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We present numerical investigations of the intrinsic noise in periodically driven, high-frequency,

rf superconductiug quantum interfereuee devices (SQUID's) due to the chaotic time evolution of the

flux trapped in the superconducting ring. The amplitude and the frequency of the external

sinusoidal magnetic flux are the control parameters of the SQUID dynamics. The present work

shows in detail how the well-known quasistationary behavior evolves into chaos at high frequencies.

A rich structure of subharmonic and chaotic bands is observed in the parameter space. Both inter-

mittent and period-doubling routes to chaos are found; the latter is always preceded by a broken

symmetry, and thus the former is the governing one for small amplitudes. We also discuss the ex-

perimental observability and manifestations of multiply periodic and chaotic SQUID response. In

particular, the usual staircase dependence of the absorbed hysteresis power on the amplitude of the

external flux is shown to be broken in a characteristic way for each main subharmonic. Thus we

propose that simple dc measurements can detect important properties of the nonlinear SQUID
dynamics.

I. INTRODUCTION

The recently introduced modern theory of chaos' in
deterministic systems has pointed out important new
sources of intrinsic noise in varied physical realizations of
nonlinear dynamics. The mathematics of the period-
doubling route to chaos ' has already been studied in
great depth, and this route has been observed in several ex-
periments. ' The intermittent route to chaos is also
known to display universal behavior with characteristic
scaling laws. s' However, until now most studies have
only been carried out on discrete one-dimensional dynami-
cal systems. We note that continuum dynamics can al-
ways be considered discretized through the use of Poin-
care sections (or return maps), and that work on the role
of higher dimensions has only quite recently commenced.

The simplest physical system to display chaotic
behavior is a driven pendulum under linear friction. A
mathematical analog model of this is the current-driven
Josephson junction, for which the sealing behavior
predicted by Feigenbaum's universal theory of period-
doubling sequences has been observed. ' Moreover, the
anomalous noise rise in parametric amplifiers" has been
interpreted in terms of the chaotic response of the junc-
tion. ' Computer simulations' as well as some analytical
approaches' have revealed other interesting physical phe-
nomena, which are also manifestly due to nonlinear ori-
gin: running solutions, intermittency, ' and solutions
which break the symmetry of the governing dynamics.

In this paper we present numerical investigations of in-
trinsic noise within the resistively-shunted-junction (RSJ)
model of a driven rf-SQUID magnetometer (SQUID
denotes superconducting quantum-interference device): a
superconducting loop closed with a Josephson junction in
an oscillating external magnetic field; see Fig. 1. We con-
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FI&. 1. RSJ equivalent circuit for a rf SQUID. Here V, R,
and C are the voltage, resistance, and capacitance across the
Josephson junction, I is the circulating current, and I. is the
self-inductance of the SQUID ring. The internal magnetic flux
trapped in the superconducting ring is P;„„while P,„,abbreviates
the external driving flux.

sider in detail the underdamped high-frequency operating
regime, which is of particular interest for the nonlinear
dynamics. In addition to our first report' on the subhar-
monic and chaotic states of the RSJ model of the SQUID,
there recently appeared another paper' on chaos in
SQUID's, where the results agree with ours. The present
paper concentrates on a detailed description of the phase-
space structure, and we consider, in particular, the obser-
vability of the predicted nonlinear phenomena and the de-
gree of their universality in real SQUID magnetometer ex-
periments.

In Sec. II we outline the RSJ model and present results
of our numerical work on the driven rf-SQUID dynamics.
The external field is assumed to vary periodically with a
frequency comparable to the Josephson plasma frequency.
The systematics underlying the phase-space structure,
with several chaotic and subharmonic regimes, is
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described. Wc also fllld solllt1011s wltll llollvRlllslllllg Rvcl-
aged internal flux even if the time average of the driving
field vanishes. We emphasize that the appearance of such
a spontaneously magnetized state is a consequence of
dynaII11cally broken symmetry. OUI' work also clcII1on-
strates an inherent connection between even subharmonics
and the broken symmetry. We therefore suggest that the
readily observable SQUID magnetization could serve as a
useful indication of the broken-symmetry state in actual
experiments. We also discuss the effects due to a small
external dc flux ("dc bias" ) on the structure found in the
symmetric case. In Sec. III we briefly summarize the
known results on the scaling theory of intermittency, and
illustrate the appearance of this route to chaos in the rf
SQUID. The role of intermittency as a source of intrinsic
noise in a SQUID is discussed. The equivalent noise tem-
perature is derived, and the observability of intermittent
evolution is studied in the presence of an external noise
source, such as a finite temperature. In Sec. IV we dis-
cuss, in a similar manner, the period-doubling sequence,
emphasizing the aspects of observability. However, in the
latter section we concentrate on the simultaneous oc-
currence of the broken symmetry and the 2'-subharmonic
limit cycles.

The SQUID dynamics we describe is difficult to ob-
serve experimentally, principally because the characteris-
tic frequencies of the system are of the order of the
Josephson plasma frequency (oIz-10' Hz). The usual
IllcasllIIllg confllgulRtloll Involvlllg R drlvlng cll'clllt Rnd
the observing tank circuit are probably inaccessible for the
interesting SQUID dynamics. Also, the tank circuit is
likely to become too mixed for the relevant features to be
measurable. In Sec. V we present results on the power ab-
sorbed by the SQUID from the driving field; this is an
easily mcasurablc dc property. As onc secs 1Il Fig. 2, thc
dependence of the internal flux on the applied flux is hys-
teretic. Hence there is power absorbed during each cycle
of the driving field. For the well-known overdamped
quasistationary SQUID behavior, the dependence of the
absorbed power on the amplitude of the external field has
thc typical stMrcasc structure displayed 1Q Flg. 3. IIl thc
presence of chaos or subharmonic solutions, the SQUID
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FIG. 3. Power absorbed P(A) by an rf SQUID in the over-
damped quasistationary mode of operation as a function of the
amphtudc of the external driving flux 2 for pl. ——20 used in the
present paper.

11. EVOLUTION EQUATION AND NUMERICAL
RESUI.TS

A. rf-SQUID model

According to the Stewart-Mccumber [the resistively-
shunted-junction (RSJ)] model' for an rf SQUID, the
current I flowing in the SQUID ring is given by'

dV VI= " =C +—+I,sin, , (1)I. dt R ' '

Po

rcsponsc changes in an essential %'ay and bccoIIlcs much
more complicated. Specifically, we find a typical
behavior for each main subharmonic, i.e., periods 2, 3,
and 5. We also suggest experiments on this breakdown of
the staircase structure as an easy alternative for compli-
cated dynamical measurements to detect chaos in
SQUID's.

We end this paper with a short discussion on further
important aspects concerning the possible limitations of
the present model calculations. %C conclude that the
SQUID is an interesting nonlinear device which is found
to display varied chaotic response, and which is readily
accessible for experimentation.

where C, R, and I, are the capacitance, resistance, and
critical current of the junction, and I is the inductance of
the ring. The voltage across the junction is denoted with
V, and P;„,(t) and P,„,(t) are the internal and external
magnetic fluxes.

The voltage Vis related to the internal flux through the
Joscphson equation:
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FIG. 2. »tclal flux p;„, enclosed by the SQUID ring ss R

f&nctloll of tllc slnllsoidally varying cxtcrllal flllx p~„& Rpphcd Rt
a tv frequency (op~ ——0.0001~,~) and vnth the amplitude
A =27. Both p;~t Rncl fe„t Rlc Ill lllllts of $0/2%, wllclc $0 fs tllc
flux quantum. (R) Critical damping with p~ ——0.25. (1) The
weakly damped case Pc =5.

(2)

The above pair of equations may be cast into the dimen-
sionless form, ls

d 8 d8 1 2Irp, „,(~)
Pc + + sin8+ 8— =0, (3)

d I, 0

where 8=2~/;„,(~)/Po„and the McCumber parameters
Rrc
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(4)
0o

' ' '
0o

In Eq. (3) the dimensionless time variable r=RCcozr,
where the Josephson plasma frequency coq is given by

' 1/2
2m le

0o C
(5)

The low-amplitude oscillations of an rf SQUID are
governed by two time constants: the damping rate 2Pc
and the natural resonance frequency,

[(1+1~PI.)413c 11'"—
res= (6)

2Pc
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FIG. 4. Effective potential V(8) as a function of the phase
difference 8 of the superconducting order parameter across the
weak-link Josephson junction. The dc flux is zero, and the
McCumber-parameter value PL, ——20 is used.

We note that Eq. (3) is an analog to a classical particle of
mass Pc moving under linear friction in a potential
displayed in Fig. 4 and driven with a force proportional to
the external flux.

In order to enhance the chaotic behavior, the parame-
ters should be chosen such that (i) more than one local
minimum of the potential exists, and (ii) the system is un-
derdamped. Note that in the limiting case PL, —+00, Eq.
(3) reduces to pure Josephson-junction dynamics, for
which chaotic behavior is known to occur. The additional
harmonic envelope of the potential excludes the finite-
voltage running solutions, which are obtained in Joseph-
son junctions.

We found that convenient values for the McCumber pa-
rameters are Pc ——5 and Pl ——20. These correspond in
practice to the circuit parameters, for example, I, = 5 pA,
C =0.1 pF, R =50 0, and I =1 nH. The values of Pc
and PL, are kept fixed, for simplicity, throughout this pa-
per. The variation with these parameters has been dis-
cussed in Ref. 17.

The quasistationary solution of Eq. (3) is well known
When the external field is varied sufficiently slowly and
the system is overdamped, the SQUID responds to the
external field smoothly, except for points where the
minimum of the instantaneous potential of the SQUID
becomes unstable [cf. Fig. 2(a)]. However, an under-
damped (though slowly driven) SQUID displays rather

unpredictable properties: When the instantaneous poten-
tial minimum loses stability, then instead of the increase
or decrease of just one flux quantum in the SQUID ring,
the exchange of several quanta is possible. In fact, for the
parameter values (Pc,PI. ) chosen in this paper, the lowest
quasistationary solution is the double-quantum loop in
Fig. 2(b).

B. Phase space

Here we present general results of our numerical inves-
tigations of the rf-SQUID dynamics, represented by Eq.
(3). The external field is assumed to vary sinusoidally

2n.g,„,(r) =A sin(cog)r),
4o

(7)

where the driving frequency coD is taken to be comparable
to the Josephson plasma frequency roz [and hence also to
the resonance frequency ro„, in Eq. (6)]. The control pa-
rameters for the phase space discussed below are the am-
plitude A and the frequency coD of the external driving
flux.

We have integrated Eq. (3) numerically with the use of
the Adams method. The initial conditions were chosen as
9(r=O) =8(r=O) =0. The transients were allowed to die
out in 500 periods of the driving field. Then the time evo-
lution of the phase difference over the junction was deter-
mined typically for some additional 700 periods of the
driving field. This time series was analyzed with the fast
Fourier transform (FFT). Some eight points per period
were recorded. A supplementary program was used to lo-
cate the subharmonic peaks from the power spectra; thus
the multiperiodicity of the trajectory could be determined
at ease.

The results of these investigations are collected in Fig.
5(a). The subharmonic and chaotic regimes display an ex-
tremely delicate structure of bands. The resolution in this
diagram is a grid of one dimensionless unit in the A direc-
tion and 0.05co„, in the coD direction. On a yet finer scale
one would see more details as discussed below in Sec. V.
The multifurcation diagram presented in Ref. 16 (cf. Fig.
10) is located in this graph along the line coii ——co„,. Here
we shall generally concentrate on the lower frequencies,
since for coD &co„, the results are found to be similar to
the ones reported previously. The most prominent feature
in Fig. 5(a) is the occurrence of a pair of bands terminat-
ing at co~-—0.3'„,. These describe one-quantum jump
processes which are absent in a slowly driven case, Fig.
2(b). The local potential minimum, which the system oc-
cupies, becomes unstable, and the SQUID starts decaying
towards the lowest-energy state. However, due to the fast
sweep the double-quantum process is not completed
(which would then be stopped by friction), but rather
reaches only the nearest minimum. This is because the
decay time is larger than or comparable with the time re-
quired to essentially change the instantaneous potential.
The detailed interplay of the decay time and the ampli-
tude and the frequency of the driving field determines
which of the n-quantum processes is stable.

A notable feature in Fig. S(a) is the occurrence of one-
quantum processes at high frequencies well below the stat-
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FIG. 5. Phase structure of the driven rf-SQUID dynamics in
t1lc coo -3 plane. (R) Thc sUbharmomc Rnd chaotic rcg1IIlcs.
Black region: 2". Finely dotted region: 3&2". Heavily dotted
I'cglon: 5 g 2 . Cross-hatched I'cg1on: chRos. (b) Tllc 1cglons of
broken (Latched rcglon) Rnd sUpcrbrokcn (black I'cgloIl) syHl-

mctry.

ic threshold value A =21.6. The driving field amplifies
the intermediate amplitude oscillations for a matching
i'Rilgc of frcqucncics cog) c corps. Tllis icsoilailcc pumping
leads to intermittency, as is discussed in Sec. III.

The rich subharmonic structure of the n-quantum
bands is due to two different origins: (i) bifurcation (the
orbit loses its stability), or (ii) the boundary of the basin of
Rtti'actloii foi tllc oi'bit iilovcs Rci'oss tllc iiiltial-collditioii
point as the control parameter is varied. In the first case
some general features are expected, especially as chaos is
obtained through bifurcation(s). However, the nonuniver-
sal modifications of the basin of attraction in thc second
case are unpredictable and essentially depend on the par-
ticular system. We trust that these two mechamsms are
dlstlngulshablc by pllysical Rlgunlcilts, and tlmi'cfoi'c wc
did not compute the stability (i.e., the Lyapunov ex-
ponent) of the orbits under consideration.

Figure 5(b) illustrates the control parameter values for
which orbits with broken symmetry exist. These regions
lie in the gaps between the two split chaotic subbands of
n-quantum processes in Fig. 5(a). Between the adjacent

n -and (n+ I)-flux-quantum bands, the orbits are sym-
ITletric, except foI' R small special RI'ca above thc upper
one-quantum subband.

In order to explain the change in the behavior of the rf
SQUID upon increasing the amplitude A of the driving
field, let us consider the orbits for roD ——0.5ni„, in the vi-
cinity of and inside the one-flux-quantum subbands. For
low amplitudes, below the first band, the phase difference
oscillates around the lowest minimum of the potential, see
Fig. 6(a). For a larger amplitude the external field pumps
the SQUID sufficiently effectively, such that the lowest
potential balrlcr Is CI'osscd. However~ this occurs In R

rathcl irrcgular manner: Tlic SQUID predominantly oc-
cupies the lowest minimum, but bursts of one-flux-
quantum exchanges occasionally interrupt the time-
evolution in Fig. 6(b). This is the intermittently chaotic
regime. For larger values of A, the orbits show broken
symmetry, such as in Fig. 6(c). In this case the external
drive provides sufficient energy for the SQUID to regular-
ly exchange single flux quanta, but in a nonsymmetric
way. Consequently, the SQUID is dc magnetized. We
refer to this phenomenon as a half-quantum process, in
contra~t to the quasistationary mode of SQUID operation,
in which integer numbers of flux quanta symmetrically
enter and leave the SQUID ring during one period of the
driving field. Note that no true fractal quantum processes
occur, but the averaged flux through the ring is one-half
of the flux quantum. A Feigenbaum sequence separates
the chaotic and the broken-symmetry regimes in a way
similar to that found' for coa ——ni„, (see also Fig. 10).

The upper chaotic subband is a symmetric one, but an
orbit belonging to it does not quite complete a full one-
quantum exhange; see Fig. 6(d). The gradual transition
from the broken-symmetry regime into the upper chaotic
subband again takes place through a Feigenbaum period-
doubling cascade. FOI' yct larger amplitudes, thc cxtcrnal
field finally furnishes the SQUID with sufficient energy
to complete a one-flux-quantum exchange process; see
Fig. 6(e). The emergence of this new fundamental solu-
tion thus had a complicated preceding sequence of inter-
mediate stages from & =18.5—43.0. In contrast, for the
slowly driven rf SQUID one has a discontinuous transi-
tion at A, =A, (PI, ) =21.6 from one fundamental solution
to another.

All the above-described qualitative features are also evi-
dent in each of the higher n-quantum bands, although the
bands become narrower. However, the particular feature
of "superbroken*' symmetry [the black area in Fig. 5(b)] is
associated with only the one-quantum band. In this case
the SQUID oscillates between the states with 0 and 2 flux
quanta; see Fig. 6(f).

A measurement of the pI'edicted dc magnetization of
the ac-driven SQUID would constitute an interesting ex-
periment on the nonlinear SQUID dynamics. It appears
easy to caITy out, since Ilo tank cilcuit is ncccssaly, RII
would serve as a useful test of our results, and therefore,
also of the applicability of the RSJ equation of time evo-
lution (3) in connection with the high-frequency operation
of rf SQUID's.

Thc above considerations have ncglcctecl. cxtcrnal noise
sources. Thermal motion may cause transitions between
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FIG. 6. Typical orbits which are encountered as the band associated with the transition of one flux quantum is crossed at

IOII =0.5', . (R)—(c): lower subband; (d)—(f): upper subband. Shown on left-hand side are the Lissajous figures of 8(t) vs 8(t) Rud
on the right-hand side the subharmonic Fouricr power spectra P(to) of the voltage across the lf-SQUID junction. (R) Phase-locked
zci'o-qllRlltlllll state Rt A =17.0; (b) cllaotlc orbit lll tllc lowcl' balld Rt A =22.0; (c) state wltll blokcll syllllllctry Rlld pcrlod oilc Rt
A =25.0; (d) chaotic state in the upper one-quantum band at A =37.5; (c) phase-locked symmetric one-quantum state Rt A =48.0; (f)
an orbit with "superbroken" symmetry for A =44.0.

different stable limit cycles by activating the flux enclosed
111 tllc SQUID ol' tllc voltage of tllc jllIictioli Rcloss tlic
boundary between two different basins of attraction. This
process is important, especially during a measurement of
the dc-magnetized regimes in the phase diagram. This is
because the occurrence of a nonsymmetric stable orbit
(8(t), 8(t) )„,implies, due to the symmetry of the potential,
the existence of another orbit ( 8(t), —8(t)) . T—he
time-averaged magnetization in the presence of external
noise may thus appear to vanish even in the nonsym-
metric regime. For the broken-symmetry states to be ob-
servable, the temperature must be sufficiently low, such
that thc thermal trans1t1on rate a) T obeys

Numerical studies of cor are rather time consuming; at
present we are not able to give estimates for it.

A static cxtcrnal dc blas Il1ap RppcaI as Rnothe1 source
of error in experiments. Since a low-frequency back-
ground field is likely to appear, we write, instead of Eq.
(7),

2~P,„,(r) =A sin(mD~)+8 . (9)
ri)()

Here 8 is a symmetry-breaking field. We recall from the
quasistationary case in an ovcrdamped SQUID that a
small external bias term will only split the transition from
an n to (n+1)--quantum state. Broken-symmetry orbits
appear in the gap. For the high-frequency-driven SQUID
the transition is already diffuse. Therefore, we conclude
(and numerical investigations support this) that the princi-
pal effect of the dc term is to broaden the area of the
broken-symmetry gap and the two chaotic subbands. Pro-
vided that the pairs of the n- and (n +1)-quantum bands
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are not overlapping, the structure of the solutions remains
unchanged. The condition for overlapping is

10

(4n +1)—+a &B & (4n +3)——e,
2 2

(10)

where e is a small number. The value of external dc bias
may be restricted such that no overlapping occurs.

III. INTERMITTENCY IN rf SQUID's

e(r) 0- II

The concept of intermittency was first introduced by
Pomeau and Manneville. ' ' Intermittency refers to a re-
verse tangential bifurcation: the coalescence of a stable
and an unstable orbit, which results in a chaotic motion.
They also suggested that intermittency exhibits universali-

ty with characteristic critical exponents. The scaling
theory of intermittency was developed by Eckmann
et al. , Hu and Rudnick, and Hirsch et al. These au-
thors also considered the effects of external noise on scal-
ing.

Intermittency is characterized by laminar (regular)
time-evolution, which is interrupted by bursts. A discrete
mapping that describes the main features of intermittency
1s

8„+,—8„+b
~

8„~'+e=f(8„),
where b, z, and e are parameters. Let us assume that b
and z are fixed, and let e be small. Then for @&0, the
dynamics defined by Eq. (11) possess two fixed points
[which are defined as the solutions of 8*=f(8')], a stable
and an unstable one. For e tending to zero, the distance
between the fixed points diminishes, and for precisely
@=0, a single marginally stable point 8"=0 survives. For
positive e, there are no fixed points, and the time evolu-

tion is chaotic. However, the system remains in the vicin-
ity of the point-8=0 (the laminar time evolution) for a
prolonged time, before diverging away.

The average duration of the laminar evolution obeys the
following scaling law: '

-10
6000 7000

Time

FIG. 7. Intermittent time evolution of the phase difference
across the junction above the onset of chaos for coD ——0.5', .
From top to bottom: A =18.5, A =18.6, 3 =18.8.

8000

found. The external flux pumps the SQUID beyond the
potential barrier separating the lowest minimum from the
state with one flux quantum. This burst terminates when
the phase of the external flux matches the phase of the
internal flux, whereby the flux quantum is emitted. In-
creasing the amplitude 3 provides more energy to the
SQUID, and serves to make the absorptions and emissions
of flux quanta increasingly frequent. Finally, as the time
scale of the laminar motion becomes of the same order as
the period of the external flux, the motion appears fully
chaotic.

Similar changes of stability are observed when the band
associated with one flux quantum is approached from
above. However, whenever the chaotic bands are ap-
proached from the broken-symmetry orbits, intermittency
does not appear. Moreover, we have observed that in this
respect the structure of the higher n-quantum bands du-
plicated that of the one-quantum band.

Using the data at coD ——0.5'„„we have determined the—(1—1/z)
~ 1am (12a)

while the duration of the bursts is independent from the
value of the control parameter e. If we were to add a
Langevin noise term to the right-hand side of Eq. (11), the
mean square of the noise, o. , enters the scaling laws as a
new relevant parameter. The duration of the bursts is still
independent of the parameters, but the laminar time now
scales as

c2
CD

(b)

&
—(1—1/z)Z ( / (z+1)/2z)lam-& + ~ & (12b)

where T+ represent the scaling functions given in Ref. 22.
Note that the parameter z enters the scaling exponents,
and it thus determines the universality class of the prob-
lem. In applying (12a) or (12b) for a complicated model,
one thus implicitly assumes that varying the control pa-
rameter only changes e and not z, an assumption which
need not hold true. This would result in a modification of
the critical exponents.

Figure 7 illustrates the time development of the internal
fiux after the initial transients for three different values of
A at coD ——0.5'„,. Characteristic intermittent behavior is

0 4 &
0

0
e„ e„

FIG. 8. Return map 8((n +1)T~)=E(8(nT~ )) for the phase
difference across the junction. (a) In general, F is a multivalued
mapping. (b) However, near the point P& of tangential contact,
the return map is a simple function describable with Eq. (11).
This return map is more complicated than that presented in Ref.
17, essentially because the area of the universal part of the map
is small, and thus the back-folding part of the mapping is effec-
tively two dimensional.



critical exponent associated with the laminar evolution
time, and thus we have also estimated the parameter z
which determines the universality class. Figure 8 displays
the return map for the internal flux at coII ——0.5'„, and
A =18.5 The point PT of tangential contact is respon-
sible for the intermittency observed in Fig. 7. The esti-
mate for the critical exponent z can be obtained by com-
paring such return maps wreath the dynamics described by
the discrete mapping in Eq. (11). The somewhat large er-
ror bars in the value z =2.5+0.5, that we obtain, may be
ascribed to our possibly having determined the critical ex-
ponent somewhat away from the critical region. We
foulld 110 dcvlatlolls 111 z wllcll cog& alld A wcl'c varied
along the intermittency transition line. Hence the inter-
mittent behavior seems universal for the rf SQUID.
However, numerical accuracy somewhat limits the possi-
bility to detect small changes in z (the value z =2 is the
expected result).

Let us now turn to consider effects due to thermal noise
on the intermittent route to chaos from the prospective
experimental point of view. We add a Langevin noise
term with zero average to the equation of SQUID dynam-

This is obtained by allowing o and e—+0, such that
o -e'+ "~ ', and by applying the scaling equation (12b).
Thc scaling 1M@ is a ncw and remarkable behavior, Yvhich

is also potentially observable. In particular, it is quite
manifestly different from the usual well-known behavior
of the flux uncertainty in a quasistationary strongly
damped SQUID. For the latter case, Kurkijarvi ob-
tained the lifetime of the zero-flux-quantum state to be
equal to

ttCXP
CO , R0) (t')

KU(t')
Q CXP , (17)

for z. Therefore„ the scaling laws (12a) and (12b) are also
applicable.

It is interesting to note that just prior to the onset of in-

termittency, the laminar time scales with temperature as
follows:

pc8+8+ 8+sin8= sin(0IDr)+g'(I. ),
L L

~+A,r 2m' T

c 0

Let us integrate Eq. (13a) over the unit period of the ap-
plied field in order to construct the return map

8((n +1)TII )
=F(8(nTD), 8(nTD))+ g(n) . (14)

where g(~) represents Gaussian noise with the standard
deviation

where EU(t) is the height of the potential barrier between
the one- and zero-quantum states at time t, and co(t) is the
resonance frequency of the zero-quantum state in which
the system is prepared at the initial time 10.

Chaotic time evolution observed in an experiment could
be due to both external or internal noise sources. In order
to determine which one of these is relevant, it is necessary
to determine an equivalent noise temperature for the in-
trinsic chaos, as in Ref. 10. We equate the noise tempera-
ture T„with the temporal average of the kinetic energy of
the chaotic motion as follows:

+(g(n) )—exp
I,$0$(n)
4m.kS TTD

(15b)

As seen in the return map in Fig. 8 for the internal flux,
the one-dimensional approximant leads, in general, to a
multivalued function g. However, sufficiently close to the
point of tangential contact, the approximation remains
valid, and we therefore expect the intermittency that we
llavc found lll SQUID s to belong to tllc salllc ulllvcl'sa11ty
class with the mapping (11), with the appropriate value

Sufficiently close to the critical region, the two-
dimensional nature of Eq. (14) is expected to be unimpor-
tant, because dissipation due to the friction contracts the
SQUID dynamics into a one-dimensional manifold. In
fact, a function z =z(8,8) exists, such that the mapping
z„+I

——h (z„) is strictly one dimensional, but it is quite dif-
ficult to determine z(8,8). However, since here universal-
ity is essentially a one-dimensional property, we may also
approximate Eq. (13a) through

p 8c(( nI+)TII) =g(8(nTD))+g(n) .

Here the noise possesses the following distribution ( TD is
the period of the driving flux):

In dimensionless units this yields

AT =—Ctl 0Ig(RC) 01„„(i
8(01)

i

IV. PEIGENBAUM SEQUENCES IN rf SQUID's

Sequences of period doublings have been observed both
m externally driven Rnd m autonomous dynamical sys-
tems. Mathematically, this is a very well understood
route to chaos. Under quite general conditions the se-

For the SQUID parameter values quoted in Sec. II, this
gives the estimate T„=200 K. Therefore, the noise rise
due to intermittency is certainly expected to be an observ-
able phenomenon in a SQUID at the liquid-helium tem-
peratures. HO%'ever, one should obscrvc that thc noise
temperature depends quadratically on the critical current
and the resistance of the junction, while the dependence
on the capacitance is linear. The values of these parame-
ters vary over some two decades between different SQUID
magnetometers. In designing experiments on chaos in
SQUID's, proper consideration of the effective noise tem-
perature must be taken into account.
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quence is universal: asymptotically independent from the
specific system under consideration, as the control param-
eter approaches the value at which fully developed chaos
appears. The period-doubling route is characterized by
the critical exponents 5 and a, defined as follows:

PI —P» -1
i —+co PI+) —Pg

(20b)

Here p; and C;, respectively, are the values of the control
parameter and the amplitude of the bifurcation branch be-
tween the ith and the (i +1)th bifurcation for a fixed sta-
bility.

The actual numerical values of these critical exponents
depend on the universality class for the particular system:
the nature of the maximum of the return map and wheth-
er the dynamics is conservative or dissipative. The well-
known logistic mapping

2 I I I 1 I

(a
80

0-
-0

I I rlI

&~,III II'I ) II I I II

(i) The 2" sequences appear in a gap between the two
split chaotic subbands which correspond to the same n-
quantum process. The sequences are encountered on both
increasing and decreasing the amplitude A. These regions
are separated by values of amplitude for which a period-
one limit cycle is stable.

(ii) Some period-doubling cascades with periods
(2m +1)2" were found in small regions at the high-
frequency part of the phase space. These chaotic bands
are disconnected from the main bands.

(iii) In agreement with the conclusions of Levinsen'4
and of Elgin et al., we did not find any symmetric 2"
period-doubling cascades. The main chaotic band was ap-

8„+1——A,8„{1—8„), 8„E[0,1] (21)

features a quadratic maximum and is dissipative. The
critical exponents for the logistic dynamics ' are the well-
known Feigenbaum numbers 5=4.6692. . . and
o.'=2.5029. . . .

The reflection symmetry of the effective potential in
Fig. 4 prohibits the appearance of a simple Feigenbaum
sequence when starting froID the oscillatory zero-quantum
state.

Levinsen'" and later Elgin et al. showed, by consider-
ing the Duffing oscillator, that provided the potential has
even parity under the change of sign of 8, it is impossible
to have a symmetric solution with a period twice the
period of the drive field. The linear stability of the simple
limit cycle (r1i=coD) 8O(r), is governed by the Hill's equa-
tion:

1 I

-8 -4 0
I 1 1 1 1 1

0-

10
1 1 80

-40

0.0 10 p((g)

"40

Pc58+58+ 58+58cos80(r) =0 .

Linear differential equations with periodic coefficients
may have instabilities of period equal to or twice that of
the coefficients. If 8O(r) is not symmetric, the frequency
of the coefficient is cori, and thus period-doubling linear
instabilities may occur. However, for a symmetric 8o{~)
the frequency of cos8O(r) is 2coD and no linear subhar-
monic instabilities exist. Higher-order subharmonics ap-
pear discontinuously and coexist with the simple solution.
Furthermore, they need not be symmetric, and hence
Feigenbaum sequences containing frequencies co'„'=coD/
2"(2m + 1) may appear. If the limit cycle breaks the sym-
metry of the potential spontaneously, a pure Peigenbaum
sequence (with co„=coD/2") is possible.

The period-doubling cascade is observable in SQUID's.
We have described some of the features of this sequence
for mD ——co„, in the first report. Further data obtained
for other values of the drive frequency coD have completed
the picture. The main properties of the Feigenbaum se-
quences in SQUID's may be summarized as follows.
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FIG. 9. Lissajous figures and the corresponding power spec-
tra at aiD ——m, for a sequence of bifurcating orbits exemplifying
a Feigenbaum period-doubling cascade as a function of the con-
trol parameter A. (a) A =67.65; (b) 3 =68.0; (c) A =72.0; (d)
A =75.0.



il~

I

~, Li

I
~

Jl ~

(I) D /(I)

gpss

] 0

55 60 70

FIG. 10. Multifurcation tree diagram for the phase differ-
ence 8 of the order parameter as a function of the drive amph-
tude A at coo ——~, . Shown are the period-5 region, the chaotic
regime with windows of phase-locked limit cycles, and the re-
verse Feigenbaum sequence. Note that in the range A =55.0 to
57.1, two reAection-symmetric solutions of period 5 exist, and
their basins of attraction move in such a manner that the initial
colldlt10118 llscd 111 Ihc pi'cscIlt paper [e(%=0)=8(1 =0)=0] al-
ternate between one and the other.

proached intermittently from the symmetric orbits.
(iv) The critical exponents 5 and a agreed with the

Feigenbaum constants for the logistic equation within the
precision of the computation (four to five first bifurca-
tions). It appears that chaos in the symmetry-broken re-
glIIlcs of thc pllasc space ls well dcsc11bcd by R return 111ap
wltll R quadlRtlc 111RxlII111111(scc also, FcsscI', Bisliop, Rlld
Kumar in Ref. 17).

A sequence of bifurcating nonsymmetric orbits is
displayed in Fig. 9. Also, the subharmonic power spectra
are given. Figure 10 presents a multifurcation tree for
coil ——co,~, including the range of Fig. 9.

Note that at the low-frequency side of the one-flux-
quantum bands, an interesting point exists at which re-
gions of intermittent and period-doubling chaos merge to-
gether. However, no crossover effects occur around this
po1nt slncc R llilc of dlscontlnuous tiailsltlo11, tllc breaking
of the symmetry of the potential, necessarily passes
through the same point.

In conclusion, the period-doubling route to chaos is an
important source of intrinsic noise in weakly damped
SQUID's driven at a high frequency. An essential noise
rise is observed down to coD ——0.25co„„the lowest frequen-
cy for which we have performed computations in this pa-
per (at low frequencies the numerical calculations become
very time consuming if high accuracy is needed, due to
the presence of vastly different time scales in the system).
The period doublings are easily distinguished from inter-
mittency due to the simultaneous appearance of the dc
magnetization. Also, a strong subharmonic half-

2+kg T

I,POA
TD g 10-', (22)

where A is the scaling factor which reduces the return
map to be defined on [0,1]; it approximateiy equals 4.
This yields the temperature limitation

T&100 mK . (23)

This is the most stringent restriction for the experiment.
This temperature depends linearly on the critical current
I, in the junction. All the noise considerations favor large
values of the critical current.

Yet, another source of experimental difficulties must be
considered. A small dc term in the external flux breaks
the symmetry of the potential, and thus allows a solution
with frequency ~D/2. The basin of stability of this solu-
tion has not been considered here. Arguments parallel
with those in Sec. II lead to the conclusion that in an ex-
periment the small symmetry-breaking field would not
significantly change the above results.

&. r& POWER ABSORBED IN CHAOTIC SQUID's

The resonance frequency [Eq. (6)] of the rf SQUID
equals co„,=0.8 X 10" Hz for the parameter values quot-
ed in Sec. II. It is quite difficult, if not impossible, to
detect such a rapidly osci11ating magnetic field with the

frequency peak is observed in the power spectrum,
whereas the intermittent spectra are broad and featureless.

External noise due to thermal excitation produces two
kinds of effects on the period-doubling sequence. (i) In
Sec. II we discussed the thermally activated transitions be-
tween the two nonsymmetric limit cycles. This effect is
nonuniversal in that it is determined by the basins of at-
traction. (ii) A universal thermal noise effect arises from
the uncertainty in determining the period-doubling struc-
ture. As soon as the fluctuations in the voltage due to
thermal motion become comparable to the width of the
bifurcation branch, the fine structure of the cascade is
unobservable. Crutchfield ct al. have discussed effects
due to both additive and parametric noise in the logistic
equation. Smoothing in the dependence of the I.yapunov
exponent on the control parameter and in the attractor
distribution function was found. The most striking
feature is the appearance of a gap in the bifurcation se-
quence: Only the periods with frequency co„=boa/2"
with n &no are seen before thermal motion washes out
further subharmonics. This is understandable in the
framework of the scaling picture by noting that the
subharn1omc peak 1Il thc power spcctrun1 corresponding
to a coD/2" +' component lies 13.6 d8 below that of a
RID/2" component. Hence for sufficiently large no, the
intrinsic subharmonic peaks at IOII/2 lie below the exter-
nal noise level.

Following the derivation preceding Eqs. (15), we may
again formally construct a one-dimensional return map
for the SQUID dynamics. We assume that as far as the
bifurcation properties are concerned, this mapping is well
approximated by the logistic equatio~ with additional
noise, and is appropriately scaled. Crutchfield et al.
have presented the numerical result that for o =10, the
few first bifurcations are observable. Thus
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use of an inductively coupled tank circuit. Here we sug-
gest two different measurements to investigate the chaotic
SQUID dynamics: (i) detection of the far-infrared or
radio-wavelength signal emitted by the SQUID (co«, cor-
responds to 0.5-mm wavelength), and (ii) determination of
the interesting signatures of the nonlinear dynamics (bi-
furcation points, onset of chaos, etc.) in the power losses
of the external field. In both of the above cases a radia-
tion field propagating along a waveguide to the SQUID is
the most suitable way of providing the external high-
frequency field. In this section we discuss the power-loss
method, since we find it more practical and its use re-
quires some new results. The hysteretic behavior of
SQUID's driven at a low frequency was discussed in the
Introduction, although we did not consider the effects due
to external noise sources.

The electromagnetic energy absorbed per cycle (i.e., the
average area of the hysteresis loop) is calculated here as a
function of the amplitude of the driving field for the three
representative values of the drive frequency,
co&/co„, =0.25, 0.5, and 1.0. The results are illustrated in
Figs. 11—13. The strong contrast between these graphs
and the corresponding quasistationary one in Fig. 3 is ap-
parent. The staircase structure of Fig. 3 is smoothened,
except for the initial discontinuous transition to the lower
two-flux-quantum subband at coD ——0.25co„,. Detailed
fine structure is observed, most distinctly for coD ——0.5co„,.
The principal reason for this is the different dependence
on drive amplitude of the energy absorbed by the subhar-
monic orbits. By a comparison of Figs. 11—13 with Fig.
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FIG. 12. Same as in Fig. 11, but for coD ——0.5', . Note the
discontinuities marking the intervals of phase-locked solutions
within chaotic bands.
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5(a), we deduce the following systematic patterns of
behavior.

(i) The power absorbed in hysteretic period-2 orbits il-
lustrated in Fig. 14(a) decreases with increasing ampli-
tude.

(ii) The 2" orbits with n )2 absorb more energy for in-
creasing drive amplitudes, but at the points of bifurcation
we find discontinuities in the slope of Ph„„(A).
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FIG. 11. Averaged energy P(A) absorbed by the rf SQUID
per unit cycle of the drive at cuD ——0.25co, as a function of the
amplitude A.

(dD/&d«, =1.0

80
0 I

40 60

FIG. 13. Same as in Fig. 11, but for coD ——co, . The arrows
marked a, b, and c point out the first three bifurcations of the
Feigenbaum sequence (cf. Fig. 10). The onset of period-
doubling chaos is denoted by d, while e indicates the onset of in-
termittent chaos. At f the initial conditions used oscillate be-
tween the basins of attraction of the phase-locked period-1 and
period-5 solutions.
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of thermal noise. The conclusions discussed in Secs. III
and IV, concerning the limitations of temperature and the
dc offset term, are expected to remain valid for the con-
siderations presented in this section as well.

VI. DISCUSSION
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FIG. 14. Internal flux P;„, as a function of the external

slllllsoldally varylllg flux pext (botll 111 uIllts of I(0/2'} for typical
subharmonic solutions. (a} Period-2 solution at coll ——0,5', and
with A =27.8; (b) period-3 solution with ma ——0.5', and
A =32.S; (c) period-5 solution for co~ ——m, and A =47.0. In-
creasing the amplitude of the drive in (a) elongates the loops, but
since the orbit must approach the period-1 motion simultaneous-

ly (reverse Feigenbaum sequence), the larger loop gets thinner,
and hence the overall area traversed by the cycle (i.c., power ab-

sorbed in the hysteresis) decreases, in agreement with Figs.
11—13.

(iii) The period-3 orbits behave in a manner similar to
those with period 2", but are distinguishable from the
latter in that no dc magnetization appears in connection
with a period-3 orbit, such as the one shown in Fig. 14(b).

(iv) During a period-5 orbit such as the one in Fig. 14(c)
(and in the intermittently chaotic trajectory entered from
a period-5 orbit}, the SQUID absorbs essentially no more
energy than in the course of the simple zero-quantum or-
bit.

(v) Since the time interval between the emissions (or ab-
sorptions) of the flux quanta equals t = to.q
+ tl q~„,~, and thus according to the scaling theory of
intermittency t =C

~
A —A,

~

~ ~'}+D, one would ex-
pect Phr„(A) to start increasing as ( A —2, )" I~'. We
encountered very rapid growth, which is indicative of a
discontinuity; we do not have an explanation for this
behavior.

(vi) For con ——0.5~„„some points of discontinuity in
Phyqt(A) alc qlllfc dlstlnct. Tllcsc colrcspolld to pllasc-
locked limit cycles (or "commensurable" states) inside the
mainly chaotic subbands, and are similar in character to
the partial jumps observed in Josephson junctions. The
latter have been interpreted by Hggh-Jensen et al. in
terms of phase lockings in the framework of the circle
mapping. Judging from these results, we expect a detailed
fine structure to also be found within the chaotic bands of
the SQUID.

We suggest experiments to verify the above predictions.
The drive frequency coD =0.5m„, is especially interesting.
We want to emphasize that the critical exponent of the
period-doubling sequence, 5, and that of intermittency, z,
can be obtained from such experiments. The great advan-
tage of the present approach is that only dc measurements
are required. Therefore, we suggest similar considerations
to be carried out in connection with the current-driven
Josephson )unction as well.

The results in Figs. 11—13 were obtained in the absence

We have shown that both the period-doubling and in-
termittent routes to chaos are encountered in weakly
damped hysteretic rf SQUID's, under a strong periodic
drive at a high frequency. We have also suggested easily
measurable manifestations of these phenomena. Finally,
we have considered experimental aspects limiting the ob-
servability of these effects due to the presence of thermal
noise and an external stray dc-flux term. The most re-
strictive condition was found to be set by the operating
temperature necessary for observing the bifurcation tree.
In order to simplify the discussion, all the numerical data
presented in this paper are given for fixed values of the
McCumber parameters Pc and PL, ; changes in these do
not qualitatively alter our predictions.

We have omitted from our considerations the small
cos8 term, whose effects are not qualitatively important,
as long as this term will not change the sign of the fric-
tion term in the course of an orbit. An example of the op-
posite case is provided by the I.eggett equations, which
describe the nonlinear nuclear-spin dynamics in a homo-
geneous sample of superfluid sHC in the presence of a
driving term. ' Ho~ever, spatial inhomogeneities are like-
ly to render the simplified damped-pendulum picture of
the superfluid spin dynamics suspect. We would there-
fore expect measurements on nonlinear dynamics with a
SQUID ring to be much simpler to perform in practice,
than for a macroscopic sample of superfluid He. In ad-
dition to the rf SQUID considered here, the dc SQUID is
interesting in that it provides an autonomous system for
nonlinear studies.

Concerning the difficulties that may arise in the experi-
ments, we want to note further that although we have
given some estimates for the temperature limitations,
more quantitative numerical results in the presence of an
external noise are required. We generally neglected the ef-
fect of an external dc flux, or reasoned its effects on the
structure of the phase space to be minor. However, we
conclude that an rf SQUID is an interesting nonlinear de-
vice, which shows quite varied chaotic behavior that is
I'cadlly accessible fol cxpcrlIIlclltatloll.¹teadded in proof. Recently a general proof on the
impossibility of periodic doublings out of a symmetric or-
bit was given [J. W. Swift and K. Wiesenfeld, Phys. Rev.
Lett. 52, 705 (1984)]; this should be compared with our
flndings and, in particular, the discussion below Eq. (21)
in this paper and also that in Refs. 14 and 24.
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