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Methane adsorbed on graphite. II. A model of the commensurate-incommensurate transitions
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A two-structure model is presented for the pressure- and temperature-driven commensurate-
incommensurate ( C-I) transitions of an adlayer of methane adsorbed on the basal plane of graphite.
The statistical-thermodynamic properties of the system are calculated from an empirical intermolec-

ular potential with substrate-mediated effects. Free-energy constructions predict transition tempera-
tures and pressures in agreement with experiment. The quantitative anharmonic finite-temperature
model demonstrates directly that the zero-temperature configuration is a V 3XW3 registered phase.
The C-I transitions of the model are first order, and the incommensurate phases (compressed and

expanded) are free-floating two-dimensional "solids" without domain walls. The model results are
consistent with existing static theories of "misfit dislocations" in that a transition to a free-floating
unwalled phase preempts the system from reaching the critical misfit necessary for the spontaneous
formation of domain walls.

atom to substrate potential, calculation of the tempera-
tures and pressures for the C-I transitions, reconciliation
of the two-structure model to a quasistatic version of the
Frank and van der Merwe theory, 7 and a discussion of the
results.

I. INTRODUCTION

II. INTERMOLECULAR POTENTIAL

In the preceding paper (I), it was shown that empirical
intermolecular potentials can be built by representing the
interaction of a CH4 molecule with the adlayer or with the
graphite as a superposition of Lennard-Jones [LJ(12-6)]
atom-atom pair potentials. The static lattice sum for a
reference molecule at rc with orientation 8 and P taken
over the lattice of the adlayer or substrate potential is

@(rc,e,p) =g g4„(o;t,ej r;; (n) ),
n i,j

where

4„(o,j,c,j., r J(n)) =4@,
& I [o,zlr J(n)]' —[o,z/r (1n)] j .

(2)

The radial distance r J(n) is the location of the jth atom in
the nth molecule of the adlayer (or substrate carbon atom)
relative to the ith atom of the reference molecule. The
parameters e;t and cr;t are the LJ(12-6) values for the par-
ticular atomic species i and j. Sets of proposed species-
dependent e,z and o,z combinations exist but our study
(paper I and Ref. 13) determined that only the modified
set of Severin and Tildesley' gave reasonable results for
the heights of rotational tunneling barriers' ' (see Table I
in the preceding paper I}. The calculations contained in
this report use these parameters.

III. SUBSTRATE-MEDIATED INTERACTIONS

Interactions making additional contributions to the
lateral energy of a physisorbed adlayer have been formal-

A registered ~3 X~3 adlayer on methane absorbed on
the basal plane of graphite has been observed to undergo
commensurate-incommensurate ( C I) transiti-ons. ' At
low temperatures, the methane adlayer is compressed off
registry by increasing the two-dimensonal (2D) spreading
pressure. At low pressure, the adlayer is thermally ex-
panded out of registry. This report describes a quantita-
tive anharmonic finite-temperature model of the C Itran--
sitions of a 2D solid of methane adsorbed on graphite
(CH+graphite). The statistical-thermodynamic properties
of the CH+graphite system, calculated by quantum-cell
theory (QCT} and quasiharmonic theory (QHT} of lattice
dynamics indicate that both C Itransitions -proceed from
the v 3XV3 registered phase to a floating 2D "solid"
phase without the formation of domain walls. The results
are in agreement with experiment and a model ' for
misfit dislocations.

Methane, when adsorbed on graphite, is between kryp-
ton and xenon in size. An adlayer of krypton must ex-
perience significant thermal expansion before the periodic
variations in the substrate potential sharply enhance the
dilation of the 2D lattice. i ' In contrast, an adlayer of
xenon must be compressed beyond the point of second-
layer growth before the lattice constant is reduced suffi-
ciently to allow v 3X~3 registry. This report shows that
the ground-state lattice constant of 2D solid methane is
within one-half percent of the registry length. The model
predicts directly, at low temperatures and pressures, the
stable structure to be an uncompressed W3X W3 register-
ed adlayer (or large islands). The following sections con-
tain descriptions of an empirical atom-atom intermolecu-
lar potential (CH4-CHq) and a molecule to substrate po-
tential, the role of substrate-mediated interactions,
statistical-mechanics methods of calculating the free ener-
gies of each of the two states (registered and floating) of
the 2D solid adlayer, Fourier decomposition of the ad-
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ized, and the results of a quantitative calculation of
thermodynamic properties compare well with experi-
ments. ' The largest of these, the MacLachlan interac-
tion for the energy of two adatoms both at height L above
the substrate and separated by distance r, is

C, l[ —, 4L—/(» +4L )]
[»(»2+4L 2)1/2]3

Cs2

(» +4L )' (3)

For methane, the parameters C, I ——4.360&10 K/A and
C, 2 ——2.301&&10 K/A are given by Rauber et al. ' Sur-
face dipoles for this system (CH4/graphite) are believed to
be small and are not included. The Axilrod-Teller-Muto
triple-dipole lntcractlon ls avallablc but quite small, lt ls
included in these calculations. The triple-dipole coeffi-
cient v was calculated by Margoliash et al. In the static
lattice sums of the preceding paper {I),the atom-atom in-
termolecular potential is used to establish potential-energy
minimums and barrier heights. In the dynamical finite-
temperature calculations of the present work, I use a
spherical molecule approximation and a LJ(12-6) inter-
molecular' potential with o.=3.6814 A and t /k& ——137 K.
The Boltzmann constant is kz. Above 20 —30 K, the
methane molecules are in a rotationally diffusing state.
This value of 0. is well within the range of the uncertain-
ties and gives the same lattice constant for a potential-
energy minimum as the atom-atom intern1olecular poten-
tial. The thermodynamic properties of the system are cal-
cUlatcd by two different nlcthods usillg this conlpositc po-
tential, i.e., the LJ(12-6) pair potential with the
MacLachlan term and the triple-dipole energy.

The statistical-thermodynamics properties of both
structures (registered and free-floating 2D solids) are cal-
culated using QHT (Ref. 25) of lattice dynamics (0—10
K) and QCT (Refs. 26 and 27) (0—60 K). It is from these
resulting properties that the sublimation line, free-energy
constructions, and C-I transitions are determined.

The details of the quasiharmonic theory and the
quantum-corrected cell theory of 2D triangular crystals
were given previously for LJ(12-6) systems. Applying
QHT to a monolayer of xenon on silver' (Xe/Ag) with
realistic pair potentials and substrate-mediated interac-
tions gives thermal properties in good agreement with ex-
perirnent at low temper'atures. At higher temperatures,
the quantum-corrected cell theory agrees quite well with
the same experiments and with Monte Carlo simula-
tions. The calculation of the thermal expansion of the
Xe/Ap system gives the lattice constant at 1 K within
0.01 A of experiment by QHT and at 80 K within 0.02 A
of experiment by quantum-corrected cell theory. Between
the two methods 20 crystals of the larger rare-gas atoms
are well described. For 20 neon and to a lesser extent ar-
gon, these methods are unable to account for the increas-
ing I'olc of quantufll-mechamcal cffccts and RnhaITnonlc1-

26, 27

It has been established that 2D solids with significant
quantum effects ar'c qu1 tc anharIllomc. Slncc cell

theories are well suited for anharmonic systems, the
quantum-cell model is a good approximation for the
CH4/graphite system. The deBocr parameter,
A=2I»III[o(me)'~ ], for methane is 0.245. This is inter-
mediate to neon (0.591) and argon (0.187). The
CH4/graphite system is well within the range where
quantum-mechanical considerations are important. The
CH4/graphite system's thermal properties are, to a good
approximation, derivable from QCT (Ref. 26) in the tem-
perature range from zero to near the triple-point melting.
As applied in this work, the quantum-cell model is non-
self-consistent and therefore does not include correlation
effects. The model is a collection of anharmonic Einstein
oscillators. The classical self-consistent cell model has
been treated by Barker. Since the differences in thermal
properties of two structures determine the transitions, the
small correlation entropy contributions of these calcula-
tions nearly cancel and the uncorrelated cell model is
reasonable. For 2D systems with parameters near those of
neon and argon, the leading term of the quantum-cell ap-
proximation is taken to be the anharmonicity. Under
these constraints, the QCT calculations are quite satisfac-
tory.

The thermodynamic properties of the adlayer are calcu-
1Rtcd 111 tllc QCT Rpproxllllatlo11 by dctcHIllnlng thc cllcl-
gy eigenvalues E„I of the 2D Schrodinger equation in po-
lar cooI'dinatcs

Z =$g;exp( E;/kII T), — (5)

with g; the degeneracy of the ith level. The Helmholtz
free energy per particle is

(6)

and the specific heat at constant area is

The spreading pressure P and the isothermal compressibil-
ity KT are calculated by a five-point numerical derivative
of the Helmholtz free energy with respect to the area.

In order to understand the C-I transitions in the
CH4/graphite system, the thermodynamic properties are
calculated for two structural states of the adlayer: (1) a

—d u (»)/d» +[(2m/fi )co(»)+(I —„' )/» ]u (»—)

=(2m/A )E„lu (»), (4)

where n and I are the energy and angular-momentum
quantum numbers, respectively. The cell potential co(») is
tllc CIIclllRIly Rvclagcd potcIltlal of tllc Illolcclllc lll thc
cell composed from 36 shells of its neighbors in the ad-
layer' and with substrate-mediated interactions. In Eq.
(4), u(»)=»'~ g(»), where P(») is the radial wave func-
tion. The cell potential co(») is quite anharmonic and Eq.
(4) is not analytically integrable. The differential equation
is written as a differ'ence equation and the eigenvalues are
determined in a vector space with a basis of plane waves.

The details of the numerical methods are outlined in
Ref. 26 including an efficient technique for treating the
singularity at the origin. The partition function sums
over the energy eigenvalues of Eq. (4) as follows:
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uniform free-floating 2D solid without domain walls
(mass-density waves or solitons) but with substrate effects
being the addition of the MacLachlan and triple-dipole in-
teractions, and (2) a solid adlayer constrained to the
V3XV 3 registered structure with the MacLachlan and
triple-dipole interactions included and with the periodic
substrate potential found by the lattice sums of the previ-
ous paper (I). Frcc-cIlcrgy coIlstl'llct1011s of tlMsc 'two

phases determine which is the stable structure for a given
temperature and spreading pressure. For a given dilation
of the lattice, the force constants and consequently the vi-
brational properties of the two structures are similar. The
small difference in the thermodynamic properties between
the two models approximates the effects of the periodic
substrate on this anharmonic finite-temperature system.

The first consideration in the study of thermal effects is
registry at low temperatures and pressures. %All this
model of the uncompressed adlayer at low temperatures
have the lattice constant I.o

——4.26 A required for the
~3)&v 3 registry to be observed'? The answer is yes. It is
interesting to note that unless substrate-mediated interac-
tions between molecules in the adlayer are included, the
system must be at relatively high temperatures and have
undclgonc s1zcablc thermal cxpRns10Il to 1cach registry.
Zero-point vibrations alone only expand the system half-
way from the 4.09-A lattice constant of the static sums
minimum, found in paper I, to the required registry dis-
taQCC.

V. THE FOURIER DECOMPOSITION
OF THE SUBSTRATE POTENTIAL

It is necessary in this calculation to express the periodic
substrate potential in analytic form. The quantitative re-
sults of paper I for the potential-energy map of an ad-
sorbed molecule to the basal plane of the graphite crystal
can be written as a Fourier-series expansion. Two features
are obtained from the expansion: (1) a functional form of
the potential to be added to the cell potential and (2) aver-
Rgcd barrier he1ght to oITlnidircctional translation Vo.

The substI'ate potential is expressed as a FourieI decom-
pos1tlon

The internal energy, heat capacity, Helmholtz free ener-
gy, entropy, and isothermal compressibility of the free-
floating solid model are calculated for a range of tempera-
tures at a given dilation of the lattice. The lattice dilation
is varied from a highly-compressed system to a greatly ex-
panded lattice. The equilibrium lattice constant for the
free-floating structure is determined by finding the lattice
dilation for which the Helm holtz free energy is a
minimum (see Fig. 1). The thermal properties along the
sublimation line are given in Table I and Figs. 2 and 3.
For the registered system (see Table II), the dilation is set
at the registry value and the properties are determined for
the full range of temperatures relevant to the stable 2D
solid. The differences in the thermodynamic properties of
these two structures relate directly to the effects of the
periodic substrate potential to thc adlayer structure.
There are vibrational modes not included in these thermo-
dynamic properties, e.g., vertical oscillations, Inolecular
rotational diffusion, and intramolecular vibrations. This
IIlodcl tRkcs Rs Rn Rpproxlmatlon that these modes~ Rl-

though contributing to the system totals, do not couple
with sufficient strength to make significant differences in
the translational C-I transition under discussion. This
Rpproxlmatlon 1s rcasonRblc slncc thc osc111Rtlon 1Q the
substrate potential is less than 1% of the heat of adsorp-
tion Rnd Rt 8 glvcIl lattlcc dllatlon thc v1bI'at1onal spcctr8
of the structures are nearly the same.

The calculation for the temperature-driven C Itransi--
tion is carried out for zero spreading pressure along the
sohd-vapor equlhbrium hne. The transition criterion is

1
l

1
l

1
l

I
l

I

Quantum Cell

~ QHT

V( r,z)= g V- (z)exp(jGJ" r),
j

GJ

(8) oct
4.42—

O

Which 1s lncorpoI'Rtcd 1Ilto thc c11culaI'ly Rvcragcd cell po-
tential co(r). In Eq. (8) r is the position vector in the
plane of the surface, z is the height of the molecule above
the surface and the IG I is a set of reciprocal-lattice vec-
tors of the graphite surface. The substrate potential given
in Eq. {8)is within 0.5-K agreement with the static lattice
sums of paper I throughout the surface plane. The lead-
1ng factol of thc Fouric1-scr1cs cxpaIlsloIl 1s vo ——19.25 K,
which is taken to be the effective barrier height to transla-
tloIl for thc Rdlaycr rather than 'thc 22-K maxlmuI11 o1 thc
11-K saddle-point values given by the lattice sums.

The height z of the adlayer above the graphite plane
is sct. at t11c cqulllbrlum value {zo=3.28 A) dctcrm1ncd 111

paper I. The vertical thermal expansion for similar sys-
tems is knmvn to be small and the calculations in this
work RI'c Rll fol z =zo.

l 1 l 1 I 1 l 1 I

lO 20 30 40 50
T (K)

FIG. 1. Equilibrium latt1ce coIlstaIlt aloIlg the sublimation
hnc for the CH+graphite system in the 2D floating solid struc-
ture. The symbols denote results of calculations with the ()
QCT and (6 ) QHT.
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TABLE I. Thermodynamic properties of the floating CH4/graphite system along the sublimation curve. Interactions include the
MacLachlan and triple dipole terms.

T (K) Lo (A) ECT (A /CV) U/%kg' C/%kg F/%kg' S/Xkgf

N/%king

5.0
10.0
15.0
20.0
25.0
30.0
35.0
40.0
45.0
50.0
55.0

4.2846
4.2854
4.2903
4.3006
4.3162
4.3364
4.3621
4.3938
4.4340
4.4876
4.5599

38.9678
39.2915
41.3459
45.8268
52.0770
55.5280
71.3644
86.5972

114.7321
164.8997
228.3972

—290.19061
—289.829 29
—287.62107
—282.89900
—276.071 24
—267.951 97
—257.670 32
—246.56048
—233.204 21
—217.543 56
—198.71594

0.002 63
0.20900
0.657 14
1.035 84
1.27695
1.414 50
1.495 03
1.53104
1.53705
1,51502
1.450 17

—290.19184
—290.25463
—290.850 14
—292.572 15
—295.718 35
—300.386 32
—306.586 88
—314.31302
—323.575 17
—334.430 29
—346.99968

0.00025
0.042 53
0.215 27
0.48366
0.785 88
1.081 14
1.397 62
1.69381
2.008 24
2.337 73
2.69607

—344.81602
—344.81602
—344.272 83
—342.563 77
—340.11113
—337.476 93
—332.482 29
—327.069 91
—318.76008
—307.213 63
—290.396 10

'Equilibrium lattice constant along the subhmation curve.
Isothermal compressibility at thc glvcn temperature and latt1cc constant.

'Internal energy given in units of kelvin.
~Heat capacity at constant area (/ =0), given in units of kelvin.
'Helrnholtz free energy given in units of kelvin.
Entropy given in units of kelvin.
Static lattlcc su111 pcx' particle glvcn 1Il units of kclvln.

taken to be the temperature T, for which the entropy
difference of the two structures is equal to the barrier
height Vo divided by the temperature. Table III shows
the results of such a comparison of the entropy difference
to the barrier height V(). The prediction is T,=41 K,
considering the empirical potential this is in fair agree-
ment with the experimental observation of 48 K.3 5 The
inclusion of communal entropy would improve the com-
parison.

To predict the condltlons for a pI'essUI'e-driven C-I
transition, the temperature was set at 5 K and the critical
spreading pressure was calculated from a free-energy con-
struction (chemical potential versus spreading pressure)
for the two models. The chemical potential p; of the ith
phase is

}M; =F~+PA,

where the I'; is the Helmholtz free energy of the ith
phase, P is the spreading pressure, and A is the area per
molecule for the appropriate structure. The intersection
of the two chemical potentials gives the critical spreading
pressure ((), at which the C-I transition takes place (see
Fig. 4}. This procedure could, of course, be carried out at
any appropriate temperature (see Fig. 5}. At 5 K, the crit-
ical spreading pressure is 10.6 K A . If the registered sys-
tem is subjected to this constant spreading pressure, it
compresses 0.01 A in the lattice constant and assumes an
incommensurate free-fioating 2D solid configuration.
This compression is consistent with a corresponding states

-I80

I
'

I
'

I220—
~ Quantum Cell

~ QHT

60—
e

20 i I & I

0 l0 20 30
T (K)

I i I

40 50

FIG. 2. Isothermal compressibility K& as a function of tem-
perature for the CH4/graphite system along the sublimation

line. The symbols denote results with (0}QCT and (A) QHT.

-220—
e/

-260— 0 X

U/Nk x:s—s r .~,-300 ~

C/Nk o +" F/Nk~~
X B

8/Nka
x~ I i i i I i I

0 l0 20 30 40 50
T {K)

FIG. 3. QCT results for the thermodynamic properties of the
2D floating solid structure and the CH4/graphite interactions.
The data are given in Table I. The scale for the Helmholtz free
energy (F/Nks} and the internal energy ( U/Nks) is on the
left-hand side in units of kelvin. The heat capacity at constant
area (4 =0) and the entropy (8/Xk~) are given on the right
hand side. A square box at 1 K is the Helmholtz free energy
calculated by the QHT of lattice dynamics.



TABLE II. Thermodynamic properties of the registered CH4/graphite system at the (/3X V 3 lattice constant. Interactions in-

clude the MacLachlan and triple dipole terms.

T (K) Lo' (A) Krb (A2/eV) U/%kg' C/%kg F/%kg' 5 /Wkg 4/Xk g ~

5.0
10.0
15.0
20.0
25.0
30.0
35.0
40.0
45.0
50.0
55.0

4.26
4.26
4.26
4.26
4.26
4.26
4.26
4.26
4.26
4.26
4.26

34.0771
34.2208
34.9368
35.7669
36.4765
37.0013
37.3237
37.5596
37.6171
37.5403
37.4593

—288.322 29
—288.076 35
—286.34797
—282.64640
—277.427 86
—271.201 96
—264.321 99
—257.01204
—249.413 81
—241.618 76
—233.687 60

0.001 21
0.15348
0.551 07
0.911 17
1.158 89
1.31986
1.42482
1.494 54
1.54177
1.57426
1.596 85

—288.322 81
—288.362 35
—288.796 84
—290.12121
—292.568 10
—296.167 58
-300.865 15
—306.580 37
—313.23021
—320.737 28
—329.03215

0.000 11
0.028 60
0.16326
0.37374
0.605 61
0.832 19
1.04409
1.23921
1.418 14
1.582 37
1.73354

—347.773 96
—347.773 96
—347.773 96
—347.773 96
—347.773 96
—347.773 96
—347.773 96
—347.773 96
—347.773 96
—347.773 96
—347.773 96

'Lattice constant for the ~3X~3 registered structure.
Isothermal compressibility at thc glvcn tcmpciaturc and lattice constant.
Internal cncrgy given ln Units of kelvin.

'Heat capacity at constant area given in units of kelvin.
'Hclmholtz free energy given in units of kelvin.
Entropy given in units of kelvin.

~Static lattice suIQ per particle given in units of kelvin.

scaling of data from krypton on graphite and silver.
Comparing the enthalpy difference between the two struc-
tures to the Vo of the substrate potential is within a factor
of 2 and error bars of 50%. A computational difficulty
occurs because the strong repulsion between molecules
UQdCf thCSC fC1Rt1VClg high SPfCRd1Qg PfCSSUfCS CRUSCS thC
root search of two narrowly intersecting curves to have
some imprecision. As a check on the method, a virtual
dilation of the lattice (negative spreading pressure) was
COQSldCfCd. IQ th1S CRSC~ thC 1TlOfC SIO%'IY VRQHQg RttI'RC-

tive intermolecular potential gave a lower pressure
( —1.36 K/A ) and an enthalpy 10% above Vo.

a misfit 5, relative to the substrate, sufficiently large
(5& 5, ) for the formation of domain walls. I estimate the
critical misfit 5, for this system by a quasistatic interpre-
tation of the theory of Frank and van der Merwe. For
a given dilation of the adlayer lattice, the critical misfit
satisfies the condition

Ip5, =2/m.

where lo=(aa /2VO)' with ~ as the force constant of
thC RdIRQCf Rt, thC glVCQ IRtt1CC dlIRt1OQ

I
'

I
'

j
'

j

-)OO—

The remaining question is whether the adlayer is
compressed or thermally expanded sufficiently to achieve

TABLE III. TemperatuI'e-driven C-I transition: Compar-
ison of the entropy dlffcicncc of thc two-stI'Ucturc Inodcl and
the avciagcd traQslatloIl barrier.

0.35
0.45
0.59
0.76

0.55
0.48
0.43
0.39

'The entropy difference between the registered structure (con-
strained to a fixed lattice constant I =4.26 A) and the Aoating
sohd structure thermally expanded but with zero spreading pres-
suic.
'The averaged thermal-energy barrier determined in the Fourier
decomposition ( Vo ——19.25 K) of the substrate potenti. al divided
by the temperature.

$ (K/A )

FIG. 4. Free-eneI'gy construction foI the pressure-driven C-I
transltloIl at 5 K. Thc chemical potcntla1 1Q units of kclvln ls
plotted with the 20 spreading pressure (K/A ). The cuI've a is
from tlM free-Aoatlllg phase data 811d b 18 from the ~3XV 3
registered phase. The intersection defines the critical spreading
pressure of the first-order C-I transition.



5870 JAMES M. PHILLIPS 29

5 d

TABLE IV. Comparison of the natural misfit with the criti-
cal misfit for the CH4/graphite system.

T (K) K (K/A )' b (A)" 5'

= const. T= Const.

1.0
5.0

40.0
45.0
50.0

774.31
769.06
389.44
289.47
181.26

4.2834
4.2846
4.3938
4.4340
4.4876

0.006
0.006
0.031
0.041
0.053

0.033
0.033
0.047
0.055
0.069

I I I i I

0 Tc 0
T(K) f (K/A)

FIG. 5. Schematic representation of the (a) temperature-
driven and the (b) pressure-driven C-I transitions. The horizon-

tal line represents the ~3X~3 structure lattice constant. The
curve represents the thermal expansion (a) and the lateral
compression (b) of the free-floating structure. Points t and f
represent the initial and final states of the transition. The calcu-
lations in this study follow the thermodynamic properties of the
two structures to find the critical temperature (a) or the critical
spreading pressure (b) of the C-I transition.

a= —,
' gV 4(RJ),

a is the lattice constant of the substrate registry positions,
and Vo is taken to be the leading factor of the Fourier
decomposition of the substrate potential. The misfit of
the free-floating model is 5=(b —a)/a where b is the lat-
tice constant of the adlayer as predicted by the QCT or
QHT calculation for a given temperature and spreading
pressure combination. In this quantitative manner, the
calculation includes the anharmonic nature of the inter-
molecular interactions and the finite temperatures of a
realistic system.

In both C Itransitions c-onsidered here, the misfit 5 is
always less than the critical misfit 5„suggesting that the
free-floating incommensurate phase may preempt the ap-
pearance of a domain-walled (light or heavy) incommen-
surate phase (see Table IV).

These methods and results do not generally conflict at
any point with previous theories. They do, however,
extend previous theories, through the use of QCT and

QHT, to a particular system (CH4/graphite) in a quantita-
tive anharmonic calculation for a full range of tempera-
tures. Since the domain walls of the CH4/'graphite system
should be far apart, I have not included the effects of wall

interactions or crossings. I calculate the Novaco-
McTague rotation of the adlayer to be 1.8' at 50 K. The
thermal fluctuations considered in this finite-temperature
model should be dominant in the free energies of the
stable phase. In other systems with different adlayer elas-
tic properties and substrate potential-energy variations,

'Force constant calculated by Eq. (10).
Equilibrium lattice constant of the unconstrained floating solid.

'Natural misfit 5 as defined in the text.
Critical misfit 6, calculated by Eq. (9).

the domain-wall structures could be the stable phase
within certain ranges of temperature and spreading pres-
sure. The detailed results for the thermodynamic proper-
ties make possible the application of the uniaxial model of
the Frank and van der Merwe criteria in a quasistatic
manner to obtain an estimate of the misfit necessary for
the spontaneous occurrence of domain walls. In light of
the 2D Pokrovsky and Talapov ' theory having the same
critical misfit as Frank and van der Merwe and an expect-
ed low wall density for a weak periodic substrate potential
such as the CH4/'graphite system, the estimate of the criti-
cal misfit should be a reasonable one.

VIII. DISCUSSION

Given the likely case that domain walls are not
present7 9 3 in the C Itransition -of the CH4/'graphite
system, several results are clear: (1) substrate-mediated
forces are sizeable and must be included to have results
consistent with a variety of experiments, (2) the low tem-
perature v 3 && V 3 registered phase configuration is
predicted as a natural consequence of the theory, (3) the
incommensurate phase expected to be a free-floating 2D
solid without domain walls, and (4) the C Itransitions, -

both pressure and temperature driven, are first-order tran-
sitions. The two-structures model of C Itransitions a-p-

plied to the CH4/'graphite system is generally suitable to
physisorbed systems that have a very small natural misfit
near the zero of temperature. Such systems must be
compressed by spreading pressure or thermally expanded
greatly before reaching the corresponding critical misfit
for domain-wall formation. If the periodic oscillations of
the substrate potential are small, the possibility exists that
the C-I transition is directly to an unwalled free-floating
2D solid.
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