconducting tran-
sition temperature T, . The rhodium-boride compound
SmRh4B4 exhibits antiferromagnetic (AF) order at a Ttv
which is also less than the corresponding T, . The reason
that superconductivity coexists with antiferromagnetism
is, in large part, due to the fact that the electrons which
mediate the indirect Ruderman-Kittel-Kasuya- Yosida
(RKKY) interaction between the (magnetically ordered)
localized rare-earth spins are distinct from those which
undergo the superconducting pairing (which are associat-
ed with the transition elements in the ternary compounds).
Qne major effect of the rare-earth ions is to create a
(periodic) molecular fleld H~ which can decrease the ef-
fective conduction-electron density of states in some re-
gions of the Fermi surface. Here, Q is the wave vector of
the AF order. In addition these localized electrons will
break Cooper pairs by spin-fluctuation scattering and
thereby further weaken superconductivity.

Many theoretical' and experimental ' studies of
these systems have focused on ihe temperature depen-
dence of the upper critical field H, 2. Experiments7 'o in-
dicate that H, 2(T) deviates markedly from the usual
behavior" (of dirty superconductors) in the vicinity of T~
and below. The Chevrel compounds exhibit enhanced
pair breaking below Tz, that is, they show a decrease in
0,2. By contrast, SmRh4B4 shows decreased pair break-
ing at the Neel temperature, therefore H, 2 increases with
respect to the value extrapolated from high T. A number

of theoretical approaches ' ' have been able to obtain
reasonable agreement with experimental H, 2(T) measure-
ments in the AF superconductors. This is unexpected
since these theories are based on different physical models
and assumptions which are, in some cases, incompatible.
There has yet been no sufficiently complete theory for
treating simultaneously all of the physical effects known
to be important in the ternary compounds. It is the pur-
pose of this paper to present the most detailed calculation
yet of H, 2(T) which includes simultaneously (i) the effects
of the antiferromagnetic molecular field H~, (ii) inelastic
spin-fluctuation scattering, and (iii) nonmagnetic as well
as magnetic impurity effects. We also discuss spin-orbit
scattering and paramagnetic effects arising from the ap-
plied field. Our paper is based on previous work by Nass
et al. ' These authors studied inelastic spin-fluctuation
and molecular-field effects in AF superconductors in the
absence of electromagnetic fields.

The first microscopic calculation of H, 2 in an AF su-
perconductor is due to Maekawa and Tachiki. ' These au-
thors set up a general strong-coupling formalism for the
superconducting Green's function in the presence of elec-
tromagnetic fields and inelastic spin-fluctuation scatter-
ing. This general theory, however, was applied to the
paramagnetic phase of AF (and ferromagnetic) supercon-
ductors so that the molecular field HtJ was taken to be
zero. Furthermore, all spin-fluctuation-scattering pro-
cesses were ultimately treated as elastic; they could there-
fore be combined with the phonons into an effective cou-
pling constant g. Machida, Nokura, and Matsubara im-
proved upon the work of Ref. 1 by including as a pertur-
bative effect a nonzero H&. This approximate treatment
of the molecular field, along with the assumption of elas-
tic spin-fluctuation scattering led to a new renormalized
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coupling constant g. As in Ref. 1, the usual weak-
coupling expressions for H, 2 and other quantities could
then be directly applied to the AF superconductors.

Ramakrishnan and Varma correctly pointed out that a
treatment of spin-fluctuation scattering must include in-
elastic as well as elastic processes; these can be included in
a calculation of H, z using a strong-coupling formalism. '

It was asserted that in dirty systems, molecular-field ef-
fects were relatively unimportant and that the major ef-
fect of the onset of magnetic ordering on superconductivi-
ty comes through the spin-fluctuation coupling
a F 's(co). For a spherical Fermi surface, if H& ——0, the
freezing out of spin fluctuations at and below Tz leads to
decreased pair breaking in the antiferromagnetic state. '
This is consistent with the behavior observed in some but
not all of the ternary compounds. The authors in Ref. 4
argued that increased pair breaking could be obtained if
the Fermi surface was nonspherical and, in particular,
if the contribution of the local-spin susceptibility
X(q,cu„—co ) had increased weight at q =Q, due to a
joint density-of-states effect. Therefore, it was argued, de-
viations from a spherical Fermi surface were essential in
order for magnetic order to suppress H, 2 at T~ and
below.

Finally, a very different calculation of H, 2(T) was
presented by Zwicknagl and Fulde, who asserted that the
superconducting pairing in AF superconductors does not
involve time-reversed electrons, but rather takes place be-
tween magnetic quasiparticle states. In Ref. 5, H, i was
calculated using the strong-coupling formalism of Eilen-
berger' and Eliashberg' and considering only the phonon
part of the interaction; spin-fluctuation effects were
neglected. It was argued that in the new pairing state, the
appropriate phonon spectral function a F~"(co) was modi-
fied because the pairing takes place between the magnetic
quasiparticles. It should be stressed that the actual pho-
non propagator was assumed to be unaffected by the AF
order.

Comparison between theory and experimental H, 2 mea-
surements was made in Refs. 3 and 5. In these previous
works, the agreement with the data was quite satisfactory.
Nevertheless, because none of the above theories has in-
cluded a study of the very dramatic impurity effects and
because all of these theories have obvious weaknesses, we
are motivated to recalculate H, 2(T). Machida et al.
claimed that the molecular field enters into the linearized

gap equation in powers of H&/EF. Therefore, it was
treated perturbatively. However, it has been pointed out'
that this perturbation approach is incorrect because the
relevant parameter is H&/co„where co, is related to the
superconducting cutoff or Debye frequency. This ratio is
not particularly small. As a consequen'ce the molecular
field cannot be incorporated into an effective coupling
constant as was done in Ref. 3. Furthermore, there is a
delicate interplay between the effects of impurities and the
molecular field, which was ignored in Ref. 3. A renor-
malized field H~ must be self-consistently calculated in
the presence of magnetic and nonmagnetic impurities, just
as the gap b, and frequency cu are renormalized in dirty
superconductors. " While Ramakrishnan and Varma im-
proved upon the work of Machida eI; al. by allowing the

spin-fluctuation scattering to be inelastic, they did not ex-
plicitly include the molecular field H&. At present, the
work of Zwicknagl and Fulde is controversial since it in-
volves the ansatz that the pairing is between magnetic
quasiparticles. It should be noted that in an earlier paper
Machida et al. ' also considered the possibility of pairing
between non-time-reversed states. However, subsequent
work by Nass et al. ' and Machida et al. 3 showed that
for three-dimensional weak-coupling superconductors the
dominant pairing is of the Cooper type. Unlike some cal-
culations, no approximations were used to handle the
three dimensionality in the work of Ref. 16.

Our formalism for calculating H, z is based on strong-
coupling theory. However, our H, z equation differs from
that considered in Ref. 4 because of the presence of the re-
normalized molecular Beld H~(co). This field is obtained
by solving a pair of coupled equations for the renormal-
ized frequency co(co) and field Hg(co) in the presence of
impurities as well as spin fluctuations. For computational
facility we use the quasi-three-dimensional approximation
of Bilbro and McMillan we assume that the molecular
field is nonzero only in certain regions of the Fermi sur-
face and it is zero elsewhere. In the regions where Hti&0
the energy dispersion curves are assumed to be one dimen-
sional (1D), and hence 6k= —6k+g. Because this ap-
proach represents a composite of a nonmagnetic BCS su-
perconductor and a 1D coexistent AF superconductor,
many of our numerical results will be presented for a
one-dimensional system. The effects of (quasi-) three-
dimensionality (3D) can be readily extrapolated from our
1D calculations. The quasi-3D approach is itself clearly
oversimplified. However, previous numerical (weak-
coupling) studies' which have compared this with a more
exact calculation of 3D Fermi-surface integrals indicate
that this approximation is not unreasonable.

Our model for the dynamic spin-fluctuation propagator
is similar to that used in Refs. 4 and 12. As in these pre-
vious works we impose the usual sum rule which relates
the magnetic order parameter (S& ) to the susceptibility
X. This implies that the temperature dependences of H~
and of X are not independent, and represents an important
departure from the work of Machida et al. s The molecu-
lar field H~ is given by nJ'f(S~ ), where n is the number
of rare-earth ions per unit cell and J'f is the conduction-
electron local (f) spin exchange. X enters the H, 2 equa-
tion multiplied by a term n (J'f) N(0) [where N(0) is the
density of states at the Fermi energy]. Therefore, the rela-
tive importance of spin-fluctuation and molecular-field ef-
fects depends on the size of the parameter N(0)J'f. This
parameter may vary considerably from one ternary system
to another.

It should be stressed that it is the relative importance of
these two mechanisms which determines the overall quali-
tative characteristics of the H, 2-versus-T curves. If the
molecular field is relatively larger than the spin-
fluctuation coupling, then H, 2(T) exhibits a pronounced
dip at TN. If the converse is true then H, 2(T) remains
monotonic in temperature, but the magnitude of the slope
jumps at T~.

Among the more interesting consequences of this calcu-
lation is our observation that because nonmagnetic impur-
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ities are pair breaking, they can affect the shape of the
H, 2-versus-T curves. When nonmagnetic impurities are
added, the role of the molecular field is diminished; a dip
at Ttt 111 Hq2 Illay thus dccrcRsc 111 IIIRgill'tlldc Rs tllc sys-
tem is made dirtier. Our impurity calculations are in the
same spirit as those which deal with the usual (nonmag-
netic) superconductors. Thus we do riot consider impurity
effects on the spin-fluctuation propagator. While our
quantitative predictions are obviously not accurate, it mill
be important for future H, 2 experiments to test these
qualitative effects and to clearly establish the pair-
breaking nature of nonmagnetic impurities in the AF su-
perconductors.

II. GENERAL THEORY

~0+~int+~ 3+~imp (2.1)

where in terms of the creation and annihilation operators
cp~ cp~ etc.~

A.. Derivation of equation for + z

For a ternary sllperconductor in an electromagnetic
field wc use tile same model Hamiltonian as that, con-
sidered by Maekawa and Tachiki. ' However, in order to
treat the effects of the AF molecular field, we add and
subtract mean-field contributions. We write

pcp~c'p~+ g tr(Hgcp+g~cp~+Hcp~cp~),0

p, o' +~0

~'"=g X Jd' &(x)c-'(x)c-(x)— g Jd' |'(x —&;)IS'(~;)[",(x)., (x)—",(x).,(x)~
0' 8;

+S+(~;)",(x).,(x)+S-(Z, )c', (x)c,(x)I,

(2.2a)

(2.2b)

2 '
2M

lite 2m
c (x).

Here, A~™represents the usual interaction between the
conduction electroIls Rnd magnetic Rs well Rs nonmagnetic
impurities and will not be written here. In Eqs. (2.2), c~
represents the conduction-electron kinetic energy before
the effects of the new magnetic Brillouin zone are includ-
ed. The field H appearing in Eq. (2.2R) is given in terms
Of 'tllC appllCd flCld Hu Rs H =HO(1+XoJ ) whCIC Xo 18

fhc unlf01TIl sta'tlc spill susceptibility of flic I'Rrc-earth
spins Xo= (S )0/Ho. Tllc parRlllctcl's 111 tllc molecular
field, Hg =n( 'S—)gJ'I, were discussed in Sec. I. This
field will be taken to be a phenomenological parameter in
most of our calculations. The two terms in A '"
represent, respectively, the interaction of the phonons (g
is the phonon coupling constant and P is the phonon field
operator) and the conduction electrons and that of the
rare-earth spins and conduction electrons, respectively.
We define S'—=S'—(S'). Finally, A " represents the or-
bital coupling between the electromagnetic field and the
conduction elcctI'ons. The vectol poteQt1al A appearing
in Eq. (2.2c) is assumed to be unaffected by the internal
molecular field of the rare-earth spins. This approxima-
tion is valid for moderately large Q ( &g '), which seems
to be satisfied' for the Chevrel compounds. We may also
Include a spin-orbit contribution to A . PresuITlably, this
interaction is I'ather strong in most of the ternary super-
conductors. Its effect is primarily to weaken the Pauli
paramagnetic term in Eq. (2.2a). Therefore, in our calcu-
lations we will ignore the paramagnetic splitting of the
conduction-electron bands. Furthermore„we assume that
the superconductor is sufficiently dirty, so there are no ex-
plicit dependences on the spin-orbit-scattering lifetime. In
the same spirit, the H dependence of the phenomenologi-
cal parameter Hg and of the spin fluctuations is neglect-

ed. These assumptions are expected to be valid providing
also that j (Sg) j » j (So) j, i.e., the mean-field-induced
ferromagnetic (Q =0) component of the rare-earth spins
is much smaller than the AF order parameter. In suffi-
ciently large applied fields Ho, and/or sufficiently close
to Tz, this inequality will clearly break down. Neutron
experiments" indicate that for all H(H, I, and for
T & TN, the ferromagnetic component is relatively unim-
portant in TbMo6SS, but not in DyMo6SS. Therefore, our
theory cannot be directly applied to this last compound,
but should be applicable to TbMO6SS and probably' to
GdMO6SS and SmRh&84 as well, except for T= TN.
While it is not conceptually difficult to include paramag-
netic effects in our equations, they do complicate their nu-
merical solution. For this reason we will ignore them at
present. Finally, wc note that we have Qot considered
crystal-field effects in A . In addition, for simplicity, we
will assume that the Fermi surface (when Hg ——0) is
spherical. The effects of a nonspherical Fermi surface
can be readily incorporated following Ref. 4.

A mean-field theory of an AF superconductor may be
derived by adding to P a BCS-type electron-phonon in-
teraction. The resulting Hamiltonian is readily diagonal-
ized and the Green's functions may be calculated In the.
presence of a vector potential A the normal-state Green's

function 6 is related to that obtained when A=O by the
line integral

G(x,x';t t')—
=6 "=0(x x';t —t')exp i I—d s.A(s)

(2.3)
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eA H «kiiT+R(ri +r2 ),—1 —j.

mc
(2.4)

where r& and r2 correspond to the lifetime for scattering
from nonmagnetic and magnetic impurities, respectively.

l

and therefore G is shifted by a phase factor relative to the
case A=O. The above equation follows from the semi-
classical approach, which is valid when the supercon-
ductor is sufficiently dirty so that

5( x;t}~ lim (T[c (x;t)c (x';0)]) .
Z~Z

(2.5)

It follows from Hartree-Fock theory and the standard"
theory of weak impurity scattering that

This equation corresponds physically to the condition that
the mean free path is sufficiently short so that the
Lorentz force does not have time to alter the trajectory of
the electrons between collisions.

The superconducting order parameter is defined as

4(xxe„)=P 'g g Jd ix(q x„eee )—(G"= (x —x'xe )6"= (x —x', —m )); eexp[iee'(x —x')]6(x;ru ), (26)
q m

where m.;=c); teA;/—Pic, co„ is a Matsubara frequency, and i =x, y, or z. Here, ( ); ~ denotes an impurity average,
and

A(q;co„—co ) =D(q;co„—co ) —X (q;co„—co ) ——,
' [X+ (q;co„—co )+X +(q;co„—co )], (2.7)

where D and J are the usual phonon and spin-fluctuation time-ordered propagators, respectively, multiplied by the ap-
propriate coupling constants. Because we assume that the Fermi surface is spherical, A, will be averaged over q. It has
been pointed out that in some compounds there may be important q-dependent effects in A, associated with a nonspheri-
cal Fermi surface. We ignore these here in order to (i) isolate the competing effects of molecular-field and spin-
fluctuation scattering, and (ii) because there is, as yet, no quantitative theory of the Fermi surfaces of the ternary super-
conductors. It follows from Eq. (2.6) that

b,(x;co„)= g J d'x'IK. ~(p p)+—K.~(p p+Q—}e' " +K.~(p, p ——Q}e ' "
J

m

Xexp[i(p —m. ) (x —x ')]b,(x;co ), (2.8)

where 13=(kit T) ', and the kernel

K)l))l pxp g ~ 'q )O n COm } g (G llcr (pl xp2iCOm )G cr ll(p3xp4x —CO—m ) )imA, p&+p3~p', p +t)
q

(2.9)

Here, we have used the fact that the only possible superconducting pairings are with (p, —p} and (p, —p —Q). The latter
pairing corresponds to the order parameter b,g in Ref. 16. Since this has been shown to be negligible ' we will ignore
the second and third terms in I I in Eq. (2.8). Within the semiclassical approximation [Eq. (2.3)] it then follows that

Q(x;co„)=P i g K„~(m, m)h(x;co—~ ), (2.10)

where m. =(n"2)'~ and K is now a funct'ion of the operator m. In the 1D limit, the kernel may readily be evaluated us-
ing the normal-state Green's functions and

G xt =0(p p .
~ n+&p+~ gn

(2.1 la)

G"='(p p+Q ~.)=
n+ep+H Qn

(2.11b)

In the absence of impurities and spin-fluctuation effects the renormalized quantities co„and H(i„are replaced by co„and
Hg, respectively. It may be readily verified that the resulting (two-component) nonrenormalized Green s function G"=0
thus obtained corresponds to the Green s function for the Hamiltonian A . Strong-coupling phonons, spin fluctuation,
and impurity effects renormalize the frequency and molecular field as follows:

2k'
co =co +p '&(0) g I ID(q;co„—co )+X (q;co„—co )+ , [X+ (q;co. c—o )+& +(q;—co. co }]-

2k~2

+(~l )( 1
'+

2 } m)lIill ll (2.12a)

and
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2k'
H H——

& p— 'N(0) g f q2 [D(q;co„—co )+X (q;co„c—o )+ ,' [—X+ (q;co„—co )+X +(q;co„—co )]
2k~

Hgm—(A'/2)(r] ' ——,
'

r2 ')5~„J
2

™2
(co'+Hler )'"

Substituting Eqs. (2.11) into (2.9) and performing a contour integral, it follows that

(2.12b)

2Hg„
E„(m., —m. ) =2mN(0) 1—

~ n+H gn

tan-' VFK

2(co +H g„)
(2.13a)

Assuming a solution 4(x) exists for the eigenvalue equation

+(x)cI](x)=acI](x),

and that

(2.13b)

b,(x;co„)=@(x)h„,
one then arrives at a matrix equation,

5„=2]rN (0) '
A,(co„—co )

m [1 Hg /(co—+ H g )] '[2(co +H g
)'/ +(eR/c}upH 2/6(co + H g )'/ ] fi(r) ' —r2 ')—

(2.14)

It can be shown that the eigenvalue a=eH„/Ac in Eq. (2.13b). Here, we have expanded tan ' in Eq. (2.13a) to third order
in its argument. Equation (2.14) represents the key equation of this section. While it was derived in the 1D limit, one
may readily extend this equation to three-dimensional systems using the quasi-3D approximation of Bilbro and McMil-
lan. " In this approximation, the term on the right-hand side of Eq. (2.14) is weighted by a factor y (corresponding to the
fraction of the Fermi surface which is strongly affected by the molecular field Hg). An additional term, weighted by
1 —y, is added to the right-hand side of Eq. (2.14). This term is obtained by setting Hg=0 on the right-hand side of Eq.
(2.14); this is the usual strong-coupling expression for H, & in nonmagnetic superconductors. It may be verified that, in
the limit H =0, Eq. (2.14) reduces to the (1D) gap equation for AF superconductors studied elsewhere. " In the limit

Hg ——0, Eq. (2.14) is formally equivalent to the H, & equation derived previously. The presence of the molecular field
leads to the additional complication (which has not previously been considered) that the renormalized frequency and field
co and H~ are now derived from coupled equations.

B. Elastic scattering: Impurity effects

In the limit in which the phonon-induced electron-electron interactions can be treated by the usual BCS weak-coupling
approximation, and when inelastic spin-fluctuation effects are neglected, Eq. (2.14) can be written as

ln
T
c0

2
00 N ]/2 P«UFH, 2/C ] ]dco tanh —Re pH]2(u —1) + i pA(r] —r—2 )

0 2 6H ( —1)'g Q

—1/co (2.15)

Here, u =co(co)/Hg(co) and T,o is the superconducting
transition temperature with H~ ——H =0. This equation
represents a "weak-coupling" approximation to Eq. (2.14).
It follows from Eqs. (2.12) that u satisfies

u 2)1/2
(2.16)

Q Q

Here, we have defined ro
' =—r] '+ —,'r2 '. In this weak-

coupling limit, the two equations for the renormalized
quantities Fo and H~ can be expressed in terms of a single
equation for the variable u. It should be noted that u is a
complex quantity and that the square root must be taken
at a fixed branch. Equation (2.16) is reminiscent of an

analogous equation for the ratio of renormalized frequen-
cy to superconducting gap (also called u in the litera-
ture"), in superconductors containing magnetic impuri-
ties. The quantity u in Eq. (2.16) is related to the density
of states in the normal antiferromagnet Nz(co) as

N]v(co) =N(0)Im u(co)

[1—u2(co)]]/2
' (2.17)

Thus, there is an analogy between the behavior of the gap
in the superconducting density of states due to the super-
conducting order, and that in N~(co) due to the molecular
field. As ro decreases (due to nonmagnetic or magnetic
impurities) the normal-state AF gap decreases. In a dirty
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BCS superconductor, the superconducting gap weakens as
~2 decreases. In each case, impurity levels fill in the gap
in the density of states.

When the AF superconductor satisfies the inequality
»Hg, Eq. (2.16) may be solved to yield the closed-

forlll cxpl cssl oil

fg A ra
—1

u (co)= +i
Q Q

co(al) =co+I'A(I I ri '—) (2.18b)

1+6/2(~I ——,rl )
Hg(a)) =Hg

o)+Pi/2(II '+r2 )
(2.18c)

where the upper (lower) signs correspond to positive (neg-
ative) frequency. In this limit, the impurity lifetime
enters as a pure imaginary contribution to g. Since

~
u(al)

~
))1 for all ai &0, it follows that

Hg(u —1)'/ =al, and the terms involving II cancel in
Eq. (2.15). Therefore, nonmagnetic impurities are not
pair breaking when ro

' »Hg. It should be stressed that
whcll this lilcquallty 18 IIor satisfied Ilolilllagllctlc Impuri-
ties will lead' to pair breaking similar to the behavior of
magnetic impurities in nonmagnetic superconductors.
However, when an AF superconductor is sufficiently dirty
(so that the normal state is essentially "gapless" ) then
Anderson's theorem" is reinstated. It has been shown'
that, as additional nonmagnetic impurities are added, a
gap reopens in the superconducting density of states
N, (al), and N, (oI) becomes BCS-like. It should be noted
that impurity effects on the "bare" molecular field Hg
have not been explicitly treated in this analysis. It is ex-
pected that as I I decreases, Hg also decreases; this should
act to reinforce all of the explicit effects of I I discussed
above.

These results for the rl dependence of H, I can also be
restated in terms of the behavior of the superconducting
coherence length /=a I/. It follows from Eq. (2.13b)
that

When the inequality Hg«~0 is not satisfied, Eq.
(2.15) must, be solved numerically. This is most readily
done by converting it to a quartic equation and using
iteration techniques. To obtain the proper root of this
equation %vc I'cquiI'c that ss aP —+ ao,

Hg(T) =Hg(0) 1— (2.20)

4

where 2 & v & 4 was deduced by a fitting to experimental '

zero-field magnetization data. The functions for v=2
and 4 are plotted in the inset of Fig. 1. In the main part
of the figure we use v=2. In addition, Hg(0) was taken
to bc O. 3'~ bRscd on experimental coIlsidcI'Rtions. Thc
I I and I2 values are chosen in such a manner as to satisfy
the "dirty" condition in Eq. (2A). This justifies the use of
the quasi-classical approximation. %'hile our results are
plotted for the 1D limit, the behavior of H, (zT) in three
din1cnsions may bc estimated by adding, to ouf 10 curves
(properly weighted), the functional form" for H, I ob-
tained for (nonmagnetically ordered) dirty superconduc-
tors. In the cleanest system (ri ——3.0co, ') there is reen-
trant behavior. The effect of the molecular field Hg is so
great that it completely destroys superconductivity for a
range of temperatures. When Hg( T) approaches the
saturation value» Rt low T supcl conductivity caIl
redevelop. As the system becomes dirty the effects of Hg

0.60—

co(al)~co+ lR('rl +12 ),
Hg(al)~Hg .

After u (ro) is obtained, the resulting values are then sub-
stituted into Eq. (2.15) and H, 2 is calculated using numer-
Ical lilt cgl atloll tcchlllqucs.

The resulting H, 2-versus- T curves are plotted in Fig. 1
for various rl ' in units of ro, for fixed r2

' ——10
Here, co, is the Debye frequency. We chose the T depen-
dence of Hg to be of the form

'V

H, 2( T') =$0/g'( T), (2.19)

where $0 Pie/2c is the unit of——quantized flux. The pair-
breaking effects of r& arises through the dependence of g
on z&. The coherence length depends on v~ thI'ough both
the mean free path l, and for Hg+0, the transition tem-
perature T,. Both dependences are of opposite sign, so
that g has a maximum when plotted as a function of 1/rl.
With the use of Eq. (2.19) this implies that H, 2 will ini-
tially decrease with increasing 1/~1,' as 1/r& increases fur-
ther, H, 2 goes through a minimum and then increases
linearly. In our numerical studies vs mill assun1e that the
superconductors are already sufficiently disordered, and
therefore we only observe the increase in H, 2 with in-
creasing dIsordcr.

0.2 0.4 0.'6 0.S i
T/Tco

FIG. 1. %eak-coupling calculation of the temperature depen-
dence of H, 2 in units of H, ~ ——ee, /Avpe. Here, T,o is the
Hg ——H=O superconducting transition temperature, and the
nonmagnetic impurity scattering time vl is varied in units of ~„
the cutoff frequency which was chosen to be 100 K. In the inset
is plotted the T dependence of the bare molecular field for the
two exponents v=2 and 4.
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are "screened" out so that the dip in H, z at T~ is not as
pronounced. The possibility of reentrant superconductivi-

ty was raised by Machida et al. ' It should be noted,
however, that in their work the effects of impurities were
not treated self-consistently, and, therefore, H& was not
renormalized. This renormalization appears to be ex-
tremely important and leads to considerable variation in
the functional form of H, z(T). As will be stressed in Sec.
III, a systematic experimental study of the dependence of
H, z( T) on nonmagnetic impurity concentration is
presently lacking, although this would be extremely im-
portant. It should finally be noted that in Fig. 1 we have
ignored any shift in Tz as r~ varies. Presumably, TN will
decrease as r~ decreases. The effect on H, q can readily be
extracted from our numerical plots, since it primarily re-
sults in a rescaling of the temperature variable.

C. Models for the spin-fluctuation and phonon
propagators: Inelastic effects

In order to solve Eq. (2.14) together with Eqs. (2.12) we
need to adopt simple models for the phonon and spin-
fluctuation propagators, called D and X, respectively. For
the phonons, we use the Einstein independent-oscillator
model. For the spin fluctuations we adopt a simple form4
which includes an Einstein-like model for the spin waves
as well as longitudinal (elastic) modes. The magnon spec-
tral weights which are chosen to be k independent are
given by, for T & TN,

—,
' [B+ (co)+B +(co)]

=nN(0)(J' ) 3S(S+1) tanhc 2 T pro

TÃ 2

B~"(a))=A, 5(co —cog),
2

where the coupling constant A,
—=gN(0) and the phonon

frequency co@ are chosen to be 0.5 and m„respectively.
It is important to note that the spin-fluctuation propa-

gators are related to the temperature-dependent staggered
magnetization M (T) by the sum rule

nM (T)+ g gX (q;v„)P(J'f)'

+ —,
' [X+ (q;v„)+X +(q;v„)]=nS(S+1), (2.23)

where M(T)=(S')g which is, in turn, proportional to
the molecular field H~. H~(T) =nJ' M(T). This sum
rule indicates that the temperature dependence of the
molecular field H~ is dependent on that of X. These pa-
rameters cannot be varied independently.

satisfy r0, =k~T~. Here, v is the same exponent as in Eq.
(2.20). For all T & T~, the spectral weight functions are
chosen to assume the values obtained from Eqs. (2.21) at
T=Tz. Note that the elastic fluctuations vanish as T"
when T~O, whereas the inelastic spin-fluctuation contri-
butions increase as 1 —(T/T~)" as T is lowered to 0.
Above TN, the spin fluctuations are all elastic, and thus
behave as noninteracting magnetic impurities, having the
appropriate value of vq. The spectral functions are related
to the time-ordered propagators by the usual Lehmann
representation. For example, for the phonons,

D(~„—ru )= f d~ z, . (2.22)
ro +(~n ~~)

In the Einstein model,

X5(ro —0+ ) III. NUMERICAL RESULTS

5(co —a), ) A. Description of the technique

V

B (c0)=nN(0)(J'f) —,'S(S+1) tanh
TN 2

(2.21a)
In the "strong-coupling" limit, when inelastic magnon

and phonon processes are treated in full detail it is con-
venient to convert the equation for H, z [Eq. (2.14)] to an
eigenvalue problem following the method of Bergmann
and Rainer. Introducing an auxiliary parameter p, and
considering discrete Matsubara frequencies, Eq. (2.14) can
be rewritten as

X 5(co —0+), (2.21b) P~n g +ms ~n (3.1a)

where co, is the spin-wave frequency which is chosen to where

E„=2mP 'I „—5 „ 2(~ +H & ) + H, z/6(~ +H &
)' '

C
—fi(v) ~p )

—1 —1



CHARLES RO AND K. LEVIN

I ~„=Xi'"(m,n) ——,
' [X+ (m, n)+X +(m, n)] —X (rn, n),

(3.1c)

2.0

1.5

A, "(m,n) =ME j[coE+(co„—co~ ) ] .

The linearized gap equation is satisfied whenever there ex-
ists a solution to Eq. (3.1c) with p=O. By obtaining these
solutions as a function of T, one can thereby deduce the
upper critical field.

The presence of AF order leads to a considerable com-
plication in solving Eq. (3.1a). This is because the quan-
tities co„and H~„must also be determined self-
consistently. In the strong-coupling case, to deal with the
complexity of these equations we have made the addition-
al assumption that the superconductor is sufficiently dirty
so that

'0 0.5 1.0 1.5
TEMPERATURE (Kj

(3.2)

in all numerical work in this section. It should be noted,
however, that the impurity concentration was not so high
as to completely smear out the AF gap in the normal-state
energy dispersion. Equation (3.2) is clearly a stronger
condition than that necessary to ensure the validity of the
quaslclasslcal appl oxlmatlon.

8. Numerical plots

In Fig. 2, experimental results are plotted for the upper
critical flield 111 sofile ailtifelYoiiiagiletlc Cllevi el [Fig.
2(a)] and rhodium-boride' [Fig. 2(b)] compounds. In
both figures, there is a pronounced structure at Tz. How-
ever, the SmRh4Bq system has an increased magnitude of
slope at T~, rather than a dip as seen in the Chevrel su-
perconductors. Our numerical results will be qualitatively
compared below with the data. It should be recalled that
we have introduced errors into our calculations by
neglecting paramagnetic effects. These effects are quite
pronounced in DyMO6SS, and hence it is unlikely that our
theory can treat this compound at any temperature. For
the other AF superconductors the effects of Pauli
paramagnetism can probably be neglected except for
T~ T+e

Plotted in Fig. 3 are the results of a strong-coupling
calculation of the H, q-versus- T curve for ri ' ——2.0co, and

r2
' 1.0X 10 co, and——v=4. Here, H~(0) is varied while

the spin-fluctuation coupling strength is held fixed. As in
all of the examples, we have used a 1D model, although
the effects of three dimensions can roughly be included by
adding to each curve the usual" (nonmagnetic supercon-
ductor) contribution to H, i. The effects of including this
three-dimensional contribution are primarily to weaken
the structure seen at T & T&. It is clear from the figure
that the larger the H~(0), the more pronounced the dip at
TN in H, i. For the smallest values of H~(0) (curve 1) in
Fig. 3 there is an increase in the magnitude of the slope
below T~, similar to what is seen in SmRh484. This in-
crease arises because the onset of H& at Tz, according to

l.

0.8

~ 0.6

0 I

0 0.5 1.0 (.5 2.0 2.5 3.0
Temperature (K)

FIG. 2. Experimental results for H, q in SmRh484, and in a
series of Chevrel compounds. (a) is from Ref. 8 and (1) is from
Ref. 10.

06—

0.4—

0.2—

0.005 O.OI5 0.025

T(~, )

FIG. 3. Strong-coupling calculation of the T dependence (in
units of m, ) of H, 2 and for H~(0) equal to 0.05 (curve 1), 0.20
(curve 2), 0.30 (curve 3), and 0.04 (curve 4) in units of ~,. All
other parameters are held fixed.
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the sum rule [Eq. (2.23)] must be compensated by a de-
crease in the spin-fluctuation scattering. For the parame-
ters in curve 1 (Fig. 3) [for which N(0)J'f=3.6X 10 ],
this decrease in pair breaking dominates over the in-
creased pair breaking due to H~ and thus causes H, 2 to
abruptly increase at T~. In curve 3 of Fig. 3, when
N(0)J' =0.45X10, the converse is true. The critical
value of N(0)J'f, at which there is a near cancellation of
spin-fluctuation and molecular-field effects, is
—1.0&10 . Curve 2 in Fig. 3 corresponds to this case.
It should be stressed that this critical value corresponds to
a physically reasonable range of parameters in the ternary
compounds. ' This helps to explain why these system. s ex-
hibit both decreased and increased pair-breaking effects
below Tz. In Ref. 3, decreased as well as increased pair
breaking was observed but the former was found only in
the unphysical case of H~ ——0.

Finally, in Fig. 4 we plot H, z versus T for fixed
H~(0)=0.3', and nN(0)(J'f) =1.8&&10 co, and v2

'

=l&(10 co, with the variable ~&
' in units of co, . The

cleanest superconductor in Fig. 4 corresponds to curve 3,
and the dirtiest corresponds to curve 1. As shown in Fig.
1, the effects of increasing the impurity concentration are
generally to "screen" out the molecular field. Conse-
quently, as ~&

' increases, H, 2 also increases and the dip at
T~ becomes less pronounced. As noted above the effects
of decreasing spin-fluctuation scattering at T& can then
lead to an abrupt rise in H, 2 at the Neel temperature.
This was not seen in Fig. 1 where spin-fluctuation scatter-
ing was ignored. It should be noted that Figs. 3 and 4 are
rather similar. Thus, changing Hg(0) or v~ can have
analogous effects. However, the more relevant figure to
compare with (future) experiments is Fig. 4, since ~& can
be more readily varied than can the molecular field. As
remarked in Sec. II, we have not explicitly included the
effects of r& on T~, on the spin-fluctuation propagator X,
or on H~(0). Since increasing w~

' probably decreases
H~(0), this should act to enhance the "screening out" of
the molecular field, as discussed above. The effects of de-
creasing T~ as the impurity concentration increases are
primarily to lower the temperature at which the various
structures at Tz, exhibited in the figures, will occur. The
most serious approximation is probably the neglect of irn-
purity effects on X. Our approach is in the same spirit as
the conventional treatment of dirty superconductors.
However, the validity of this approximation cannot be es-
tablished at present. Presumably, impurity effects in the
bare molecular field H& and in P will, at least partially,
cancel.

A detailed test of our predictions might involve studies
of pseudoternary systems in which small amounts of the
transition element are substitutionally replaced in the
Chevrel or rhodium-boride compounds. It should be not-
ed that in high concentrations this disorder may change
the nature of the magnetic and superconducting order and
lead to effects beyond those included in our theoretical
model. Replacement of the rare-earth ions by nonmagnet-

0.8—

0.6—
OJ

0.4—

0.2—

0 0.010 0.020
T (~, )

I

0.050

FIG. 4. Strong-coupling calculation of H, 2(T) for various
nonmagnetic impurity scattering times ~~. Curves 1—3 corre-
spond to r~ ——0.4, 0.5, 0.666 (in units of co, ), respectively.

ic elements should not be appropriate since this may in-
troduce an effective ~2 or spin-flip lifetime. The
anomalous behavior that we are focusing on comes entire-
ly from the ~~ term.

In summary, qualitative comparison of Fig. 4 and (fu-
ture) experiments can be used as an important test of the
theory of H, 2(T) presented here. Since a number of pre-
vious theories ' ' have met with some success in explain-
ing H, q data, a means of discriminating between different
theoretical mechanisms is essential. It should be pointed
out that the effects of a nonspherical Fermi surface and
in some systems electromagnetic effects may be impor-
tant in addition to the competition between molecular-
field and spin-fiuctuation scattering that we have invoked
here. However, the assumption of magnetic quasiparticle
pairing appears to violate self-consistency at several lev-
els. Our predictions for the effects of nonmagnetic im-
purities on H, 2 may help sort out the nature of the in-
teractions between magnetic and superconducting order.
Furthermore, it should be recognized that H, 2 measure-
ments provide a way of establishing the degree to which
nonmagnetic impurities are pair breaking in AF supercon-
ductors. This effect, which is rather unique to the AF su-
perconductors, may be quite dramatic.
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