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Coulomb gap in 4f systems: One-body treatment. Application to 4f13 and 4fi configurations
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A potential depending on the f count is deduced from the Coulomb correlation energy. This is applied

to two cases in order to describe the Coulomb gap effects within the 4f systems.

It is generally accepted (since the last two MV confer-
ences") that the f electrons at low temperatures behave as
heavy quasiparticles with a definite k value. The intrasite
e-e interaction and the hybridization play an important role
in the 4f systems in such a way that the band models are
able to explain the electronic structures whenever these ef-
fects were included in the one-body Hamiltonians. Howev-
er, it is not well established which is the most appropriate
potential. This potential has to take into account that the
hybridization favors the hopping of f electrons which allows
for nonintegral values of the n~ numbers. So the 14 f orbi-
tals will suffer an energy shift proportional to the number of
empty levels, at other sites, available for hopping. ' The
main aim of this paper is to give a band model, including U
and V& effects, valid for all configurations [integral (n) and
nonintegral (x) f counts]. Two specific cases illustrate this
model: in the first one (Yb203) the U effects produce a
metal semiconductor transition, keeping the configuration
n =13; the second case (CeA12) corresponds to a metal
with x close to 1(0.95).

The hopping processes imply atomic fluctuations of nf
and thus, the intrasite correlation can be defined as the
square of the standard deviation around the average occupa-
tion numbers of electrons in the f orbitals3 "

14

5E '=TNUghn„, bn2 = (n2) —(n„)

where n„=N 'g-„](knjf„) ]2c-„c-„. Evaluating AEc'

in a similar way as in recent papers, one obtains AE '
= ~NU g, (n„) (1—(n„) ).

The fluctuations in n„produce a variational potential
85Ec'/Sx= Ug„'~(~ —(n„)) where x is equal to $„'4(n„).
This potential, so defined, does not satisfy the condition
previously mentioned at the beginning of the introduction
since it shifts all f orbitals in a similar amount of energy.
Therefore these orbitals could simultaneously cross EF,
violating the Luttinger theorem. This is avoided by mul-

tiplying each factor U(~ —(n„) ) by its corresponding spa-

tial projection operator ~P„) (P„~ and thus the potential
reads

14

U( r,x) = U X (~—(n„) ) ~P„) (P„~

Ubeing the Coulomb correlation energy.
The potential (1) is nonmuffin tin for compounds with an

unfilled 4f shell. Then, we have considered the standard
symmetrization of the non-muffin-tin effects, within the
augmented plane wave (APW) methods8 9 (the crystal struc-
tures analyzed below, advise the use of the SAP%

method'e). This symmetrization determines the linear com-
binations of 1=3 orbitals (P„) and the self-consistent (SC)
determination of the change density fixes the average occu-
pation numbers (n„). The potential U( r,x) lowers the
energy of the bands with (n„) greater than T and the oppo-

site occurs for (n„) less than 2. Thus the half occupation

((n„) = ~) becomes an unstable equilibrium point. There-

fore U( r,x) may modify the SC charge density of the oc-
cupied 4f orbitals and these possible variations could change
the local density potential of the Hb, „d[ VMT(pT( r ))] since
this depends on the whole density charge. We have fol-
lowed the standard construction of the MT potentials;
therefore, VMr moves down (up) the energies of all atomic
characters when x decreases (increases), compensating the
variations of the f charge density due to the effects of
U( r,x).

In summary, we introduce a potential U( r,x) which is
summed to VMr(pT( r )) and whose final pattern consists
in the splitting of the different spin bands according to the
occupation of its corresponding P„orbitals. This picture can
describe both the metal semiconductor (MS) transition and
the mixed valence in either metallic or semiconducting
phases. We have applied this model to Yb203 and CeA12
since these two cases are complementary in order to analyze
the consequences of the Coulomb gap. A MS transition oc-
curs in Yb203 and a metallic phase is the final state in
CeA12. Moreover, the unoccupied P„orbital per rare-earth
(RE) atom in the 4f'3 configuration coincides with the oc-
cupied orbital for the other case (CeA12).

The Xo. exchange potential depending on the charge den-
sity and the spin polarization has been used for Yb203. The
choice of the o. parameters required a previous calculation.
This was made, solving the radial Dirac equation within the
MT spheres and fitting this potential so that our results
coincided with the available experimental and theoretical
data"" [E(4f7~2) —E(5p3~2) =1.05 Ry, E(5p3~2) —E(5s)
= 2.60 Ry, E(1s) = —39.36 Ry, and our results with

AQ 1 .00 and nlrb =0.93 are 1 .03, 2.30, and —39.78 Ry,
respectivelyl.

Figures 1(a) and 1(b) show the metallic phase when one
considers U=O and this disappears when U=0.48 Ry,
which is the value calculated in a previous paper' in agree-
ment with the experimental measurements. '4 The SC calcu-
lation of the terms ](kn~ f„)]' reveals that the average oc-
cupation number (n„) for the orbital XYZ(Y2 —Y 2) is
very close to zero. This fixes the potential U( r,x) and the
symmetries of the unoccupied f bands in the calculation
corresponding to U=0.48 Ry [Fig. 1(c)]. The first band
not including U( r,x) (I t+AtH4+ ) is almost parabolic, not
showing any dominant I character. When U( r,x) is in-
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FIG. 1. (a) Schematic densities of states (DOS) without the po-
tential U(r, x). (b) DOS with U(r, x). (c) denoted spin-
down band structure (symmetry line 100) with U(r, x) potential.
———denotes spin-down conduction band without U( r,x). The
spin-up conduction band without U( r,x) is similar to the spin-
down one although slightly shifted ( —0.1 eV) and the spin-up band
structure with U(r, x) is equal to that with spin up without
U( r,x); therefore, these bands have been omitted in the drawing.
The crystalline structure, 1attice parameters, etc. , have been taken
from Gschneidner and Eyring (Ref. 15). The energies of the fig-
ures are relative to the average potential of the interstitial region:
—1.55 Ry in Yb203 and —1.22 Ry in CeA12.

Gunnarsson-Lunqvist potential with spin polarization. We
have followed a calculation procedure similar to that of
Hasegawa and Yanase for LaA12. ' The spin down band
structure of CeA12 [see Fig. 2(a)] corresponds strictly to the
4f ~ configuration which is equal to the LaA12 band struc-
ture and is in good concordance with the calculation of
Hasegawa and Yanase. The occupied f orbital in the atoms
of Ce is the XYZ, the same as the unoccupied one for
Yb203. This consideration affects the construction of the
U( r,x) potential and the symmetries of the occupied
bands. For the 4f'1 configuration, U( r,x) establishes a
relation among the parameters nf, U, and Ef (binding ener-
gy of the 4f band center respect to the EF) through the
equation nf = T——EF/U which is reasonably satisfied experi-

mentally. 22 '" Figure 2(b) shows the final form of the
[band structure of CeA12. The bands I'2552Xi, I'i252Xi,
and I 15AIXI located at 0.40 Ry have —62%, —34%, and—94%, respectively, of their charge in the XYZ orbital,
within the MT sphere of Ce. The calculation of the E~ has
been made by means of the single histogram procedure,
resulting nf equal to —0.95 and the binding energy Ef is
around —2.75 eV. This value is similar to the results of the
measurement of Croft eral. 23 (EF= —2.55 eV) and Allen
et al.22 (Ef= —2.80 eV). At the same time, the 4f count
(x) lies in the interval of the experimental data given by
Fuggle eral. 24 (from 0.8 up to 1.1). The hybridization of
the XYZ orbital with other extended orbitals [fundamentally
p(AI) and d(Ce)] appears from 0.37 up to 0.65 Ry. For
instance, the state A2 of the band I 252X~ located at 0.48 Ry
is composed by nf=0. 10, n3~=0.23, and n5&=0.20. If we

E(Ry)

O.ID

eluded, this band is hybridized with the unoccupied 4f
states obtaining two 1 I+5104+ bands and 15 narrow bands
slightly hybridized with the d orbital (Yb203 has 16 Yb
atoms per primitive cell" ). This picture is consistent with
the criticism of Andersson' to Mott's hybridization model,
with Martin's model in other Coulomb-gap processes, and
with some x-ray experiences. ' The group of the five bands
[without U(r, x) ] located between 0.66 and 0.68 Ry has the
Sd character. This character is substituted in these bands by
the 4f one (if U= 0.48 Ry) producing an energy shift of the
bands with Sd predominance, being located around 0.83 Ry.
The 2p-Sd gaps are —6 eV in Fig. 1(a) (when U=O Ry)
and 7.6 eV in Fig. 1(b); this last value is close to the Liii
experimental results of the Refs. 17 and 18 (7.8 eV). The
dispersion of the 4f charge by the hybridizations implies a
broadening ( —2.5 eV) of the unoccupied 4f band. For in-
stance, the band I"

~ 52Hq at 0.69 Ry presents the following
characteristics: nf =0.15 and the charge outside the muffin
tin spheres is 64%. This broadening is in agreement with
the model of the screened orbitals induced by the photoelec-
tron spectroscopy of Fuggle et al. '

The exchange and correlation potential used for the calcu-
lation of the electronic structure of CeA12 is the
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FIG. 2. (a) Spin-down band structure of CeA12, made with

U( r,x). (b) Spin-up band structure corresponding to the 4f' con-
figuration [with U(r, x)]. The value of the energy Ufor this com-
pound has been given by Fuggle et al. (Ref. 24) and its value is 6.4
eV. The crystalline structure and the lattice parameters are in Ref.
15 (see Buschow). The energies of the figures are relative to the
average potential of the interstitial region: —1.55 Ry in Yb203 and
—1.22 Ry in CeA12.
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define the f width as the energy interval including states
with nf ~ 0.1, then 5~ becomes approximately 1.5 eV which
is close to the 1.3 eV given by Allen et al.22

We have dealt with some aspects of the Coulomb-gap ef-
fects through these two band structures, allowing several
conclusions about the f delocalization in strong correlated
systems to be drawn. Firstly, each f state coherently mixes
with one and only one k (s, JI, or d) band state and, at the
same time, not all of these orbitals f hybridize in the same
way. Secondly, our potential model is consistent with the
picture of different shifts for each orbital according to its oc-
cupation suggested previously. ' 4 In addition, the final

pattern provided by U( r,x) agrees with the so-called
"three or four peaks" model (see Ref. 6) for metallic com-
poullds wltll ITlol'c tllall ollc f clcctroll pcl RE atonl. Evi-
dently, for f counts greater than 2 and mixed valence situa-
tions, the totally occupied f„orbitals will suffer, with
respect to the noninteracting system [without U( r,x)], an
energy shift of —U/2. The energy shift of the totally emp-
ty f„orbitals will be + U/2 and U(r, x) potential yields an
energy change proportional to ( z

—(n„) ) for average occu-
patloll llulTlbcrs (n„) bctwccll 0 and 1 (l.c., 0 & (n„) ( 1),
making possible the appearance of the three or four peaks
predicted by Martin.
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