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We use curved-space polytope lattices to model the defect-free regions of amorphous semiconductors. A
particular structural feature, a channeling axis associated with a local screw symmetry, is suggested by the
polytope model and can be found in previous amorphous network models. Its presence implies electronic
eigenstates with phase coherence over many bond lengths. We present a ‘‘band structure’’ for amorphous

Si based on this coherence.

Structural experiments! indicate that tetrahedrally bonded
amorphous semiconductors preserve a high degree of
short-range order (SRO). Other experiments? which probe
the nature of band edge eigenstates in amorphous silicon
(a-Si) provide evidence that this structural SRO manifests
itself in a phase coherence reminiscent of Bloch phase
coherence in crystals. Analysis of optical and transport
data® shows that models which assume completely random
phases cannot account for both the form of the band tails
and the width of the exponential absorption tail in hydro-
genated a-Si. In this paper we consider SRO and its effect
on the eigenstates of a-Si. We use a-Si generically to
denote a -Si with or without hydrogenation.

At a minimum, SRO means the preservation of fourfold
coordination in the amorphous solid. We refer to this as
“weak” or ‘‘fourfold SRO.” These materials actually
preserve a stronger form of SRO in which chemical bond
lengths and, to a lesser extent, regular tetrahedral bond an-
gles are preserved; we denote this as ‘‘strong” or
“tetrahedral SRO.”” Cluster models incorporate the
tetrahedral SRO by accurately representing the structural re-
lationships among small groups of atoms (~ 5-8), while
approximating the remainder of the amorphous network
with a judiciously chosen set of boundary conditions. Com-
monly used boundary conditions include H termination,* ar-
tificial periodicity,® etc. Cluster models have been useful in
elucidating the connections between specific small structures
in the lattice (e.g., rings of bonds) and features in the elec-
tronic structure. We also classify the cluster Bethe lattice
technique® among the cluster models. By the nature of their
construction neither the Bethe lattice nor the cluster models
can address the possibility of structural coherence among
larger groups of atoms, which is the feature we study in this
paper. Another class of models, the network type,’ pro-
duces large-scale structures (several hundred atoms) con-
structed to obey the requirements of ‘‘fourfold SRO.”” For
the first few neighbors these models give a good representa-
tion of actual amorphous radial distribution functions.
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Therefore, network models have been used extensively in
the study of electronic and vibrational states of amorphous
materials.!® Network models can represent averaged struc-
tural properties, but do not provide a starting point for an
investigation of long-range structural coherence. First, they
assume that strains and other deviations from ‘‘tetrahedral
SRO’’ are homogeneously distributed throughout the lattice.
Small angle scattering® demonstrates that strain is not uni-
formly distributed, but is more likely to be concentrated in
defect regions. We infer that the intervening network obeys
the rules of strong SRO almost rigidly, particularly for hy-
drogenated a-Si.!° Second, the network models are not
built with the intention of incorporating long-range structur-
al coherence in any systematic way, and structural correla-
tions at large separations are not considered. There is in-
creasing evidence that such long-range correlations exist in
disordered systems,!! and we will show later that they prob-
ably exist in the network models as well.

There is a new, third class of structural models for amor-
phous semiconductors.!? These are called “‘polytopes’ and
are uniquely suited as models of possible long-range struc-
tural correlations. Polytopes,'® regular tilings of positively
curved three-dimensional (3D) space, have recently proven
useful in the study of metallic glasses and cholesteric liquid
crystals.!* Several of the polytopes are reasonable structural
models insofar as they contain only fourfold coordinated lat-
tice points and have reasonable ring sizes (5 and 6). The
curvature of the space permits the polytopes to have perfect
““tetrahedral SRO”’ and complete long-range order as well.
This ideal order is representative of approximate long-range
structural coherence in the real amorphous solid; we
demonstrate an explicit example for a-Si below. We also
describe the symmetries associated with this long-range or-
der. From these we uncover a family of symmetry quantum
numbers which may be used to label the phase coherence of
eigenstates resulting from long-range structural coherence.
We show such a classification of electronic eigenstates for
a-Si below, and demonstrate the strong analogy to the
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momentum labeling ‘‘k>’ for eigenstates in crystals. Of
course, no model in curved space can provide a complete
representation of the actual flat space amorphous network.
However, the curvature of the polytope space is fairly small
and up to about 100 lattice points of the polytope can be
mapped into flat space with only small distortions.!? This
suggests that we might expect long-range structural coher-
ence in amorphous solids in clusters of about 100 atoms; a
previous model of the electronic properties of a-Si has as-
sumed such clusters with some residual order.!> Also, since
the polytopes have perfect order, well characterized defects
(e.g., disclinations) can be introduced,!?'* which may pro-
vide the starting point for a model for the interface between
neighboring clusters each with some internal order.

We turn now to a specific polytope that is representative
of an actual tetrahedrally bonded solid. We choose the 240
atom polytope generated by the decoration of (3,3,5), the
regular packing of tetrahedra in curved three-dimensional
space,!? which bears the same relation to (3,3,5) as the dia-
mond lattice bears to the fcc crystal structure. Polytope 240
contains several features which make it desirable as a model
of a-Si. First, it has a reasonable atomic density, compar-
able to that of crystal Si and of the highest quality a-Si.
Second, it contains all sixfold rings; the more successful
network type models contain a large number of sixfold
rings.” The shape of these rings is a distortion of the classic
‘““boat’’ type. Consequently, clusters from polytope 240,
when examined in Euclidean space, have a rather ‘‘disor-
dered’’ appearance. It has not been previously pointed out
that despite this apparent ‘‘disorder,”’ the lattice contains a
high degree of long-range order. Around one axis polytope
240 has a threefold symmetry rotation and a sixfold screw
axis,!® ie., (Ry,R,)=(2m/6,2m/6), around another axis
there is a tenfold screw axis ((Ry,R;,) = (27/10,27/10)).
Around a third axis, polytope 240 has another symmetry
which is of particular interest to us: a unique compound ro-
tation (Ry,R,)=(27/30,2wx3F). Figure 1 shows the
configuration of the Si atoms around the core region of the
30/11 axis. This axis passes through the center of a series
of sixfold rings which form an open path through the po-
lytope similar to a channeling direction in a semiconductor
crystal. This path may also be described as a triplet of
(110)-like chains of atoms which are bonded together and
twisted around each other. One of these chains has been

FIG. 1. The local bonding arrangement of Si atoms around the
30/11 channeling axis. One of the (110) chains is shown dashed.
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dashed in Fig. 1. Model construction demonstrates that the
local strains are low, suggesting that this configuration is lo-
cally a low-energy state of the a-Si lattice. The possibility of
channeling paths in @ -Si is implicit in previous work,!” and
these open paths can be discerned across the entire width of
handbuilt network models of several hundred atoms.!®
While we could have focused our attention on the sixfold or
tenfold axes mentioned above, the 30/11 axis is a better
candidate for local order in a -Si since it actually occurs with
reasonable frequency in real structures. Polytope 240 thus
demonstrates its usefulness in enabling us to pick out and
identify a specific large-scale structure in the amorphous
network. In fact, the polytope tells us much more. Since
the channeling axis is associated with a specific 30/11 screw
symmetry, the electronic or vibrational eigenstates in the vi-
cinity of this axis, far from being random, maintain a very
specific long-range phase relation [similar to that illustrated
for a curved polymerlike chain in Ref. 10(b), Fig. 1] which
is labeled by the representations of the 30/11 symmetry
group. These labels are of the very simple angular momen-
tum type.

To demonstrate explicitly the organization which the
30/11 symmetry imposes on the eigenstates, we have com-
puted the electronic structure of the polytope using a Si
tight-binding Hamiltonian.'® If the channeling path were in-
finitely long, the angular momentum quantum number
would become a continuous variable analogous to a crystal
momentum k, and the eigenstates could be displayed in a
one-dimensional band diagram. This is the scheme used in
Fig. 2. This figure possesses many of the familiar features
of the electronic band structure of Si, including the ~1 eV
band gap, the — 12 eV wide valence band, and as shown
previously,!® the three-peaked valence band density of
states. The channeling axis on which these energy bands
are based is not infinite; in the ideal polytope lattice it closes
on itself after 30 twists. These boundary conditions pick out
30 ‘‘allowed” k values, shown as the points on Fig. 2.
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FIG. 2. The energy band structure of polytope 240. The solid
points show eigenvalues at the ‘‘allowed’” k values of the polytope.



5936

These are the actual eigenvalues of polytope 240. We ex-
pect that in the real amorphous network the typical channel-
ing axis will terminate after a comparable distance, generat-
ing a similar set of allowed k values. The general appear-
ance of Fig. 2 is similar to that of a surface band structure
with finite areas of allowed states surrounding energy gaps
in certain regions of the Brillouin zone. This is not surpris-
ing, since as mentioned above, the channeling axis onto
which the energy bands are projected may be viewed as a
(110) internal surface (folded so as to have perfect fourfold
coordination). To be specific, we predict that the energy
bands in Fig. 2 should be closely related to the (110) sur-
face energy bands along the (331) direction in reciprocal
space. The real significance of Fig. 2 is the fact that it can
be drawn at all. By identifying a quantum number k which
can label the electronic eigenstates and which has a physical
basis in the local structure of a-Si, we immediately impose
symmetries on any processes involving the eigenstates (e.g.,
vertical selection rules in optical absorption!?).

It was previously shown!® that the polytopes share with
the cluster type and network type models the ability to
predict some general properties (e.g., the density of states)
of the amorphous state. We have now shown the ability of
the polytope model to suggest and identify long-range
coherence (e.g., channeling structures) in apparently ran-
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dom networks. The existence of such large scale structural
coherence implies a long-range phase correlation of the
amorphous eigenstates. These phase correlations are classi-
fied according to the symmetry group of the polytope; this
classification is analogous to k in a crystal and allows us to
organize the energy eigenvalues into an energy band dia-
gram. The suggestion of phase correlations in the amor-
phous state calls into question the central assumption of
many interpretations of optical and transport data. For ex-
ample, we have recently shown!®® that the 30/11 symmetry
can have important matrix element effects on e;(w) near
the band threshold in a-Si. Some experiments (e.g., the
pressure dependence of the optical absorption?) have al-
ready suggested the possibility of a remnant of some crystal-
like phase coherence in a-Si; other experiments should be
possible to probe additional aspects of long-range order in
amorphous semiconductors.
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