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Shock-induced molecular excitation in solids
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Initiation of condensed explosives is studied on a molecular level with a quantum-mechanical cal-
culation of transition rates for shock-induced transitions between the low-lying internal molecular
normal-mode states in a molecular solid. It is assumed that the shock produces a distribution of
acoustic phonons wlHch become thcrmallzcd bcfoI'c any slgnlf leant number of Internal-mode pho-
nons is created. The calculation uses the Bom-Oppenheimer approximation in which the internal
modes constitute the fast subsystem and the acoustic modes the slow subsystem. A sample calcula-
tion is done for nitromethane. Generally speaking, the lowest-frcquency internal modes have the
fastest shock-induced transition (highesi rates), with the transition from the ground to first excited
state being the slowest. The transition rates increase by 6 to 10 orders of magnitude from the values
under normal conditions when nitromethane is subjected to shocks of 50 to 300 kbar. The transition
hfeilmcs aI'e coInpared wIth, and show some correlation wIth, the pressure-time crItlcal-shock Inltj.a-
tion data obtained by de Longueville, Fauquignon, and Moulard.

I. INTRODUCTION

The motivation for this work is to understand the early
phase of the initiation of condensed explosives on a
molecular level. For this purpose, nonradiative transition
rates are calculated for shoc¹induced transitions between
the low-lying internal-normal-mode states in a molecular
lattice in an attempt to understand how the energy from a
shock wave is transferred to the internal molecular modes.

PRstlnc and co-workers pointed out t4at bccausc IIlany
explosives have weak intermolecular bonds and strong co-
valent intramolecular bonds the average frequency of in-
tramolecular (internal-mode or optical-mode) vibrations
co& would be much higher than the average frequency of
IntcHIlolccular (lattice-1110dc 01 aeons'tlc-illodc) vlbrRtlofls

co, with the ratio coo/co, typically of the order of 10.'

Thus the immediate effect of a shock on such materials
would be to increase the temperature of the acoustic vi-
brational branch while leaving the optical branches at the
initial temperature. The relaxation time required before
the internal molecular temperature reaches a critical value
sufficient for the shock to grow to detonation would be
sufficiently long so as to be comparable to and indeed
determine the shock pulse durati. on required to produce
detonation at a given shock pressure. In othex' words, the
relaxation time for thermal equilibration of the internal
modes is the controlling factor in the initiation of reac-
tions. With the use of a simple classical mass and spring
model, Pastine et al. estimated that, at a shock tempera-
ture of 500 K, the lower hmit to the acoustic-optical re-
laxation time is of the order of several microseconds for
systcnis 1I1 which tllc Rcollstlc fl'cclucliclcs co Ric Rioillid
10' rad/sec and the optical-mode frequencies coo are

around 10' rad/sec. They also predicted that the relaxa-
tion times would be very sensitive functions of the fre-
quency ratio coo/co, with the relaxation times decreasing
by 4 orders of magnitude when the ratio decreases from
10 to 6. Thus the very lowest-frequency intramolecular

modes, which are typically bending rather than stretching
modes, should be the most important in the relaxation
PI'OCCSS.

Later, Toton developed a more refined quantum-
mechanical description which exploited the disparity be-
twccn thc 1ntraIDolccUlaf- Rnd intermolecular-IDodc vibra-
tional frequencies. The results of Toton's calculations
also pointed toward the importance of the lowest-
frequency intramolecular modes in the relaxation process.
Hclc wc dcvclop Toton s model, calculate sh()ck-1nduccd
internal-mode transition rates for nitromethane, and at-
tempt to relate our results to critical-shock initiation data
for nitromethane.

When a shock wave travels through a solid, lattice nor-
IDR1 IDodcs RI'c cxc1tcd to higher lcvcls, that 1s, RcoUst1c
p4otons RI'c clcatcd. Thc shock also compresses thc sol1d,
causing the frequency of the acoustic modes to increase.
The central issue is to calculate the rate at which
Rcollstlc-IIlodc cIlclgy ls transferred to IIlolcclllar llltcrI1R1 „

modes. For this purpose, it is assumed that the distribu-
tion of acoustic-mode energy relaxes to a thermal distribu-
tion in a time which is short compared to the time re-
quired to create a significant number of optical (internal-
mode) phonons. Thus one immediate effect of the shock
is to raise the temperature of the acoustic modes while
leaving the internal modes "cold." The nonradiative tran-
slt1on 1atcs between internal-mode lcvcls then give Rn cst1-
mate of the rate at which the internal modes relax to the
new, higheI' teIDperature. Since the transition rates de-
pend on the acoustic-mode frequencies, it will be neces-
sary to determine the change in frequency produced by
the shock. The change in average acoustic-mode frequen-
cy can be deduced approximately from the compression
by integrating the G(runeisen parameter along the shock
Hugoniot curve. Hence, in this model, the shock is
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characterized by two quantities: the compression and the
acoustic-mode temperature produced by the shock.

The assumption of rapid thermalization of the acoustic
modes is reasonable since internal-mode frequencies are
generally much higher than lattice-mode frequencies and
this mismatch should greatly reduce the rate of energy
transfer between lattice and internal modes compared to
the rate among lattice modes.

The work of Van Vleck shows that the acoustic modes
should thermalize on a picosecond time scale. Van Vleck
computes the rate of energy transfer between lattice oscil-
lators due to anharmonic perturbations when different
portions of the frequency spectrum are not in thermal
equilibrium. His result for the transition rate from level n
to level n —1 for a particular lattice oscillator when the
main body of lattice oscillations is at a temperature T is

W„„ i-nD(T/TD) vD,

where va is the Debye frequency, TD is the Debye tem-
perature, and D is a constant characteristic of the particu-
lar solid. The value of D is about 10 ' sec for typical
solids. Equation (1) is valid for T & TD. For n= 1,
T= 300 K, and vD -3X 10' Hz, Eq. (1) gives transition
lifetimes of the order of 10 ' sec.

Van Vleck used first-order perturbation theory to calcu-
late the transition rate. While this may be satisfactory in
the case of lattice relaxation, it will prove unsatisfactory
in most cases for lattice internal-mode relaxation since
internal-mode frequencies may be an order of magnitude
greater than lattice mode frequencies. For this reason, a
Born-Gppenheimer approximation analogous to the adia-
batic approximation which has been used in treating the
coupling of localized electronic states to lattice vibrations
is used here. In this formalism, the lattice modes are con-
sidered the slow subsystem and the internal modes are
considered the fast subsystem. The approximation im-
proves as the disparity between internal and lattice fre-
quencies increases. Lin describes a similar formalism.

III. CAI.CUI.ATION GF NONRADIATIVE
TRANSITION RATES

A. Nonadiabatic operatof

In the Born-Oppenheimer approximation the total
Hamiltonian H of the syste~ is separated in« two parts,
the adiabatic part A and the nonadiabatic part W. The
Born-Oppenheimer basis states are eigenfunctions of 4 .
The nonadiabatic part W can be considered as an interac-
tion which induces nonradiative transitions between sta-
t1onary Born-Oppenhcimcr states.

Let N.„bc thc acoustic-mode quantum numbc1 for a
mode of frequency co„. Let i be an internal-mode quan-
tum number for an initial internal-mode state and let f be
the quantum number for the final internal-mode state.
Let n denote the set of initial acoustic-mode quantum
numbers I n„I and let m denote the set of final acoustic-
mode quantum numbers I m„). Then the transition rate
from the initial to f1nal state produced by the nonadiabat-
ic interaction is obtained from first-order time-dependent
perturbation theory:

W(i, n f,m)= ) (f,m
)
W )i, n& ( 5(Ef E—~„) .

(2)

We are interested in the total transition rate assuming a
thermalized distribution of acoustic-mode levels, so we
must sum Eq. (2) over final acoustic states m and average
it over initial acoustic states n. The result is

W(i~f)= gP„) (f,m
(
W )i,n& ) 5(Ef E~„—),

(3)

P= 1/kT,

E„=g (n„+ ,' )fico„. —

When the slow subsystem is a collection of harmonic os-
cillators the matrix elements of the nonadiabatic operator
are

where g; and gf are internal-mode wave functions, P;„
and Pf are acoustic-mode wave functions, and q„are di-
Inensionless acoustic-mode normal coordinates such that
the kinetic energy operator has the form

82T= ——,
' glue„ (6)

~Ca.

If we assume that the reduced matrix elements

(7a)

1

aft =
2 ~]c

do not depend on the acoustic coordinates q„(our "Con-
don app1oxiinatloil ), tlleil we may write

(fm ~a~in&=y K l

+ M„f;(Qf

While the Condon approximation is often a good one in
dealing with electronic states, its validity is more ques-

where I'„ is the probability that an acoustic state with
quantum numbers In„I is realized. For a thermalized
distribution, this is a Boltzmann probability distribution:

P„=Q 'e (4a)

Q=ge
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tionable in this case. However, the simplification it pro-
duces is considerable, Similarly, it is often assumed that
the M„fc term in Eq. (8) can be neglected compared to the

term since the ~„f; term contains the second
dcrlvatlvc of tllc wave fl111ctlo11 witll Icspcct to thc slow
system coordinates. Because of the questionable validity
of this assumption and because dropping the term leads to
no appreciable simplification, we retain it.

nored terms which involve interactions with internal
modes other than qo and anharmonic terms which involve
internal modes alone of acoust1c IDodcs alone.

C. Bom-Oppenheimer separation

Following the Born-0ppenheimer prescription, we
separate the Hamiltonian, Eq. (14), into the fast part

B. Molecular lattice Hamiltonian

We write the Hamiltonian of a molecular lattice in the
following form:

3'
H = g —,'Mnu„+ V(uI, . . . ,u3„N),

n=l

WhCl C Qn 1S thC lfth Cartesian COOI dlnatC displaCCIIlent
from equihbrium, N is the total number of molecules, r is
the number of atoms per molecule, and M„ is the mass of
the ato ssoc ied it4 ih nth o d te. The pote-
tial energy V is a function of all the displacements. If we
develop V in a power series we obtain

AcooA = g —,
' fico~„,

V=+V „u~u„+ g VI „uiu u„+.. .(2) (3)

l, m, n

(10) The Born-Oppenheimer basis functions, therefore, are
products

There is no linear term in Eq. (10) since the u„are dis-
placements from equilibrium. Concentrating on the quad-
ratic term in Eq. (10), we may find a transformation to
real, dimensionless normal coordinates in the form

1/23'
j=1 n J

where Anj is a real, orthogonal matrix. In the new coordi-
nates, the Hamiltonian operator becomes

? I)H —g, ficoj qj —
2 + g Acji, q;qjqk+, (12)

j ~qj ijk

'p(qo, q. ) =4(qo, q. )4(q.),
where the first factor is a solution of the fast part

and the second factor is a solution of

c)

, +&,(q„) cts,„=E,„P,„.2 s n sn sn sn ~

The internal-mode quantum number is s and the collec-
tion of acoustic-mode quantum numbers is represented by
n, .

(3)

1,m, n MIMmMnCO;a) jCOk

(13)

D. Internal-mode (fast subsystem) solution

Equation (18) is a harmonic-oscillator equation which
we can reduce to standard form by making the change of
variable

Up to this point, we have made no distinction between lat-
tice and internal modes. Now, following Toton, we iso-
late one internal mode whose coordinate we designate qo.
Greek subscripts will designate acoustic-mode coordi-
nates. Then the Hamiltonian may be written in the fol-
lowing form:

Z =j3(qo —qo»

9o= —P

(21)

(22)

Then Eq. (18) becomes
I) I 2H = —,ficoo qo —

z + g —,fscu„q„I—
c)q o c)q

+qO g&nxqnq1, +qO g Cnqn+ ' '

ksA,

2——,
'

fu011oi —Z + —,ficoo(2A —p 8 )
I

(23)

Since we are interested in the interaction between the
internal Inode qo and t4e acoustic modes q„, wc have ig- w1th energy clgcnvRlucs



&,(q„)=(~+ ,' —)ficocp'

+(& ——,p & )Rcoo, s=0, 1,2, . . . .

The wave functions are

e, (eo e.) =~pe!""(Z),
whe1e g (Z) ls a normaltzed harmonic-oscillator eige11-
function. The factor v p normalizes the wave function as
a function of qo. Both the energy eigenvalues and the
wave functions depend parametrically on the acoustic
coordinates gK throUgh thc qURQtltlcs r4, 8, Rnd P.

cients of the power-series development of the potential en-

ergy of the crystal. In particular, we write C„and 8„1 in

the following suggestive forms:

(29)

~$0~160 PfK (3)

(M(M~M„)'i
~&pill

~X M ~ (cogo~1)'

E. Equilibrium acoustic norrnsl coordinates

Thc cqU111brlUID RcoUstlc QoIIH81 coordinates RIc dctcI-
mined by the energy eigenvalues, Eq. (24), which act as ef-
fective potentials for the acoustic-wave equation. The
equilibrium c'oordinates are derived in Appendix A and

the result [Eq. (A3)j is

(26)

where q„, is the equilibrium value of coordinate q„when
the intem81 IDOCIC 1S 1Q StatC 5.

We may substitute the wave functions, Eq. (25), into
Eqs. (7a) and (7b) to obtain the nonadiabatic-operator-
reduced matrix elements W„~; and M„~; The c.alculation
is outlined in Appendix 8 and the results are given in Eqs.
(86) and (87). The matrix elements are functions of the

acoustic coordinates, but, in the spirit of the Condon ap-
proximation, we will assume that they are constants with

values obtained by substituting the equilibrium values of
the acoustic coordinates for the internal mode in the ini-

tial state E. IQ addition, we RssUIDc that thc third-orclcr
anharmonic corrections to the Hamiltonian, Eq. (14), are
small so that thc qURntitics 8,C +Q j. anal P= 1.

The results of Append1x 8 1nd1cate that the nonrad1a-

tive transition rates are nonzero only for nearest-neighbor

(i +i+1) a—nd next-nearest-neighbor (i ~i+2) transitions.
Of these, the nearest-neighbor transition rates typically
will be larger by many orders of magnitude, Thus from

Eqs. (86) and (87) we obtain

, ;=—[2(i+1)j'~
6)o

In Eqs. (30) and (32), M is the mass of a molecule and N
is the number of molecules. Since binding forces are not
long range, the coefficients Vt'~'„are significant only when

k, m, tt are nearly equal. Therefore, the triple sum has ef-
fectivdy the order of N terms. The orthogonal transfor-
mation coefficients AtJ are typically sinusoidal and pro-
portional to X '~ . Therefore, C„ is proportional to
XN ~ =X ~ . It is clear that the energy eigcnvalues
in Eq. (24) should be essentially independent of the size of
the system and so the quantity 8 appearing in Eq. (24)
and defined after Eq. (15) should be essentially indepen-
dent of N when 8 is evaluated for q„equal to the equili-

brium values q„,. For this to be true, we require 8„1 to be
proportional to X '. Then Eqs. (30) and (32) define aver-

age third-order coefficients V1„and V1„1.
Calculations for a linear diatomic chain indicate that,

for a rough approximation, we may set V1„1—f"'{r,)
where f(r) is a pair potential describing the intermolecu-
lar force and r, is the equilibrium molecular separation.

The sum appearing in Eq. (3) can be converted to an in-

tegral by several IDcthocls sUmIDRrlzcd by Pcrlln ln h1s I'c"

view article. One convenient method involves the use of
the integral representation of the 5 function. The result-

1Ilg translt10n I'RtC 1S

OQ

8'(i ~f)= Fi;(t)exp itt1y; t

+ QF„(t)b,„g; Sdt, —
K

(33a)

~„,„,= —"-[2(i+1)j'"a„„.
6)o

(28)
Fp(t)= g / W„J; f

F„(t)

„y;b,„y;E„(t)g W1g; 51';E1{t)

G. EstlH18tmg Go~81-mode snh8~olllc coupling
coefficients

Comparing Eqs. (13) and (14), we can obtain expres-

sions for C„and 8„1 in terms of the third-order coeffi-

+ g(~*„y;W1P+M„i;&1t;)5i;E (t)
KpA

+ (33b)



and where

cosh(ico„t + ,' P—fico„)
F„(t)=

2 sinh( ,' Pf—iso„)
(33c)

coupllIlg bctwccII R g1vc11 IIltcmal mode Rnd t11c Rcoustlc
modes. It is a function of the difference in acoustic coor-
dinate equilibrium values in the internal-mode state i
versus internal-mode state f:

E„(t)=F„(t) —,
' —coth( —,Irtco„),

S = g —,
'

coth( —,
'

pIricu„) h„g;, (33e)

Kfl 0Kf VKl (33f)

I. Approximate evaluation of the transition-rate integral

An approximate evaluation of the integral in Eq. (33a}
may be obtained by the method of steepest descents as
described by Perlin. The result is still somewhat unwiel-

dy so we make the further approximation that the sums
over the acoustic modes can be replaced by sums in which
the frequencies co„are replaced by some average frequency
co22. For convenience, we will refer to coD as the Debye
frequency since there is some evidence that the average
frequency determined from the lattice infrared absorption
spectrum correlates well with the Debye frequency deter-
mined by other methods, for example, from specific-heat
data.

In Eq. (33a), if we make the change of variable z =it,
then the transition-rate expression becomes

l ao

W(i ~f)= Fi; ( iz)es "d—z,l

In Eq. (33f), q„y and q„; are the equilibrium values of the
dimensionless acoustic normal coordinate q„when the
internal mode is in states f and i, respectively.

The quantity a denotes f'"{r,)/2. The quantities fI and

f2 are dimensionless numbers which we will set to 1/V 2
and 2, respectively. By combining these expressions with
the expressions for the nonadiabatic operator matrix ele-
ments [Eqs. (27) and (28)], the Huang-Rhys factor [Eq.
(40)], the equilibrium acoustic coordinates [Eq. (26)], and
Eq. (33b) we obtain (see Appendix C) the following ex-
pression for the nonradiative transition rate:

W(i ~f)=~2ncotI .exp[g (zp)]
1

P {fuoD)2
(43)

cxr [g(zp)]=
IP I+P

'
In I I'D

exp p +P —S, (44)

~fi Sp=8 [(i+1)5y;+I+i'; I]

Using Eqs. (29) and (31) as a guide, we can approximate
the coefficients C„and 8„2 as follows:

' I/2

C„= (41)
~N QCOI2COP

' 3/2f2~
¹oII')/cop

cosh(co~ + —,
'

pIrtco„)
g (z) =coy;z +g, k„y; —S .

2 sinh( —,
'

PIrtco„)
(3&)

X[(2i+1) (P S) +—4(2i+1)(P —S)

W{i~f)= 1 2'
IIi2 g "(Zp) F~ ( —izp)exp[g (zp)] . {36)

If we replace the acoustic frequencies co„by the single
average frequency coD, the equation g'(zp }=0 becomes

p =x sinh(coDzp+ 2 P~D },

At R sRddlc point zp, g (zp)=0. It ls caslly vcrlfIIcd that
g'(z) has many complex mots but precisely one real root.
Deforming the contour of integration to pass through the
real root zp, we obtain the approximate transition rate

' 1/2

+(2i+1)'P+4], (45)

IV. RELATION OF HUANG-RHYS FACTOR
TO INFRARED SPECTRUM

P (P2+&2)1/2

S =Spcoth( ,'PROD�) . —

For up transitions, the final state f=i + 1 so that
coy;=cop where cop is the internal-mode vibrational fre-
quency. For down transitions, f=i —1 so that
coy;= —cop. T is the temperature of the thermalized
acoustic modes.

So

sinh( —,
'

PIttcoD )

(38) A. Huang-Rhys factor related to moments of spectral
distribution

It was pointed out by Lax' that the Huang-Rhys factor
Sp is directly related to the moments of distribution of the
radlRtlvc absorption 01' cmtssion spccflllm. Flom tllc fll'st
moment we obtaIn

The din1enslonless quantity So, introduced by Huang and
Rhys, is a measure of the strength of the anharmonic
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where b,Q is the difference between the means of the
emission and absorption bands. Perlin calls AQ the
Stokes parameter. The second, third, and fourth moments
give

(co —co }/coD. Another distribution, quoted by Lax' as be-
ing due to Edgeworth, includes a sixth derivative:

o~—= ((ai —io) ) =roDSpcoth( —,
'
piru0D),

y3= 3
—[(So) cotll( 2 pflcoD)]

y4=—
&

—3 = [Socoth( —,Pfico~ )]
((CO —CO) ) 1

(49)

(50)

(51)

(55)

The distribution, Eq. (55), does not provide a significantly
better match for the higher moments.

he@=2(21n2}'/ o, (52)

The skewness y3 and kurtosis y4 are measures of the devi-
ation from a Gaussian distribution. If the distribution
were Gaussian, it would be possible to determine So by
measuring the full width at half maximum, b.co, since, in
this case,

D. Saddle-point approximation not good for radiative
transitions

By using the method of moments we have not found it
necessary to actually evaluate the integral for the spectral
band shape. This is fortunate since the saddle-point ap-
proximation which we used for the nonradiative transition
rates is not a good one for the radiative rates. This point
is discussed in Appendix D.

C. How to determine Huang-Rhys factor

It is practically impossible to determine experimentally
the moments of a typical infrared spectra band due to the
presence of noise. Besides the mean frequency, the width
at half maximum is about the only parameter which can
be measured with any degree of accuracy. However, it is
possible to relate the bandwidth and the Stokes parameter
since the relation to the higher moments is also known. A
band-shape function with arbitrary third and fourth mo-
ments as parameters is chosen and the moments are con-
strained to satisfy Eqs. (49)—(51). Then So can be deter-
mined from the bandwidth by finding the root of a tran-
scendental equation. In particular, the function

I(x)=$(x}—,P' '(x)+ P' '(x), (53)

where

P(x) =exp( ——,'x )~2m. (54)

is a normalized distribution with zero mean, unit standard
deviation, skewness y3, and excess y4. Now let
x =(co—co)/o and substitute for o, y3, and y4 from Eqs.
(49)—(51). If we then set I(x)=I(0)/2, we obtain an
equation which can be solved numerically f'or So, given

B. Spectral band shape not Gaussian

Unfortunately, we see by examining the expressions for
skewness and kurtosis [Eqs. (50} and (51)] that the devia-
tion from a Gaussian distribution is considerable if
So«1 which is the case for internal-mode vibrations.
Typical internal-mode frequencies lie in the range
500—2500 cm ' (10' —5X10' sec ') with typical in-
frared absorption bandwidths of 10—50 cm '. Typical
Debye frequencies are around 100 cm ' (2X 10' sec ' or
150 K). Thus hco/coD-0. 2 which implies, from Eq. (49),
that S- 2&1 and, therefore, if T) 75 K, that So( 2&1

This is in sharp contrast to the situation for electronic
transitions in I' centers where Ace-2000 —5000 cm ' so
that SO-20.

V. APPLICATION TO NITROMETHANE

A. Liquid versus crystalline nitromethane

In this section we apply the results of the preceding sec-
tions to the extensively studied and relatively simple con-
densed explosive material, nitromethane. One caveat is
necessary, however. Under normal conditions, ni-
tromethane is a liquid and even under the extreme condi-
tions characteristic of detonations it most likely retains
the structure of a liquid. " The previous results apply,
strictly speaking, to a material which has long-range
periodic structure. It is not clear what the absence of
such a structure would have on the predicted transition
rates. In order to make a direct comparison with the re-
sults to be presented it will be necessary to perform shock
experiments on solid nitromethane.

B. Parameters to be determined

In order to apply the transition rate formula, Eq. (43),
we need four parameters for a material. Two are charac-
teristic of the state of the shocked material: the Debye
frequency coD and the temperature T. Two are charac-
teristic of the internal mode whose transition rate is to be
determined: the vibration frequency coo and the Huang-
Rhys parameter So.

The Debye frequency is a function of compression
which, in turn, is directly related to the shock pressure via
the hugoniot relation. The internal-xnode vibrational fre-
quencies are only slightly affected by compression' so
that we can safely assume them to be constant.

C. Huang-Rhys factors for nitromethane

The variation of the Huang-Rhys factor So with
compression is not known. However, So depends both on
the acoustic frequencies and the displacement of acoustic
coordinate equilibrium positions. The way in which the
displacements change depends in detail on the anharmon-
ic part of the intermolecular forces. If we examine the ap-



TABLE I. Huang-Rhys parameters for some optically active internal modes of nitromethanc (CH3NOI). Bandwidths were mea-

sured from infrared absorption spectra obtained in a diamond-anvil cell at room temperature (295 K) Rnd pressures of the order of
5—18 kbar. Spectra obtained by J. W. Brasch, Jr., Naval Surface Weapons Center.

CH3 rocking parallel
to NO2 plane

C—N stretch
NG2 symmetric
bending
NO2 rocking perpendicular

to NO2 plane
NG2 rocking parallel

to NG2 plane

609

6.5+1.1
19+2.3

So [Eq. (53)]

1.47~ 10-'

1.01~10-'
7.3 y10-'

1.58~10-'

1.37~10—'

S0 [Eq. (55)]

1.39g10 ~

9.6 y10-'
6.9 X10-'

1.50~ 10-'

1.30@10-'

proximate expression for S~ given in Appe~di~ C [Eq.
(C2)] we see that So-a /nIII where a is the third-order
coefficient in the series expansion of the interparticle po-
tentials. A straightforward calculation would show a sub-
stantially different variation of So with compression for
(for example) a Morse potential as contrasted with a
power law (e.g., 6-12) potential. Measurements indicate
that bandwidths of infrared absorption bands increase
slightly with compression leading to the conclusion that
So has only a weak dependence on compression (at least
for nitromethane). In the absence of more definitive data
Rt thc prcscnt tiGlc wc will assume thRt So 1s constant.
Table I lists values for several optically active internal
modes of nitromethane. The values are calculated from
the bandwidths using the method described previously.
Two values of So are given corresponding to the two
slightly different representations of the band shape, Eqs.
(53) and (55). We should note here that the optically ac-
tive modes are a subset of the tiny fraction of modes
which have zero wave number out of the total of approxi-
mately Avogadro's number of internal modes.

The data from which So is calculated were obtained in
a diamond anvil cell at room temperature (295 K) and rel-
atively low pressures (5—18 kbar) by Brasch of the Naval
Surface Weapons Center. The nitromethane is in a solid
polycrystalline form under these conditions.

The values calculated for So are for a Debye frequency
of 2 X 10' rad/sec (106.2 cm ' or 152.7 K). It was deter-
mined that this is a reasonable value for the Debye fre-
quency at standard temperature and pressure by taking
the centroid of the low-frequency part of the infrared ab-
sorption spectrum of nitromethane.

and ron of 2X10' sec ' (this point is beyond the scale of
the graph). On the other hand, the NOI symmetric bend-
ing mode with about two-thirds the C—N stretching fre-
quency, 3 times the C—N stretch bandwidth, at 7 times
higher temperature and 2 times higher Debye frequency
has a transition rate of 10 sec ', 26 orders of magnitude
greater.
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D. Transition rates versus Debye frequency
and temperature

In Fig. 1 are the transition rates given by Eq. (43) for
the internal modes listed in Table I using the values of So
glvcII 111 tllc Ilcxt. to last colunlll of tllc table. Tllc tI'Rllsl-

tion rate is plotted as a function of ron for 300 K (solid
curves) and for 2100 K (dashed curves). The most notice-
able fcatul'c of thc curves 18 tllc 1Rrgc varlatloll 111 traIlsl-
tion rates with relatively small changes in &00, roD, and T.
The C—N stretching mode, with a frequency of
1.74X 10 sec has a ground to first excited state transi-
tion rate of about 10 sec at a temperature of 300 K

DEBYE FREQUENCY D [16IS'i4/sec)

FIG. 1. Transition rates vs Debye frequency for several inter-
nal modes of nitromethane. Solid curves for T=300 K, dashed
curves for T=2100 K.



One conclusion to be dIawn from Fig. l is that energy
is initially transferred most rapidly into the lowest-
frequency internal mode, NO2 rocking parallel to the NO&

plane at 485 cm . This is not to say that there are not
other internal modes into which energy is transferred
more rapidly since we can survey here only the optically
active modes, There are many internal modes with
nonzero wave number which are not optically active and
about which we presently have no transition rate informa-
tion. We are discounting the NOz symmetric bending
mode since the calculated large transition rate is due to its
large apparent bandwidth and the band may actually be
the superposition of two individual bands.

Another conclusion to be drawn from Fig. 1 is that
small increases in temperature and compression (compres-
sion increases the Debye frequency) will lead to large in-
creases in the rate of energy transfer. We also note that
the relative importance of the internal modes in energy re-
laxation can change with changes in temperature and
compression. For example, at 300 K, the CH3 rocking
parallel to the NO2 plane (CH3 rock

~ ~
) has a significantly

lowcl cxcltRtlon late than thc NOz I'ocklng pcrpcIldlculaI'
to the NO2 plane (NO2 rock J. ), while at 2100 K the exci-
tation rates are comparable, with the CH3 rocking parallel
mode rate exceeding that of the NO& rocking perpendicu-
lar mode rate at the higher values of coD.

Inserting numerical values in Eq. (43), we discover that
8'~z 1s tyPically 10 times greater than 8'o&, and 8'z3 is
typically 40 times greater. Thus the relaxation time for
energy distribution among the low-lying internal levels is
determined by the ground to first excited state transition
rate, 8'01. We cannot say anything about transitions be-
tween levels lying neaI' the top of the potential well since
oUr Rnalys1s assumes 8 harITlonlc 1ntcrnal-mode potcntlal.
At this point we can only say that, if the transitions be-

tween levels close to dissociation are also rapid, then the
rate Wo~ would be the significant parameter determining
the overall dissociation rate. We may expect energy to be
redistributed between internal modes more rapidly than it
would be transferred between acoustic and internal modes.
Thus the overa11 internal-mode thermal relaxation time as
well as the overall dissociation rate should be controlled
by Wo~ for the fastest internal mode (which seems to be
the NO2 rocking parallel made in nitromethane).

Hardesty and Lysne" have calculated the thermodynamic
properties of shocked nitromethane along hugoniots for
initial pressure of 1 bar and initial temperatures of 244
298, and 373 K. If we numerically integrate their
Gruneisen-parameter data according to Eq. (57), we ob-
tain the results shown in the log-log plot of Fig. 2. It is
assumed that coao ——2)&10' sec '. From Fig. 2 we see
that above 5 kbar the curves are nearly linear indicat-
ing an appI'oximate power-law relation. The dashed lines
RI'c isothcrms show1ng thc shock temperature on each
hugoniot.

F. Transition rates along a hugoniot

Using the results shown in Fig. 2 we can plot the transi-
tion rates versus pressure along a hugoniot. This is done
in Fig. 3 for the hugoniot with initial temperature 298 K.
Figure 3 is a log-log plot showing very close to power-law
curves above 5 kbar.

Cx. Prcssure-time critical relation

If we disregard the NO2 symmetric bending mode, the
NOz rocking mode parallel to the NOz plane is the mode
whose transition rate is the most important in energy
transfer from the acoustic modes. If the transition rates
calculated from Eq. (43) are approximately correct and if
the transition rate for the NO2 rocking parallel mode is
the controlling factor ln the overall dissociation chain,
then the plot of transition rate versus shock pressure for

Tt 244K

)T; 288K

. 373KI

E. Relation of Debye frequency to compression

The relation of Debye frequency to compression can be
determined approximately by using the expression for the
Griincisen parameter which arises in the Debye model of
8 so11d,

13.4—

din&a
dlnu

lflU=exp — pdlnU
111UO

(57)

wheI'c 7 1s thc GrUnclscn parameter RQd U 1S thc spcc1f1c
volume. ' Integrating Eq. (56) we obtain

I

16& 16& 103 16~

PRESSURE (had

FIG. 2. Debye frequency of nitromethane as a function of
pressure along three shock Hugoniots with initial temperatures
of 244, 298, and 373 K.
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FIG. 3. Nonradiative (shock-induced) transition rates for
several internal modes of nitromethane plotted as a function of
shock pressure along the Hugoniot with initial temperature 298
K. The points marked DLFM are the critical-shock initiation
data obtained by de Longueville, Fauquignon, and Moulard.

H. Comparison with pressure-time critical initiation data

In this regard, de Long ueville, Fauquignon, and
Moulard (DLFM) reported critical initiation data in the
pressure-time plane for several condensed explosives in-
cluding nitromethane. ' We have included that data
shown as a short-dotted line segment labeled DLFM in
Fig. 3. The inverse of DLFM's time is plotted on the or-
dinate, 8'0&. It is interesting, though possibly coinciden-
tal, that the DLFM data, over its limited range, show
times that are approximately 6—7 times the NO2 rocking
parallel mode transition lifetimes at the corresponding
pressures and the curve segments show roughly the same
slope.

VI. CONCLUSION

We have presented a quantum-mechanical calculation
of the transition rates for shock-induced transitions be-
tween the low-lying internal molecular normal modes in a
molecular solid. We have assumed that the shock pro-

this mode provides a pressure-time criterion for initiation
of reactions. Thus it is clear that a shock of a given pres-
sure must be sustained for a time which is some multiple
(of order unity) of 8'z& in order for significant dissocia-
tion to occur.

duces a distribution of acoustic phonons which become
thermalized before any significant internal-mode phonons
are created. This assumption seems to have been justified
in the case of nitromethane in which the shortest
internal-mode transition lifetimes are of the order of
nanoseconds while lattice relaxation times determined
from Van Vleck's calculation are of the order of pi-
coseconds or less. In particular, at the von Neumann
spike pressure in nitromethane (about 200 kbar), the NO2
rocking (parallel to NO2 plane) mode has an excitation
time of about 4 nsec.

When we compared the excitation lifetimes with the
pressure-time critical initiation data of DLFM, we found
that the times were not inconsistent with the hypothesis
that the overall dissociation rate limiting factor is the re-
laxation time (8'p&') for transferring energy from the
acoustic modes to a limited number of internal molecular
modes (NOq rocking parallel to the NO2 plane in ni-
tromethane).

We must reiterate, however, that the numbers we have
obtained for nitromethane are subject to many uncertain-
ties, among them, uncertainties in determining the
Huang-Rhys factor So for each mode and the uncertainty
in a suitable choice of Debye frequency coD. Small
changes in both of these quantities lead to large changes
in the transition rates. Also, for the great majority of
modes which are not optically active, it is not possible to
determine So. Perhaps the results of neutron scattering
experiments may give useful information on these modes.
Other problems are the question of the validity of the
Condon approximation [Eq. (8)], the determination of the
anharmonic coupling coefficients [Eqs. (41) and (42)], the
validity of isolating one internal mode, neglecting the in-
teraction between internal modes, and the use of a single
frequency boa to characterize the acoustic spectrum. Fi-
nally, the shock data available for nitromethane is for the
liquid state whereas the calculations, strictly speaking, ap-
ply to the solid state. We hope that experimenters will be
encouraged to undertake shock experiments on solid ni-
tromethane in order to obtain both Hugoniot data and
critical initiation data. In order to apply the results
presented here to other solid explosives it is necessary that
the explosive be homogeneous and have an internal-mode
spectrum clearly distinguished and well separated from
the lattice spectrum.

Note added. Our attention has recently been drawn to
papers by Kono and Lin' in which the Born-
Oppenheimer approximation has been used to separate
high- and low-frequency vibrations in solids.
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APPENDIX A: ACOUSTIC-MODE WAVE
EQUATION APPROXIMATE SOLUTIONS

The internal-mode eigenvalues, Eq. (24), are the effec-
tive potentials which determine the acoustic-mode Born-
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Oppcnhejmer wave functions via Eq. (19). To obtain an
approximate solution, expand the eigenvalues ef in powers
of q„up to quadratic terms. This is a good approxima-
tion if the anharmonic corrections to the total Hamiltoni-
an are small so that B,C ~~ 1. Then

and, transforming the variable of integration from qo to
Z, the result is

d i(Ho)(Z)I y(HO)(Z) ~hl

dz
dZ Bg~

BE'g
=(s +—,)C„+lri(uKq„

and

=fico„5„)„(s+——,
'

)
qK qK 0

Thus the equilibrium acoustic coordinates are

(Al) + (lnvp)5f; .
()qK

Since f&i, the second term in Eq. (82) is zero. Differen-
tiating Eq. (20) we obtain

~o = 2p C„Z+2p QB„1qi —2p 7BC„.
()qK

q,=—(s+ —,
'

)

and the effective potential is

~S ~S('qKS)+ g 2 ~K(qK qKS)

(A3)
Using Eqs. (83), (82), and (7a) we obtain

, p C(fZ—i)
In Eq. (A4) we have ignored the off-diagonal quadratic
terms since they are small under our previous assump-
tions. These terms lead to mixing of the acoustic coordi-
nates and subsequent modifications of the acoustic fre-
quencies. In terms of the variables q„=q„—q„„ the
acollst1c-wave cqllatloll, Eq. (19), liccoIIlcs

g —,iris)„q„— +J, l)(ls„E,„(tp,„, —— (A5)

where

J,=(s+ ,' )fzcoo g —,'1)ia)~—„,. —

+2 p 'XB.~q), p'BC.—

where (f ~

Z(t)/BZ)
~

i ) and (f (
(()/()Z)

(
i ) are the usu-

al harmonic-oscillator matrix elements. These may be
evaluated most conveniently by writing Z and 8/BZ in
terms of the creation and annihilation operators, a and
a, and then using the raising and lowering properties of
these operators:

Thus the total-energy eigenvalues are

E,„=J,+ g(n„+ —,
'

))ri(o„.

(a —at),l
BZ 2

Using the result in Eq. (25) we obtain

P f Z P g
Z g0~

K

t
~
n) =v'n+1

~
n+1},

a ~n)=vn ~n —1}.
The end result is

%2 p gBK) qi. pBCK (&i—5f; 1 %+1—5f; +))
0 A,

+ -'p-"C
I [1 (1 —I)]'"5f,—5f —[(i.+1)(i +2)]'"5f (86)

A similar, though lengthier, calculation yields M„f;. Since the result has many terms, we give here only the lowest-order
teA11 involving powers and pioducts of C„and B„g.'

v2fuo„(vi 5f; 1
—v'i +15f;+1) .—

0
(87)
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Substitute Eq. (26) into Eq. (33f) and substitute the result into Eq. (40) to obtain the Huang-Rhys factor for a transi-
tion from state i to state f:

(f i )—So=
q 2 gC„.

2A QPg)

The sum contains N terms, so upon substituting Eq. (41) into (Cl) we obtain

(Cl)

So= zf i{f—&')'

Me@a

fi a
MQPO Mo

(C2)

In the following we set f= i + 1. Using Eqs. (27), (33f), (26), (41), (42), and (C2) we obt»n
2

=4 (i + l)(2i+1) So(ficoi)) 1+(2i+1)Sofi QPO 6)0
(C3)

The second term in large parentheses in Eq. (C3) arises from the second term in Eq. (27). In our application So is much
less than 1; therefore, we can omit the second term in Eq. (27). Similarly, we obtain

g I ~„,+, , I
'=2(f, /f, )(i'+ l)(2) +1)'So'(irsoD)'~D/~o, (C4)

2+ W„;+i;g Wi;4. ,hi =8(f2/f, ) (i+1)(2i+ l)So())icoD) cog)/o)o, (C5)

4(f2/f i——) (i+1)So()))cog)) o)i)/coo .

Substituting Eqs. (C3)—(C6) into Eq. {33b) we obtain the
result given in Eq. (45).

g'2" +"(z )=co "+'P n &1

where P=(P +x )'~. Substituting (D3) and (D4) in
(D2), we obtain

The integral for the spectral band shape is similar to
the nonradiative transition rate integral, Eq. (34), but with
the nonadiabatic operator replaced by the dipole moment
operator. The resulting band shape is given by

I(+co)= I e-+' '+s'")dt . (Dl)

The saddle-point approximation for the transition rate
is the first term in an asymptotic expansion in the sense
defined by Poincare. ' In order for the first term to be a
good approximation to the integI'al, the second term must
be much smaller. The expansion for an integral of the
form in Eq. (Dl) has been worked out by Hoare for the
case when the function g(z) and its derivatives are of the
order of N where X is the asymptotic expansion parame-
ter and is presumed large. ' In our case the relevant
asymptotic parameter is P, defined in Eq. {38)in the aver-
age acoustic frequency approximation. The ratio of the
second term in the asymptotic expansion to the first term
must be much less than 1. Using Hoare's result, we ob-
tain

1 5 y
8p 3 I' (DS)

p = —(cof;+o))/o)i), (D6)

where the positive sign is for emission and the negative
sign is for absorption at frequency co. The range of values
of P which are of interest (that is, values corresponding to
frequencies within the spectral band) is then

From (D5) we see that the second term in the expansion is
less than —,', the first term if IP I

is greater than 1, in-
dependently of the value of x [=So/sinh( ,'Pelican)] —We.
also see that the second term is less than —, the first term
if x is greater than 1. In fact the expansion is asymptotic
in the parameter P so that the approximation becomes
better if either x or P becomes large.

In the case of nonradiative transitions,
I p I & 1, so the

criterion is satisfied whatever the value of So. In fact
I P I

»1 is required for the Born-Oppenheimer approxi-
mation to be va11d.

For radiative transitions, however, the saddle-point ap-
proximation is not good. For radiative transitions,

g (4)(&

[g"(&o)]'
(D2)

In the average acoustic frequency approximation, the
derivatives of g are

(D3)

where AQ) 1s the bandwidth. Since So typically ls much
less than 1, both

I P I
and x will be much less than 1 so

that conditions (D5) cannot be satisfied for values of p
which correspond to frequencies lying within a spectral
band.
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