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Metal-nonmetal transitions in doped silicon
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The metal-nonmetal transitions in doped silicon are studied with the use of Hubbard's tight-binding
model. We include in the calculation the variation in the dielectric constant and the wave function near
the transition region. The results show that the change induced by the variation in the dielectric function
approximately cancels the effect caused by the change in the effective wave function, This explains why all

the previous calculations of the critical concentration for the metal-nonmetal transition, which neglected
the variations in the dielectric constant and the wave function, could still yield good agreement with experi-
ment.

From the time Mott' first derived a simple criterion for
the metal-nonmetal (M-NM) transitions in condensed
matter, a wide variety of theoretical and experimental stud-
ies have been undertaken to investigate M-NM transitions
in heavily doped semiconductors. The critical concentra-
tion can be calculated theoretically starting either from the
metallic side3 or from the insulating side. 4 %hen the M-
NM transition is approached from the insulating side, the
Hubbard tight-binding Hamiltonian becomes a convenient
means for obtaining the critical concentration n, as demon-
strated by Berggren and by Edwards and Sienko. ' The
results obtained agree reasonably well with the experimental
data and the Mott criterion calculated starting from the me-
tallic side, even though a somewhat large deviation from the
Mott criterion has been reported recently. '

In the process of calculation, the dielectric constant and
the wave function are assumed to remain the same up to
the M-NM transition. However, it is known that the dielec-
tric constant increases sharply when the M-NM transition is
approached from the insulating side. " The possibility of a
connection between the M-NM transition and the dielectric
divergence was early recognized by Mott and Davis' and
studied by several investigators. "' In this respect, it is
not immediately apparent why the calculations of Refs. 6
and 7, which employ a constant dielectric function up to the
M-NM transition, are generally successful for a wide range
of materials. Indeed, the need for a calculation which used
a more realistic dielectric function had been pointed out by
Mott. 2 The dielectric function is not the only quantity
which varies substantially near the M-NM transition. The
ionization energy of a donor state in heavily doped semicon-
ductors, which directly determines the effective Bohr radius,
is expected to be quite different from that of a well isolated
impurity state. ' ' It is the aim of this paper to incorporate
these variations of the dielectric function and the wave
function in the calculation and investigate the possible phys-
ical consequences of the changes.

It it generally recognized that the Hubbard Hamiltonian
formulation describes a transition from an insulating to a
metallic state when the condition

WlU —I

is satisfied. '' Here 8'is the unperturbed bandwidth of an
array of one-electron states and U is the intradonor
Coulomb repulsion energy between a pair of electrons on
the same donor. For the critical value of W/U, we choose

where N is the number of conduction-band minima in k
space and o,p the numerical coefficient of the appropriate
linear combination of F~( r )@~( r ). In Si, the ground state
is the symmetrical combination, n~ = N '~ (X= 6). $~( r )
is the Bloch wave at the pth minimum and F~( r )
represents the simple hydrogenic envelope function:

F,( r ) = (~a„') "'exp—

with aH a realistic (isotropic) Bohr radius for the donor
ground state.

The hopping integral T between two adjacent orbitals is
defined as

T = „ld r W;"( r )H, WJ( r ) (4)

where H~ is the one-particle Hamiltonian including the
kinetic energy operator and the electron-donor interactions.
T is related to the unperturbed bandwidth via

w= » I Tl

where Z is the coordination number. The intradonor
Coulomb repulsion energy is given by

where eo is the background dielectric constant of the host
material with no or negligible donor concentration.

Using the isotropic donor wave function and the hydro-

Hubbard's value of 1.15.' In order to apply the above
condition to the M-NM transition in shallow donor states of
germanium and silicon, Berggren adopted the isotropic as-
sumption that the ellipsoidal wave function may be replaced
by a spherical isotropic charge distribution. Although, it is
now known that the anisotropy has a non-negligible effect
on the critical concentration, '6 we believe that the isotropic
envelope function is still sufficient to determine the effect
of the enhancement of the dielectric constant and of the
wave-function radius on the critical concentration, which is
the main purpose of this report. For the isotropic-
conduction-band case, the ground-state wave function for
the ith donor has the form'

N

+;(r)= X~~F~(r)4~(r)
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genic evelope function given by Eqs. (1) and (3), Berggren
obtained expressions for thc intradonor repulsion energy U
and thc hopping integral T:

U = ' J d r
&
d r, —X F,'( r t) —g F,'( r 2)P p 1 Nof]2 X p~l

2

T = d r q;"( r ) — „'7'—
2m" «0( r —R, (

e2
%', (r)

«0) r —K)[

reduction of the bandwidth by a factor of 0.82 relative to
that obtained by Bcrggrcn.

Calculated values of the critical concentration n, using the
above expressions are generally in good agrecment7 with thc
cxpcrlmcntal valUcs dcspltc scvcral slmpllfylng approxima-
tions made deriving the above results.

Here, we concern ourselves only with the fact that the
dielectric constant and the wave function vary substantially
near thc M-NM transition, instead of remaining constant as
assumed in the above calculations. In order to incorporate
the change in thc dielectric constant into the calculation, it
is necessary to replace the constant dielectric function by
spatially varying and concentration-dependent dielectric
function. For this purpose, wc employ a smoothly varying
effective dielectric function «(n, r), which has been pro-
posed and applied successfully for the calculation of the
donor polarization enhancement by Castner. '9 The effective
dielectric function without the central cell correction has thc
form

(q, ie, ) -{e, " e,)26QQII
'

«0[ r —K, f

I
«(n, r)

r'!=—exp ——+ 1-exp ——,(11)
r, «(n) I's

S = —X exp( —i p ~ K) 1+ +— exp-=1" -- R I 8'
W& I air 3 aHj

e IL = —X exp( —i p ~ R) 1+ exp—
aoaH X q QH QH

where R is the separation between don, or states. In obtain-
ing Eqs. (9) and (10), Berggren neglected terms for which
thc intcgrand is rapidly oscillating. For the evaluation of
the (1/W) $ exp( —i p R) term, we follow the scheme
used by Bhatt, '8 instead of using the method by Berggrcn
who obtained the value of 1/MN by simply squaring it and
neglecting all oscillating terms. Since ~T~, and not T, deter-
mines 8', thc above term is reduced to

)cos koX+ cos ko Y+ cos koZ (/3

which is approximately 0.33.'8 Here ko is the magnitude of
the wave vectors of the conduction valleys. This gives a

U= J~i
'~i d r td r 2[%';(r ~) (2 [4';( r 2) )2

«nr rl2

«(n, r)rt2

«5 8C «(n)
1

1

«(n )an 8 «0 16
——+ 8CD, , (12)

1

2

where C = [(aH/r, )' —4] ' and D = (2+ aH/r, )
In order to obtain the hopping energy, we first calculate

I., which is given as follows after some manipulation.

where 47rr n/3= 1, and «(n ) is the static dielectric constant
with a donoI' conccntl'ation of r/. Thc )Ustiflcatlon fol Using
this effective dielectric function for a donor system has been
amply discussed by Castner. «(n) has been measured in
silicon for various donors by Castner and his co-workcrs9
and also for I' by Hcss eI: al. "

With thc concentration-dependent spatial dlclcctl lc fUnc-
tion properly defined, we now proceed to calculate U and 7".

Calculations of U and T can be carried out in a somewhat
involved but quite similar way to thc case with a constant
dielectric function. 620 The intradonor repulsion energy is
given by

L= J d r e,'(r) ' q, (r)
«(n, r)[r -K, )

I e2= —Xexp( —ip K) J drF (r. )— Pq(r)
«(n, r ) i r —Kji

1 «(n) R «(n) t 2R ~an 1 R—$ exp( —i p R) ~2K' —I exP ——+ El I + 2 +1+ exp
«(n)aH N fs &0 fs ~s Q~ QH
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TABLE I. Critical concentrations n, and the constants used in the calculation.

Host
donor As

aH(0)'

n, b (theory)

yg,
' (theory)

n, (experiment)

11.4

16.6 A

3.0x101s cm

2.8x101s cm

3.0x101s cm

11.4

39x101s cm

3.6x101s crn

3.5x10" cm

10&s cm
—3 e

14.1 A

4.9x101s crn

4.8x101s cm

x 101s cm 3d

8.5»01s cm-"

'From Ref. 7.
bCalculation with constant eo and aH(0).
'Present calculation.

dFrom Ref. '9.
eFrorn Ref. 8.
fFrom Ref. 22.

Now T is given by

T= —E(n)S —L

Here E(n ) is the concentration-dependent donor binding
energy to be determined variationally below, and S is de-
fined in Eq. (9).

Before calculating the critical concentration n, using the
above expressions, we now consider the variation of the
wave function near the M-NM transition.

Thc wave funct1on of a dono1 state 1s known to vary sub-
stantially when the donor concentration approaches the criti-
cal value for the M-NM transition. '4 ' This variation can
be conveniently represented in our formulation by replacing
the constant aH by a donor concentration-dependent aH(n ).
We obtain a~(n) using the variational method. For the
variational calculation, we use the isotropic envelope func-
tion,

%'[r,aH(n ) ] = [rrapg(n )'] '~'exp[ —r/aH(n ) ]

and the relation E(n) = {O~ H~~%') and minimize E(n)
with respect to aH(n). ' Here H~ is the one-particle Hamil-
tonian with the effective dielectric function «(n, r). The
E(n) obtained in this method is a single-valley result.
However, we do not try to include the many-valley effect in
E(n) and aH(n), because the many-valley correction ob-
tained by Castner in Ref. 19 is rather small and does not
change the essential physical picture of our calculations.
For a more precise determination of E(n) including the
many-valley effect, we refer to Ref. 15.

We have calculated n, for Sb, P, and As donors in silicon
using the above expressions. ' The results obtained and the
constants used 1A thc calculation arc g1vcn and compared to
experimental resultss 2 in Table I. As we can sce from
the table, the results from the present calculation are in
reasonable agreement with those obtained using the con-
stant dielectric constant and wave functions. In Fig. I, we
plot U and 8'as functions of the donor concentration for Sb
doped silicon. We observe that, although the behavior of U
and 8'in the present calculation is quite different from that
with constant «o and aH(0), the critical concentration n,
does not change much from the value obtained with ~o and
aH(0). To identify the effects caused by variations of «(n )
and aH(n) more clearly, in Fig. 2 we have considered the

changes in «(n) and a~(n) separately. When we allow
«(n) to vary while keeping air(n ) equal to aH(0), we find
that n, shifts toward the higher concentration. This shift
comes from the fact that the reduction in T due to the
enhancement of the dielectric function will be larger than
that of U. On the other hand, if we allow aH(n) to vary,
while keeping «(n, r) equal to «o, n, moves toward a lower
value. This is due to the fact that a larger Bohr radius
causes a larger overlap and, consequently, rapid broadening
of the bands. When these two effects are combined togeth-
er, the resulting critical concentration does not differ much
from the original value, as shown in Fig. 1. This fact ex-
plains clearly why all the previous calculations, which
neglected the divergence and change in the wave function,
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FIG. 1. Variations of the intradonor repulsion energy U and the
bandwidth 8' as functions of the donor concentration when the
donors are assumed to have a simple cubic structure. U has been
multiplied by 1.15 so that the critical concentration n, may bc ob-
tained directly from the graph. The concentration vrhere the two
curves cross corresponds to the critical concentration. The solid linc
~as obtained using ~(n) and a~(n), awhile the dotted line relates to
eo and a~(0).
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FIG. 2. Critical concentration as a function of the dielectric con-
stant and the wave function considered separately. The solid line

was obtained using e(n) and aH(n ), while the dotted line relates to

60 and aH(n ). The dashed line is the result for a&(0) and e(n ).

yielded essentially correct results.
Recently, a qualitative estimate of the change caused by

the dielectric constant enhancement has been made by Mott
and Davies. By employing the Wigner-Seitz method and a
simplified spatially varying dielectric function, they obtained
a small shift of n, toward a lower value upon inclusion of
the dielectric enhancement, which is in agreement with our
calculation. Another recent calculation on the critical con-
centration by Bhatt and Rice'5 also includes the dielectric
and wave-function variations through a variational calcula-
tion of the Schrodinger equation. However, since the
dielectric function does not appear explicitly in their calcula-
tion, their calculation may not be directly comparable to our
calculation.

In conclusion, we have presented a theory for the M-NM
transition in heavily doped semiconductors which incor-
porates the concentration dependency of the static dielectric
constant and the wave function. Even though our theory
does not include the donor randomness or the central cell
correction, and employs an oversimplified wave function, it
gives a plausible account of the physics involved. It is
shown that the change induced by varying the dielectric con-
stant approximately cancels the effect caused by the varying
effective Bohr radius, thus explaining why a simple theory
with constant Bohr radius and dielectric constant should
give essentially correct result.
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