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NMR of textures in rotating 3He- A
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Four vortex textures in He-A, one analytic and three singular, are proposed as possible candi-
dates to explain recent transverse NMR results in the Helsinki rotating cryostat. Although the ana-

lytic texture, previously discussed by Seppala and Volovik, has a transverse NMR shift and absorp-
tion closest to the observed values, the agreement with experiment is not wholly satisfactory. Longi-
tudinal NMR shifts and absorption are calculated for the four textures; such measurements might
determine which vortex is present.

ationally) the frequency and intensity of the low-
frequency longitudinal spin-wave satellite as well as the
transverse one. Comparing these results with the trans-
verse NMR data of Hakonen et a/. ,

' we find that all
three singular vortices have transverse NMR shifts in-
compatible with the experimental data. The SV analytic
vortex is compatible with the experimental data at lower
temperatures, but at higher temperatures it also disagrees
with the extrapolation of the NMR measurements.

Our results indicate that systematic measurements of
the longitudinal NMR shift and intensity, as well as the
temperature dependence of the transverse satellite intensi-

ty, could help decide whether the SV analytic texture is
indeed present. If further experiments confirm the SV an-
alytic vortex, it is important to study whether more accu-
rate hydrodynamic parameters and more precise free-
energy calculations can lower the energy of the SV analyt-
ic vortex relative to singular vortices. If not, is there some
other explanation that precludes the singular vortices,
which apparently have lower free energy? Should further
experiments rule out the SV analytic vortex, then a new
texture would be needed to explain the data.

I. INTRODUCTION

Recent transverse nuclear magnetic resonance (NMR)
(Ref. 1) experiments at the rotating cryostat in Helsinki
have indicated the existence of vortices in rotating He-A.
Seppala and Volovik (SV) (Ref. 2) thereafter proposed two
possible types of stable vortex structures for rotating He-
A in a magnetic field, and compared their NMR signa-
tures with the experiments of Hakonen et al. ' In the
Ginzburg-Landau (GL) regime near T„SV found that 4n.
analytic vortices have a transverse NMR frequency and
absorption compatible with the experiment, whereas
singular vortices cannot explain the data. At the same
time, the array of analytic 4m. vortices has a higher free
energy per unit circulation than the singular vortex array.
SV explain this discrepancy by assuming that the analytic
vortex lattice is metastable because analytic vortices form
more easily when a stationary superfluid begins to rotate.

Hakonen et al. ' find the same frequency of the NMR
satellite line when a rotating normal fluid is cooled below
T, and when a stationary superfluid accelerates above co, ~

(the threshold for vortex creation). Evidently, the meta-
stability arguments of SV cannot readily explain all the
data. Furthermore, the free energy and NMR calcula-
tions of SV (Ref. 2) were limited to the GL region (except
for their phenomenological parameter S), while the NMR
measurements were made at temperatures below 0.85T„
where the GL approach is inaccurate.

This paper proposes two new singular textures as possi-
ble vortex configurations of slowly rotating He-2 in a
high axial magnetic field. Using the hydrodynamic ap-
proach of Cross and the hydrodynamic coefficients cal-
culated by Williams, we determine the free energies of
these two vortices and the two SV vortices for all relevant
temperatures and angular velocities. Our results show
that the SV singular vortex has the lowest free energy (per
unit circulation) of the four. For the vortex parameters
found in the free-energy minimization, we calculate (vari-

I

II. FREE ENERGIES AND NMR OF VORTICES

The order parameter for superfluid He-A is given by

A„;= ding;,V2
(1)

(&) . (2)where f=6, ' '+its ' ', and 5"' and b, ' ' are real orthog-
M

~

onal unit vectors. The unit vector d is the local axis along
which the spin of a Cooper pair is zero, while the unit

vector I=6 ' '& 5 ' ' is the axis of orbital angular
momentum of a Cooper pair. In the hydrodynamic ap-
proach of Cross, the free-energy density f is a functional
of the vectors d and 1 and the normal and superfluid ve-
locities v„and v, [with a suitable constraint on curl v,
(Ref. 3)]:

2f = p, v —po(l v) +2Cv curll —2Co(v I)(1 curll)+K, (divl) +K, (l curll)

+Kb(1Xcurll) +K5(l c)d ) +K6(1XBd ) + 2 [1—(I.d) ]+ 2
(H.d) +Kqdiv(l divl+IXcur11),

LD LD HD
(2)
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where v=v, —v„, L13 is the dipolar length, and HD is
the characteristic magnetic field. The above formula for
the free-energy density includes a pure divergence term
(proportional to IC4) that is absent in the hydrodynamic
approach, since it facilitates a smooth interpolation to the
GL values as T~T, .

In the GL region, the hydrodynamic expression (2)
represents the difference between the GL free-energy den-

isty of a texture given by [l(r),d(r), v(r)] and the GL
free-energy density of the uniform, dipole-locked A phase
with dlH. The values of the hydrodynamic coefficients
expressed in units of the longitudinal mass density p~~

have been calculated by Williams for all temperatures
below T, near the melting pressure. For the parameter
K4, we assume that the ratio K4/p~~ remains equal to
—0.5, as in the GL region.

In high magnetic fields (H ~~HD-30 G in the Hel-

sinki experiments ), Eq. (2) shows that d lies perpendicu-
lar to the magnetic field to minimize the magnetic free en-

2ergy. To reduce the gradient energy of d, we assume that
the d vector remains along a given axis in a plane perpen-

dicular to H. We choose our axes so that the magnetic
field and angular velocity of a container are along z, while

the d vector is along x (the vortex lattice and the axes x,
y, and z are fixed with respect to the rotating container).

To introduce our new singular vortex textures, we ap-
proximate the true Wigner-Seitz (WS) cell by a cylinder of
radius L =(iri/2m30)', writing the orbital parameter
near the cell boundary as

1( =e'~( —z+iy) (3)

up to a constant phase factor. Hereafter, all formulas for
the order parameter are for the cell centered at the origin
of the polar coordinate system (p, P). The above order pa-
rameter has a circulation of 2m. and a superfluid velocity
v, =pip (in units of A'/2m3). Since the normal fluid
velocity (in the same units) is given by v„=2m3A Qpg,
the kinetic free energy would diverge if it continued unal-
tered to the origin. At distances of the order of the dipo-
lar length LD, the order parameter can deviate from the
form (3) in order to reduce the kinetic energy, at the cost
of raising the dipolar energy. At these distances the tex-
ture given by Eq. (3) can lower the total free-energy densi-

ty by transforming into a radial disgyration with order pa-
rameter

f=z+iP (4)

corresponding to zero superfluid velocity.
In order to bend the order parameter from the form (3)

where 1=x to the form (4) where I= —p, the / vector
must rotate out of the xy plane at intermediate distances.
One possibility is the z-in-x vortex, which takes the / vec-

tor from 1=x at the outer boundary to l= —z at some in-

termediate distance r] and then to l = —p near the center
[as in the radial disgyration of Eq. (4)]. The full order pa-
rameter for the z-in-x vortex is defined by

P =e'~( —z sinP —x cosP+ iy )

at distances r& &p &L„and

n = [(x+z)sin(P/2) —y cos(P/2)][1+sin (P/2)]

cosR = ——,
' sin (P/2) —cosP .

(7)

The angle R(P) lies between R(0)=n. and R(m)=0. At
intermediate distances a variational interpolation for the
trial (5'",b. ' ', I) gives

u =(ua. n)n(1 —cosP)+uDCOSP+n 0(uasinP, (8)

where u =(b, '",b, ' ', I) when u0 ——(z, P, —p), and the an-

gle P(p, g) increases from P(r0, $)=0 to P(r2, $)=R (P).
We shall call the vortex in Eqs. (7) and (8) the asymmetric
vortex (again rz-LD and ra-g).

To describe the z-in-x and the asymmetric vortexes
completely, we need to describe the order parameter at
distances less than or equal to r0. According to Muzikar
and Fetter et al. , the free energy of singular vortices is
lowest for polar-phase core. An order parameter that in-
terpolates between the radial disgyration at p=r0 and the
polar phase at p=0 is given by

g =v 2(z cos8+ i/ sin8), (9)

where the radial angle 8 increases from 8(0)=0 to
8(ra)=n/4. Since the hydrodynamic expression for the
general free-energy density of a factorized order parame-
ter is not known, the free energy of the polar core is calcu-
lated from the weak coupling GL expression (measured
from the weak coupling GL free-energy density of the

A
uniform dipole-locked A-phase with dlH). When adding
the polar core free energy and the A-phase free energy of
the region (rQ, L), we further assume that the dimension-
less parameters used in the polar core calculation have
their GL values at all temperatures below T, . It turns out
that the polar core energy is small (about 3%) compared
to the total energy of a texture, which means that the
above rough calculation of the polar core free energy will
not lead to large errors in the total free energy of the tex-
ture.

To calculate the exact free energies of the z-in-x vortex

f=z cosrl P—sing+i P

at distances r0 &p&r~. In our variational model, the ra-
dial angle P remains m. /2 for rz &p &L and tends toward
zero for p=r „while the radial angle g goes from m. /2 at
p=ri to zero at p=r0. The radii r2 and ri (r2&r&) are
of the order of LD& while r0 is of the order of the coher-
ence length /=93 A (1—T/T, )

The free-energy density of the z-in-x vortex has a large
contribution from the bending energy in the region
r0 &p&r2. One way to reduce this bending energy is to
transform the outer-region order-parameter triad with

1=x,

(5"',b. ' ', I ) =( ycos—P+z sing, zc—os/ ys—in/, x ),
into the triad (z,P, —p) of the inner-region radial disgyra-
tion via the path of minimal rotation. Straightforward
algebra shows that for a given polar angle P, the required
axis of rotation n(P) and the total angle of rotation R (P)
are given by
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[Eqs. (5), (6), and (9)] and the asymmetric vortex [Eqs.
(7)—(9)], one would have to solve the Euler-Lagrange
equations for the unknown functions P(p), g(p), and 8(p),
and P(p, g) and 8(p), respectively. However, a good ap-
proximation to the free energy can be found by assuming
that each of the above functions increases linearly with
the radial coordinate (the "stick approximation"), and
then minimizing with respect to the variational parame-
ters rz, r&, and ro for the z-in-x, and r2 and ro for the
asymmetric vortex. The integrals and the minimization
procedure were done numerically for several reduced tem-
peratures ( T/T, =0.7, 0.8, 0.9, and 0.99) and cell sizes
(L/LD ——10, 20, 50, and 100), which correspond to low
angular velocities. Hydrodynamic parameters for the
above temperatures have been calculated by Williams and
have also been tabulated in Fetter et al.

A free-energy calculation has also been done for the
two SV vortices, and the results are summarized in Table
I (the free energies are given per quantum of circulation).
Comparing our variational free energies for the SV vor-
tices at T/T, =0.90 and L/LD ——20, calculated using
BCS (weak coupling) values of the hydrodynamic parame-
ters, with the exact values obtained by SV in the weak
coupling GL region, we find that the stick approximation
tends to overestimate the free energies by about 5%.

From Table I it follows that the SV singular vortex has
the lowest effective free energy at low angular velocity
and high axial magnetic fields. The asymmetric vortex
has a slightly higher free energy due to the larger bending
energy coming from the greater nonuniformity in the
transition region between the l=x order parameter and
the corresponding disgyration: In the SV singular vortex
one goes to a pure disgyration by rotating by m/2 about
5' '(P) for every angle P, while in the asymmetric vortex
one goes to the radial disgyration by rotating by R(P)
around in n (P), where R (P) varies from m. at / =0 to 0 at

The SV analytic vortex lies even higher in energy
than the asymmetric vortex except at lower temperatures
and relatively high angular velocities. The z-in-x vortex
is always more energetic than the asymmetric vortex.

Provided that there are no lower free-energy textures,
the above considerations suggest that the SV singular vor-
tex should be observed in the experiments. In order to
check this prediction, we calculate frequencies and rela-
tive intensities of the satellite lines in the NMR experi-
rnents. So far only the transverse NMR has been mea-
sured, but we hope that our calculation of both NMR sig-
natures will stimulate longitudinal NMR experiments as a
possible means of deciding which texture is actually
present.

The longitudinal co
l l

and the transverse co~ NMR
resonant frequencies are customarily parametrized in the
form

2 2 2 2 2 2 2"II=+ll =" ++ (10)

where coL yH——is the Larmor frequency and co&

=(y/Lz)(pll/X„)' is the anisotropy or Leggett frequen-
cy. For uniform He-d, the resonant frequencies occur at
Az ——j. and R~~ ——1. If there are regions with nonuniform
order parameters, one also observes satellite lines (local-
ized spin waves) with smaller intensities and with frequen-
cies which lie below the main resonant lines.

The NMR equations can be obtained from the Leggett
equations generalized to nonuniform situations. Leg-
gett's Hamiltonian density is

h = —,'y SX 'S —yS.H ——,pll 2 (l d)
D

+ 2K'(l Bd~) + —,'K6(l)&Bd„)2,

is the inverse magnetic susceptibility, A, =AD /H~
=pll/(LDHD), X„ is the susceptibility of normal 3He,

and yS is the magnetization density. The equilibrium
conditions are

O=dx „=d&& A, (d H)H+
M G

5h

5S

(12a)

(12b)

and (using the Poisson bracket relations between d and S)
the equations of motion are given by

B,S=ySxH —dx (13a)

B,d =yd x [(H—(y/X„)S], (13b)

where 5f/5u=Bf/Bu —Bk[Bf/B(Bku)], and f is the
sum of the last three terms in Eq. (11). Assuming that in

the equilibrium the strong static magnetic field Ho lies

along the z axis and the d vector along the x axis, and
linearizing with respect to the small time-dependent com-
ponents of the magnetic field H'e '"', the d vector
d'e '"', and the magnetization density yS'e '"', we find

2 2 2
cog (I„—l» —P) —co

2

cobol»l,

2
ct)pl l a' icoyH,

'

coL, +cog ( l»»
—lz P) —co b —$ co')»H» +cgL 'J»'Hz

(14)

where

P =LD[K6 B +(K~ K6)( B l )(l.B )] „—
K5 K~/pll» K6 K6/pll and d~ = b', d» =a'. To—ob-
tain Eq. (14), we eliminated the time-dependent com-

ponent of the magnetization density in favor of the corre-
sponding components of the d vector and the magnetic
field:

x~~ =&nabob'

y S» X„[H» i (co/y )b']——, —
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yS,' =X„[H,' —i (co/y )a'] . (15c)

The last equation shows that oscillations of d in the xy
plane correspond to thc longltud1nal 1esonancc, &h11c os-
cillations along the static magnetic field correspond to the
transverse resonance. The NMR equations (14) and (15),
also can be obtained using the Euler-angle approach of
Maki and collaborators.

From the NMR equation for d ', we see that the longi-
tudinal and the transverse response are coupled (unless

I

l»l, =0), so that strictly speaking there are no purely long-
itudinal and transverse eigenstates. It has been shown,
however, that for ~1. &&co& (which is satisfied here), the
correction terms for the longitudinal resonances of fre-
quency approximately equal to co& and transverse reso-
nances of frequency approximately equal to coL are of or-
der {m~ /col. ), and are therefore negligible. In that case,
the NMR matrix equation decouples, and one can solve
for the longitudinal and transverse cases separately.

To find the lowest-lying resonance frequency we can
use the variational principle which gives

r „—~ g +K6 g + E5 —K6 1. g
R~ =min

d r Jgiz
(16)

~here ~e =+J. Ie =I and g =~ and ~*=~~~ I*=ly
and g =a' for the transverse and the longitudinal case,
respectively, and (hereafter} we measure distances in units
of the dipolar length. The form of the trial function g
used to minimize R~ in Eq. (16) is

g =(1—ia)go(x)+ e'cia g, (x)cosP,

go=(1+aox +box +cox )e

g, =xe(1+aix+bix )e

(17a)

(17c)

Where l8» Oo=QO» O~» 60» Co» Q)» and bi aI'C thC var1atlon"
al parameters, and x =p/I. D. The weight w is con-
strained by 0 & m & 1 and ao and o., must be positive. Ex-
amining the eigenvalue equation corresponding to Eq. (16)
for distances much smaller than the dipolar length, but
much larger than the core size, we find that q =1 for the

Jd rbj(r) raj' r
t

SV vortices and q =P2 for the z-in-x and asymmetric
vortices. ~e have included the cosp term in Eq. (17) to
check if the P dependence of the I-vector field is impor-
tant (the sing term is absent since we expect the ground
state to be even).

The absorption can be calculated from
dU

rRC yS" r,t. H r, t 18

using Eq. (15). It follows that the relative absorption Q,
defined as the intensity of a satellite line divided by the in-
tensity of the corresponding main line, is given by

2 2

TABLE II. Transverse (tran) and longitudinal (long) values for Ri and Q calculated for different reduced temperatures
T/T, =0.99, 0.90, 0.80, and 0.70 in the hydrodynamic approach, and for T/T, =0.90 when the BCS values are used. Relative inten-
sities Q are for the angular velocity 0 corresponding to I. =201.D The experim. ental values for R f were taken from Hakonen et al.
{Ref. 1).

SV singular

Q (%)
SV analytic

R Q (%)
Asymmetric

R' Q (%)
Expennlcnts

E.

T/T, =0.99
Tran
Long

0.97
0.97

0.42
0.42

2.4
0.67

0.87
0.99

0.95
0.96

T/T, =0.90
Tran
Long

0.95
0.95

17
16

0.36
0.36

2.2
0.49

0.81
0.98

8.1

36
0.92
0.93

T/T, =0.80
Tran
Long

11
9.1

0.30
0.30

0.73
0.96

0.86
0.87

8.6
6.5

T/T, =0.70
TI'an
Long

0.85
0.85

6.7
5.2

0.24
0.24

2.0
0.23

0.62
0.92

3.6
9.9

0.79
0.81

5.3
4.1

BCS
Tran
Long

0.96
0.96

0.42
0.42

2A
0.67

0.88
0.99

0.96
0.96



for the transverse and longitudinal case, respectively. To
obtain Eq. (19) we have used the fact that for transverse
resonances toJ =toL »co&, normalized all wave functions
by J d r

I
a

I

= f d r Ib I
=I and n«ed t»«' and

b' for the main lines are approximately uniform in space.
Using the parameters I 2, r~, and ro, which are given in

Table I for the different textures, we can find the parame-
ter R and the relative intensity Q of the lowest-lying
NMR satellite from Eqs. (16), (17), and (19). Since the
NMR equations for the general case of the factorized
phase are not known, the radial integrals in Eqs. (16) and
(19) do not include the polar core region of the singular
vortices. We expect that the exact treatment of the polar
core regions would give corrections of order (g/LD) .

From Table I it follows that the radii for ro, r„and rz
have very weak Q dependences. The form of the satellite
wave function and the parameter R will then be roughly
0 independent, while the relative absorption Q (being pro-
portional to the number of localized spin waves) will scale
linearly with Q. Our results for R and Q for the two SV
vortices, the z-in-x, and the asymmetric vortex are listed
in Table II. The experimental values for Ri were ob-
tained using the formula Ri ——0.86—1.1(1 T/T, )—
which summarizes the NMR results of Hakonen et al. '

According to Hakonen er; QI. , the relative absorption is
given by Qi =0.0580 (in rad/sec) =1.5/Lti [in (pm) ]
using L!LD——20 and the relation between the angular
velocity and the WS cell size 0=A'/2m3L . Hakonen
et al. do not specify at which temperature this value for
Qi/0 holds, but since precise measurements are very dif-
ficult for T/T, &0.8, we assume that the above formula
for Qi holds for T/T, &0.8. Then, using LD ——8.5 pm,
we obtain Qi =2.1%, which can be compared with
theoretical values for different vortices listed in Table II.

From Table II it seems that none of the investigated
vortices explains the data, although values of Ri and Qi
for the SV analytic vortex are somewhat closer to the ex-
perimental values than those for the singular vortices.
This may mean that some other texture with lower free
energy can explain the observed NMR, or, assuming that
the SV analytic vortex is present, that the free-energy cal-

culations are off by about 10%. More accurate deter-
mination of the polar core free energy and small changes
in the values of the hydrodynamic parameters could lower
the free energy of the SV analytic vortex relative to singu-
lar vortices.

We propose measurements of the longitudinal NMR
response, R

II
and QII, and the temperature dependence of

Qi as a way to decide which of these vortices (if any) is
seen in the experiment. Table II shows that SV vortices
have 8 z very nearly equal to E. II, while the z-in-x and the
asymmetric vortex has R (considerably) smaller than

2R II. Also, the SV analytic vortex has small and nearly
temperature-independent Qi, in contrast to singular vor-
tices. It is also interesting to notice that all vortices ex-
cept the asymmetric vortex have an optimum trial wave
function with the parameter io =0, which means negligi-
ble P dependence. For the asymmetric vortex, it is essen-
tial to have ur&0 in order to obtain the lowest R; the
ty ical value of the ratio between f d x

I wg, cosP I
and

d x I(1—io)go
I

is 0.1.
%'e conclude by noting that 4m. vortices seem necessary

to obtain the large frequency shifts measured by Hakonen
et al. These shifts come only from wave functions that
are localized well within the core, where the effective po-
tential ( l„l,—1) in E—q. (16) is attractive. If the core is
small, however, then the gradient terms in Eq. (16) hinder
the localization of a spin wave. The 4m. vortices have
larger cores than the 2~ vortices (since their cell size is
~2 larger than the cell size of a 2m. vortex), and the wave
function can be localized in the core with relatively less
kinetic energy. We therefore expect a frequency shift for
a typical 4~ vortex to be larger than that for a typical 2m

vortex.
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