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We consider the effect of interactions between two-level (four-level) tunneling states. We allow

the tunneling units to interact via a potential J(r) =+a /r", where a is a constant and r is the dis-

tance between the tunneling units, obtain the free energy F up to and including the second virial

coefficient, and neglect higher virial coefficients. We derive the density P(E) of the elementary ex-

citation energies E arising from F exactly for a random distribution of tunneling units. We obtain

that P(E)~E' "' " for low E. The specific heat C~~T' "' " and the thermal conductivity

a ~ T'"" ' " for low temperatures T such that the product ~C~ ~ T independent of n. In particu-

lar, for n =3 we find that P(E) is approximately constant for low E and that C~ ~ T and ~~ T for
low T. Our calculations also give a large T term in C~ and a somewhat flatter portion in ~ for
higher temperatures, both of these arising from the interacting tunneling units. The low- T dielectric

susceptibility P is predicted to have a —lnT term in it, provided that T) To, where To depends on

the tunneling matrix element and the interaction between a pair of near-neighbor tunneling units.
For T« To, both C~ and ~ are predicted to be proportional to exp( —const/T) and g approaches a
constant value.

I. INTRODUCTION

The low-temperature thermodynamic properties of tun-
neling states have received a great deal of interest recently.
The primary reason for this is that many different materi-
als exhibit a broad spectrum of low-energy excitations
which have been attributed to originate from tunneling
states. Such materials include glasses, ' amorphous
solids, and tunneling impurities in alkali halides. '

The low-temperature properties of glasses' have been
described in terms of two-level tunneling states, which are
characterized by an asymmetry energy e and a tunneling
energy b, . A constant density of states for the low-energy
excitations had to be postulated in order to obtain the ex-
perimentally observed results on the thermal conductivity
and the specific heat. It has been suggested that this con-
stant density of states arises from essentially isolated tun-
neling states. Its existence has not been justified from a
fundamental point of view and is one of the outstanding
problems in the theory of glasses.

Tunneling impurities in alkali halides have been ex-
plored in the limit of infinite dilution. ' It was found
that the impurities tunnel between a number of equivalent
directions of orientation determined by the host crystal
lattice and by the impurity potential. One such tunneling
impurity is, for example, the CN ion dissolved in vari-
ous alkali halides. ' Whereas in the case of infinite dilu-
tion it is expected that the tunneling impurities give rise
to the well-known Schottky anomaly in the low-
temperature specific heat, as the impurity concentration is
increased the density of states develops into a broad distri-
bution of low-energy excitations, somewhat similar to that
observed in glasses, as was demonstrated in recent experi-
ments on KBri „(CN )„.' '" This broad distribution
arises from the interactions between the tunneling units,
presumably in distinction to the broad distribution in

glasses, which has been attributed to essentially isolated
noninteracting tunneling states. The purpose of this paper
is to study the effect of interactions between the tunneling
units and to obtain the density of states of the elementary
excitations under certain idealized conditions outlined
below.

We consider a set of two-level and four-level tunneling
units which are characterized by a tunneling matrix ele-
ment b and interact via a potential J;I between tunneling
units at sites i and j. The interaction potential may, for
example, arise from either a strain-strain interaction' '
having a form JJ ——a (8,$)/rJ ", where r;J is the distance
between the tunneling units at sites i and j, and a (8,$) is
a function depending upon the polar angle 8 and the az-
imuthal angle P between the strain or electric dipole mo-
ments.

For simplicity, our calculations are done assuming that
JJ =+a/r;J ", where a is a constant and the plus and
minus signs have equal probabilities. In Appendix A we
show that the qualitative results for the density of states
are not changed by this assumption. Furthermore, we as-
sume that the interacting tunneling units are randomly
and uniformly distributed throughout the volume of the
solid and that there is no long-range order between the in-
teracting tunneling units. The absence of long-range or-
der can be qualitatively justified on the basis that (i) we
are dealing with a competing interaction potential with
equal probability for each sign of the potential, (ii) the
concentration of the tunneling units is sufficiently low,
and (iii) the transverse fields arising from the tunneling
matrix elements 5 inhibit the phase transition. The as-
sumption of no long-range order would probably not be
valid for a noncompeting potential, unless 5 is sufficient-
ly large.

Using the above assumptions we expand the free energy
into a virial expansion, keeping terms up to and including
the second virial coefficient and neglecting all higher-
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order contributions. Using this truncated free energy, we
obtain the density of states P (E) of the elementary excita-
tion energies E exactly for a fixed value of b, and for
JJ

——+a /r,
&

". We find that for very low energies,
P(E) ac E' "'/". In particular, when n =3, which is the
case for a strain-strain' ' or electric dipole interaction,
we find that P (E) ~ [1+3(E/6) + ]; thus P (E) is
approximately constant for low E. From the density of
states we calculate the low-temperature specific heat Cz,
the thermal conductivity ~, and the dielectric susceptibili-
ty X. We find that for low temperatures T, C~ ~ T'
(1+A2T ) and v~ T' " ' "(1—A3T ), where A2 and
A3 are positive constants. It is interesting to note that for
n =3 the leading term in Cz is proportional to T and the
leading term in ~ is proportional to T, not unlike the ex-
perimental observations in glasses. We also find that
there is a large excess T contribution to the specific heat
in addition to the usual Debye contribution, and also that
there is a shoulder, or flat portion, in the thermal conduc-
tivity because of the increased density of states with in-
creasing energy. The low-temperature dielectric constant
is predicted to have a —lnT dependence in it. All of these
results obtained are for low temperatures, but with T still
greater than some To, where To depends on both the in-
teraction between two near-neighbor tunneling units and

For T« To Cp and sc both become proportional to
exp( —const/T), and 7~const.

The contents of this paper is briefly as follows. In Sec.
II we derive the expression for the free energy and the
density of states for both the two-level and four-level in-

teracting tunneling units. We find that the density of
states has identical qualitative behavior for the two cases.
In Sec. III we derive the expression for the low-
temperature specific heat, the thermal conductivity, and
the dielectric constant.

II. DERIVATION OF FREE-ENERGY
AND THE DENSITY-OF-STATES

Hi = —~[[ri —~ioi ~ (2.1)

where the o's are the Pauli spin matrices. The
~

t ) and
~
t) represent the spin-up (right) and spin-down (left)

states. The last term in Eq. (2.1) allows tunneling between
the

~
t) and

~
J. ) states, and 5[ is the overlap energy due

to tunneling.
We now introduce a second two-level tunneling unit

and allow a pair interaction JJ between them. We assume
that if both tunneling units are in the same state (both

A. Free energy of the interacting tunneling units

In this subsection we calculate the free energy of the in-

teracting tunneling units up to the second virial coeffi-
cient. We consider a two-level tunneling unit with the
bottom of the two wells differing by an energy 2e, where e
is the asymmetry energy. Let the states of the system be
specified by

~

R ) and
~

L ) representing the states when
the tunneling unit is in the right and left wells, respective-
ly. With the use of the complete analogy between this
problem and the two-level spin- —,

'
system, the Hamiltoni-

an H~ for tunneling unit 1 is found to be'

right or left) the energy is lower (or possibly higher) by JJ.
compared with the case when they are in the opposite
states (one right, one left). The right and left states are
chosen arbitrarily. For a strain-strain or electric dipole
interaction we are dealing with a J;J which is on the aver-
age equally likely to be positive or negative. The Hamil-
tonian H[2 for the pair of two-level tunneling units 1 and
2 becomes

&1~1 &2o 2 ~1[rl ~2o 2 J12o 1[r2 (2.2)

By excluding the terms of the form oicrz we exclude
processes in which both units tunnel simultaneously.
Even though such terms may be important for the
dynamics of the system, here we are interested primarily
in the static properties.

For N tunneling units, the Hamiltonian becomes

(2.3)
27J

In Eq. (2.3) it is explicitly assumed that b,; and e; will
not be affected by the interaction JJ between the tunnel-

ing units. In a realistic physical situation this assumption
may not be valid' because a strong strain interaction be-
tween the units may distort the local environment at site E.

We next expand the free energy F into a virial expan-
sion, keeping terms only up to the second virial coeffi-
cient. We write

p(&)+p(2)+p(3)+. . . (2.4a)

2«+X«+ X«k+ ' ' ' l.~ ~ ~

&,J,k

where F'" is the contribution to the free energy from the
lth virial coefficient, and the angular backets ( )„indi-
cate a configurational average over all the random values
of JJ. f; represents the one-vertex terms, f/ represents
the two-vertex terms, and fJk represents the three-vertex
terms in the free energy. We will only keep the first two
terms in Eq. (2.4b), denoting these as the truncated free
energy F. We have

(2.4b)

PF[
"= —P g—(f; ),= g ( ln tr exp( PH; ) ), , —(2.5)

The expression for F' ' is somewhat more complicated
since we have to include all two-vertex contributions to
the free energy. We do this by expanding the free energy
into a cumulant expansion and resumming all two-vertex
terms. The result is

PF[ '= g( lntrexp( P—H&)—
—ln tr exp [ P(H; +HJ ) ] ), , —(2.7)

where H~ is given by Eq. (2.1) and HJ is given by a gen-
eralization of Eq. (2.2).

The four eigenvalues A,, (v= 1 to 4) of the H;J are ob-
tained by solving the 4)&4 matrix

where tr represents the trace, and H; is given in Eq. (2.1).
Equation (2.5) is readily evaluated to give

(2.6)
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with

—B;J. C;J.
(2.8)

—J"—e —e —(6 +5 )/2&J & J J
—(b, +b;)/2 J"—e +e. (2.9a)

4

(2.9b)

J)~+e; —e~
—(b,;+b,/ )/2

—(5;+h~ )/2 —J;i+e;+ei
(2.9c) 0

g(0) (J2 +4g2)1/2

(0) —Jjj
A3 =(0)

k4

+~ij

(J2 +4g2) 1/2

(2.10a}

(2.10b)

(2.10c)

(2.10d}

For b.;&A,i the four eigenvalues A, „' (v= 1 to 4) of Eqs.
(2.10}become

I,'( ———[Jj+(b,;+A,, ) ]'/'

A,2= —[J,~i+(iI(,; —b,i) ]'/

A3
——[J;,+(5;—h, )2]'/,

and

A4
——[J;,+(6;+6/) ]'/ .

We find that use of the eigenvalues A,„, i.e., b,;&b~, does
not change the qualitative result obtained for the low-
temperature thermal properties of the system.

Figure 1 shows the four eigenvalues of H;~ as a func-
tion of the interaction potential JJ. We note some in-
teresting results exhibited in this figure. For Ji ——0 the
energy difference between the ground state and first excit-
ed state, i.e., the excitation energy, has a gap of 2h. As
J/ increases, the excitation energy decreases and goes to
zero proportionally to 6 /J~~. for J(~ —+Do. This shows
that, whereas the noninteracting tunneling units have a
gap in their excitation energies, the interacting ones have
very-low-energy excitations, provided Jz is sufficiently

In principle, the eigenvalues of H;j can be obtained for
all e; and ei. We will, however, be interested in the limit
as E' Ej ~0, and 5;=Aj =h. This assumption limits
this paper to a consideration of two-level tunneling with
zero asymmetry energy and equal values of b, with a dis-
tribution of the interaction energy J;i. An extension of
our results to an assumed identically distributed. 6 is quite
straightforward. Similarly, the qualitative behavior of our
low- T results are unchanged by allowing the values of 5;
to be different at each site i, as will be seen below from
the four eigenvalues of Hj when i}(,;&hi. However, the
asymmetry energy e must remain zero for our results to
be valid, since otherwise the low-T specific heat becomes
proportional to exp( 2e/T). —

The four eigenvalues of Hz are, for positive Jz, in or-
der of increasing energies,

-6

-8
= —[J" +2

FIG. 1. Four eigenvalues of the Hamiltonian H~2 as a func-
tion of the interaction potential J;J between the pair of tunneling
states. We note that the difference between the two lowest
eigenvalues becomes smaller as J;J increases.

large. The physical meaning of this result is that for fixed
5, the strongly interacting pairs will mostly contribute to
the low-temperature thermodynamic properties of the
tunneling states. This shows that the interacting tunnel-
ing states will have a completely different excitation spec-
trum from a classical magnetic system (when spin waves
are neglected). In the latter, the elementary excitations
will have large energies for large Ji, whereas in the form-
er they will not. The understanding of the physics
presented in this paper is simpler if this important differ-
ence between the energies of the interacting pair of tunnel-
ing states and the interacting pair. without tunneling is
realized at the outset.

The density of the low-energy excitations depends on,
and is uniquely determined by, the probability distribution
of the J~'s. Using the eigenvalues, Eqs. (2.10), with Eq.
(2.7), we obtain, for @=0,

pri( '= g (In2I c—osh(pJ~&)+cosh[p(J;~+46 )' ] j

—2ln[2 cosh(Pb, )]},. (2.1 1)

We let the effective number of neighbors be zo, and as-
sume that all the J,j s have identical probability distribu-
tions; Eq. (2.11) then becomes
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PF—( '= ( in[cosh(PE+ )cosh(PE )]
2

as well as negative values of J. The use of the equation
E+ ——[(J +46, )' +J]/2 gives J=+(Ei b, —)/E+.

We let

where

—2 ln cosh(Pb, ) ), , (2.12)
A+ =[(J(+46, )'/ +J(]/2,
B~ =[(Jo+4h )'/ +Jo]/2,

(2.17a)

(2.17b)

E+ [(J,J——+46 )'/ +J;,]l2 . (2.13)

We note that E is one-half of the difference between
the ground-state and first-excited-state energies for posi-
tive JJ, and E+ is the same quantity for negative JJ. We
also remark that I' ' goes to zero in the limit as J'j~O,
as it should.

3 3ro r) lc—,— (2.14)

where c is the fractional concentration of the tunneling
states. c is assumed to be small compared to unity. We
also assume that the excluded volume due to the limita-
tion in the distance of closest approach of a near neighbor
is V& ——', mr& (—In .a r.ealistic case the excluded volume will

depend upon the lattice structure and will not be 4~r
&
l3).

We next consider a random potential which is of the
form JJ ——a(8,$)/rz, where a(8,$) is a function which
depends upon the angles 8 and P between the interacting
strain dipoles or electric dipoles. ' For example, for a
dipole-dipole interaction, a(8,$) ~(1—3cos 8). a(8,$) is
assumed to have a form such that

B. Density of states

To evaluate the configurational-average free energy of
the pairs given by Eq. (2.12), we have to obtain the density
of the excitation energies E+ and E . For this purpose
we assume that the tunneling units are randomly and uni-
formly distributed over the volume of the pair,
Vp ——, harp, w—here rp is some effective mean distance be-
tween the pairs. A reasonable assumption for Vp would
be that if we put one impurity at the origin, the second
impurity should, on the average, just be within Vp. If we
let r& be the near-neighbor distance, then we make the
reasonable assumption that

and then P(E+)=Pz(J)
I
dE+ldJ

I

'. We obtain

P+(E+ ) = (4~/n)
I
a

I

3» E+ "' "(E++5 )

Vo —V(
I
E —g

I

+" (2.18)

where in Eq. (2.18), 3 &E &B and B+ &E+ &A+.
Equations (2.17) and (2.18) can be combined into a sin-

gle expression as follows:

(2m/n)
I
a

I

Vo- Vi

E2

l l

(E —&)' (E+&)'
(3—n)/n

(2.19)

with the energy E restricted to two regions, 3 (E(8
and B+ )E)A+. Equation (2.19) gives the density of
states P(E) for a general r " potential. In particular, for
n =3, we have

p(E) 2~
I
a

I +
3(Vo —Vi) (E b) (E+b)—

Equation (2.20) shows a large increase in the density of
states near E~6, and a divergence for E =b. However,
examining Eq. (2.13) gives E =5 only when J=air =0,
which occurs only when the distance between the tunnel-
ing states approaches infinity. We can understand the in-
crease in P(E) near E~b by considering the limit as
Vo —V~ —+ oo. As the distance between the tunneling
states increases, more and more pairs will have small
values of J, and since the number having small J is pro-
portional to r the density of states becomes strongly
peaked about E =b, . Thus as c~0, P(E) becomes more
and more concentrated near E =A. Thus

J a (8,$)sin8 d 8d P =0,
lim P(E)=5(E —b, ) .
c~o

(2.21)

J,J ——+a/r;J ", (2.15)

with each sign having a probability of —,. We let the
near-neighbor and largest value of JJ be J& air~, and-—
also let Jp a lr p Usi——ng .the relations
P((V)=(Vp —V() ' and P2(J)=P((V)

I
dJ/dV

I

', we
have

P (J) Ia I3/ IJI —(3+ )/
2( Vo —V()

(2.16)

with Jp (
I
J

I
(J( ~ The factor of 2 in the denominator

of Eq. (2.16) arises from the consideration of the positive

i.e., that its average over all angles vanishes. Under these
conditions, we show in Appendix A that the density of the
excitation energies can be obtained by using the expression
for J~ of the form

Equation (2.21) can be shown as arising from Eq. (2.20)
using the appropriate limits of integration.

From Eq. (2.20) we note the interesting results that, for
an r potential, the density of elementary excitations is
approximately constant for energies (E/5) «1. We
have

2

P(E)= I' I 1+ +O(E')
3(V —V )b, b,

(2.22)

A graph for the logarithm of the density of states as a
function of the energy E for n =3 is shown in Fig. 2.
The approximately constant density of states for the
very-low-energy elementary excitations arises naturally in
our calculation when it is assumed that the tunneling
states interact via a r potential. This model is, to our
knowledge, the first microscopic model that predicts a
constant density of states of the elementary excitations
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FIG. 2. Logarithm of' the density of states P(E) as a func-
tion of the energy E for a fixed value of the tunneling energy.
I'(E) is multiplied by a constant K such that ICP(E)=l for
E =O.

from fundamental considerations. We also remark that
for n =3, one-half of the states have energies less than 6
and one-half have energies greater than h. By examining
Eq. (2.19) we find that the density of states P(E) is pro-
portional to F.' "'~" for general n and E &~h.

C. Interacting four-level tunneling units

In Eqs. (2.19) and (2.20) we derive the energy levels and
the density of the low-energy excitations for the interact-
ing two-level tunneling units. In this subsection we derive
the energy levels and the density of states for the interact-

FIG. 3. (a) Shows the four potential minima assumed for the
tunneling states. The depths of thc four potentials arc assumed
to be identical. (b) Graphical representation of the four states.
The states are, for convenience, designated as

I x),
I

—x),
ly), and

I

—y).

ing four-level tunneling units for the following simplified
model. Consider a completely symmetric tunneling unit
in potential wells of equal depth such that it may take
four positions: up, down, to the right and to the left; see
Fig. 3(a). The tunneling unit is allowed to perform 90'
tunneling only (neglecting 180' tunneling). The simplest
way to represent the statics of this problem is by consider-
ing a four-orientational classical "dipole" whose orienta-
tions are shown in Fig. 3(b). Let the four states of the sin-
gle tunneling unit be designated by I x), I

—x), Iy),
and

I

—y), as shown in Fig. 3(b). Since the dipoles are
allowed to tunnel through 90' degrees, a tunneling matrix
element 5 connects the I+x) states with the I+y)
states. Sllcll a connection llas to be built into tlie Hanlll-
tonian. It is assumed that no matrix elements connect the

I
x ) state with the

I

—x ) state, or the
I y ) with the

I

—y ) state, thus eliminating 180' tunneling.
The Hamiltonian H i(4) for the single four-level tunnel-

ing unit is for wells of identical depth,

Iri(4)= ——b(
I xi )+ I

—xi ))(&yi I
+ &

—yi I
)+H.c. ,

(2.23)

where H.c. is the Hermitian conjugate of the first part of
Hi(4).

The Hamiltonian Hi2(4) between the pair of four-level
interacting tunneling units is

Hi2(4)= ——Il( lxi &+
I

—xi &)(&yi I
+& —yi I

)+(
I
xi&+

I

—x2&)(&y2 I +& —y2 I
)]+H c I2

—~» I» & I x2 & &x2
I

&xi I

—~i2 I» & I y2 & &y2 I &yi I

—~i2 I
—xi & I

—xz & &
—x2

I
&
—xi

I

—~» I
—» & I

—y2&& —y2 I
&
—» I+~iz I

—» &
I
x2&&x2 I &

—xi I

+J»
I
xi & I

—x2 & &
—x2 I &xi I +Ji2 I

—yi &
I y2 & &y2 I

&
—yi I +~i2 I yi & I

—y2 & &
—y2 I &yi I

. (2.24)

Again, as in the case of the two-level tunneling states, we
neglect processes in which both units tunnel simultaneous-
1$.

We form the pair states using the orthogonality of
I
x ), I

—x ), I y ), and
I
—y ), and obtain the energies of

the four-level pair by diagonalizing the 16X16 matrix

I

representing the pair states. The matnx is given in Ap-
pendix B. The final result for the partition function Zq is
from Eq. (A5) of Appendix B,

Z4 ——4(cosh(pJ/2)+coshIp[(J/2) +4k ]'~ j)
=[4cosh(PU+ )cosh(PU )]2, (2.25)
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where

U+ ——[[(J/2) +46, ]'~ +J/2I/2 . (2.26)

Eq. (2.20) again shows the similar behavior of the pair of
two-orientational and four-orientational tunneling units.

Comparing Eq. (2.26) with Eq. (2.13) we obtain the ex-
pression for the partition function of the four orientation-
al states in terms of the partition function Zz of the two
orientational states,

III. DERIVATION OF THE LOW-TEMPERATURE
SPECIFIC HEAT, THERMAL CONDUCTIVITY,

AND DIELECTRIC CONSTANT

Z4( J)=[Z2(J/2) ] (2.27) A. Low-temperature specific heat

with the values of A and B in Eqs. (2.17) redefined such
that Ji~Ji /2 aild Jp~ Jp/2. We thus obtain that the
density of the low-energy excitations from a pair of four-
level tunneling states is also approximately constant for
U «b, provided the interaction JJ ——+a/r, j

To obtain the free energy for the pairs we must use Eq.
(2.7). The result PF4 ' for—the four-level states is ob-
tained from Eqs. (B7) and (B12) of Appendix B to give

PF'4 ' ———g ( in[4 cosh(P U+ )cosh(PU ) ]

—in[2 cosh(Pb, )] ), , (2.29)

with the probability density of U+ given by Eq. (2.28). A
comparison of Eq. (2.29) with Eqs. (2.12) and (2.28) with

I

This result shows that the qualitative behavior of the
two-orientational and four-orientational tunneling states is
the same. The excitation energy U approaches zero for
large positive values of J, and U+ approaches zero for
large negative values of J. For an interaction potential
J,J ——+a/r, the density of states P(U+ ) becomes

WIa I + (228)
6(Vo Vi) (U+ —b, ) (U++b, )

We let the specific heat C» be separated into two parts,

Cp
——C)+C2, (3.1)

where Ci is the contribution from F"', and Cz is the con-
tribution from F' '. In the limit as e;~0 and b,;=b„we
obtain

Ci ——Nkii(Pb, ) sech (Pb, ) . (3.2)

This result gives the well-known Schottky anomaly in the
specific heat.

The contribution from the second virial coefficient Cq
1s

C2 —,
'

Nzok~—p ( E+ sech (pE+ )+E sech (pE )

—2b, sech (Ph) ), ,
(3.3)

C2 =C2 —¹pkii(pb, ) sech (ph),

where C2 is the contribution to the specific heat arising
from the interacting terin only.

Combining the integration over E+ and E into a sin-
gle integral, the density of states for a general power-law
potential is given by Eq. (2.19), and for a r potential it
is given by Eq. (2.20). We obtain

C2 ——¹pk~p .
Bf„+f + [P(E)E sech (pE)]dE —b, sech (pb, )

. . (3.4)

For very low temperatures, the major contribution to the specific heat arises from small values of F.. We consider the
following specific case, which —in our opinion —represents, in some cases, a realistic physical situation. We assume that
the near-neighbor interaction is large compared to b, and compared to kli T. Then for Ji »6, the lower limit of the in-

tegral in Eq. (3.4) becomes A =b. /Ji. In what follows, it is convenient to introduce the temperature

Tp ——b, /kiiJi . (3.5)

We will arbitrarily classify temperatures less than Tp as very low temperatures, and temperatures greater than To, but
small compared to b„as low temperatures. C2 in Eq. (3.4) becomes

2~NzpIa I""r; 2 k, T " """
C2-

Vo —V)

0!Pg 3 2

f y
~" 1+,+O(p ) sech'(y)dy (3.6)

Nzo
I
a

I
k~~ T 21~' 4T

186. (Vp —Vi ) 20
1+ +O(T4) .

(3.7)

where a is of the order or unity. We note that the leading
terms of the low-temperature specific heat are proportion-
al to T' "'~"(I+A2T ), where A2 is a positive constant.
In particular, for n =3 we have

We remark that, for the case when' n &3, the low-T
specific heat will be proportional to T'+' "'~", and will
increase with a power of T greater than 1. For n =3, our
results give that Cz ~ T for low T, and also show that
there is a large T dependence in C» arising from the in-

teracting tunneling states above and beyond the usual De-
bye contribution.

For T« To the leading term in C& is no longer linear
in T for n =3, but rather becomes proportional to
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exp( —const/T). The total specific is obtained by adding
Eqs. (3.2) and (3.4).

the dipole moment of the tunneling unit. From Eq. (2.7)
we obtain

B. Dielectric susceptibility X, =(Np /6)tanh(Pb, ) . (3.9)

To obtain the dielectric susceptibility 7 we let

X—X]+72 (3.8)

where X~ and Xq are the electric susceptibilities arising
from F'" and F' ', respectively. The expression for X is

«) ln( PF)—
E ~o «1(PEo)2

where Eo is the externally applied electric field. The rela-
tionship between the dielectric constant e (e here is not to
be confused with the asymmetry energy of Sec. II) and X
1s E'= 1+4%+

The expression for the free energy as a function of ap-
plied field Eo is obtained for the two-level tunneling units
by replacing e in Eqs. (2.2) and (2.3) by pEo, where p is

In order to obtain X2 we have to find the corrections, to
order Eo, to the eigenvalues given by Eq. (2.10). Letting
JgJ J, we then have, to order Eo,

pEo [(J2+ 4+2)1/2 J]2
2g2 (J2+4g2)1/2

A2= —J

A,3
——J 1—2(pE. )'

Q2

(3.10a)

(3.10b)

(3.10c)

J2+4g2 1/2+ p o [(J'+4~')'"+Jl
2g2 (J2+4g2)1/2

(3.10«1)

The dielectric susceptibility X2(J) for a single pair of
two-level tunneling units is, for a fixed JJ

——J,

22
X2(J)= 2J,Pr [(J'+4~')'" Jj',„[—P(J2+4g2) 1/2]

g2 2g2( J2+4g2)1/2

J2 4g2 1/2+ J 2 2 2

[P(J 4h )' ] — tanh(Pb, )
2g2( J2+4g2)1/2 (3.11)

where

D =2cosh(PE+ )cosh(f3E ),
and E+ is given by Eq. (2.13). We let

X2——(X2(J)+X2(—J) ),
Summing over all pairs gives, after some algebra,

Nzop E tanh(PE+ )+E+tanh(PE )
, ——tanh(Pb, )52(E++E }

(3.12)

(3.13)

—:X2 —Nzop tanh(ph)/5, (3.14)
where the angular brackets, ( )„denote an average over E+ and E with the respective probabil1ty distributions g1ven
by Fq. (2.18), and X2 is the part of the susceptibility arising from the interacting term o»y.

Using the relation E+ ——&2/E+ and the fact that E &b, and E+ &6, we obtain X2 for a r potential in the form of
a single integral,

2b, tanh(PE) tanh(Pb, )

E(E2+E2)

4~«2&2
' pE- "+ '

tanh(pE)
3(V —V ) . ""— E+ E(E b,)—tanh(Pb, )

We examine Eq. (3.15) in the following limits. (i) J~O; for this case P(E)=5(E —5) and X2 vanishes identically as it
(ii) We let the fractional concentration c of the tunneling states approach zero. Since Vo =

3 ~ro 1s the ef«cttve
volume of the pair, we assume that ro ——r1/c, then r1 « ro, and it is sufficient to integrate Eq. (3.14) over a small region
of energy near E=b, . Again we obtain that X2~0.

We let Q =4' b,2/[3( Vo —V1 )]. Integrating Eq. (3.15) in parts, and letting

g(E)=[gtanh(PE)/(26 )][ln ~E /(E 6)
~

—b /(E —b. )],—
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we obtain

X2 N——zpp . [g(B )+g(A+) —g(A ) —g(B+)]

tanh(PA)

We evaluate Eq. (3.16) for low temperatures under the
following conditions. We let

C( ) g 4ePhc0/( Pha) 1)2

+ sech x x (13lI), )
ln

pA p8+ g2 x 2 (pg)2 (Ijg)2 2+ dx

I

(3.16)

PA =Pb, /J1 ——( T1) /T) & 1,

(3.17a)

and Ph»1 and PB+ »1. Under these conditions, the
T-dependent part of the low- T susceptibility is

24ir ~~
~2- 'Op

3A v v

with

/I =31)i ks V/(2ir kp T v ) .

We have'

I'E 1 —2nE
h

I /2 2

MII
2pU)

Thus our calculation predicts a —lnT dependence in the
low-temperature susceptibility, provided T)To. For
T« To i.e., very low temperatures, the temperature-
dependent part of the dielectric susceptibility becomes
proportional to

1/cosh (PE ) = 1/cosh (6 /ki) J1) .

The major contribution to the dielectric constant Xq arises
in this case from the first part of Eq. (3.16) added to Eq.
(3.9) to give for, Pb, »1 and ( T/Tp) »1,

l)lP2 47T
I

12
I
zp Jl

X= 1+zp+ ln . (3.17b)
3Vp —V)b,

Thus our calculations predict that the dielectric suscepti-
bility 72 increases as —lnT with decreasing, and low, tem-
peratures, and then flattens out as the temperature is fur-
ther lowered. A reasonable value for the near-neighbor
interaction J1 arising from strain interactions is

250K &J, &2000 K.' Thus, for a value of b, of the or-
der of 1 K, X2 will be given by Eq. (3.17) for T greater
than a few millikelvins, provided that kp T« b, .

)& 5(E —huk)dk, (3.19)

Q2 2

P(E)E tanh(PE) .
h E+5 (3.22)

For low temperatures only the low energies contribute ap-
preciably. Thus b, /(E +6 )~l, and

where Mii is the matrix element of transition between
states l and l', and n(E)=(ep +1) '. In Appendix C we
consider the matrix element M~2 between the ground state
and the first excited state, the most important term at low
temperatures. We obtain

M]2 ——
—25y

I 2 (J2 +4+2
)

1 /2 [(J2 +4+2 )
1 /2 J] I

1 /2 (3.20)

where y= —,'(B6'/Be&), where ez is the local strain. In
terms of the energy E, M)2 can be rewritten

—Ay
2 2 &r2 '(E+b, )

(3.21)

M)2- —y . (3.23)

3

)c(T)= —,
' g J C;(co)v;(co)l;(co)dco, (3.18)

where the summation over i is over the three phonon
modes, C(co) is the frequency-dependent specific heat,
v (co) is the sound velocity, and l (co) is the mean free path.
We approximate v(co) by a constant velocity u, and

1(co)=v(co)/r(co)=v/i(co) .

We write

C. Low-temperature thermal conductivity sc

The contribution to the thermal conductivity is from
relaxation arising from resonant scattering by the tunnel-

ing units as well as from the usual relaxation processes.
The contribution from the relaxation processes is of
higher order in T than the resonant scattering contribu-
tion, and therefore at low temperatures it is a good ap-
proximation to consider the latter only. The expression
for the thermal conductivity is '

)c( T) cc T(4n 6)/n— (3.25)

It is interesting to note, using Eq. (3.6), that the product

xC ~T (3.26)

independently of the value of n for low enough T. We
also note from Eq. (3.25) that for n =3, )c(T) ~ T . This
result is not unlike those observed in glassy materials. For
somewhat higher co,

The low-temperature thermal conductivity is now calcu-
lated by using Eq. (3.23) in Eq. (3.18) and considering the
resonant scattering contribution only. Thus we have

K~ C(co)dco
P (co)co tanh(fico)

(3.24)

For low temperatures, only small values of co contri-
bute. Equation (2.19) shows that P(co) is proportional

"' " for small co. Substituting this result into Eq.
(3.24) gives



29 DENSITY OF STATES FOR INTERACTING TUNNELING UNITS. . . 5833

P '(co) ~ [1—3(fico/6) ], J(r)= a (8,$)r (A 1)

and the thermal conductivity will be proportional to

K =T(4n —s)/@[ 1 g 3(n) 72] (3.27)

where A3(n) is a positive constant for fixed n T. hus the
predicted thermal conductivity will increase slower than
T' " '~" for higher temperatures. For even higher tem-
peratures the resonant scattering contribution is propor-
tional to T; however, our results are not expected to be
valid since we are not considering the relaxation contribu-
tion to the scattering. Our calculations show that there is
a shoulder (flat portion) in the thermal conductivity at
kiiT/5=0 2 T. h.is shoulder arises from the increased
density of states with increasing energy.

IV. CONCLUSIONS

We study the effect of interactions on a set of low con-
centrated two-level and four-level tunneling states under
certain strongly restrictive conditions. We assumed that
the tunneling states have no long-range order and are suf-
ficiently dilute that the first two virial coefficients give
the major contribution to the free energy. The interaction
potential J(r) is assumed to have a form J(r)~+a/r",
with n as a parameter. We find that the interaction be-
tween the tunneling units strongly modifies the spectrum
of the elementary excitations of the system at low ener-
gies, and gives an n-dependent density of states P(E) of
the elementary excitation energies E. In particular, for
n =3, the density of states is approximately a constant for
low E, and our results give a specific heat linear in T and
a thermal conductivity proportional to T . Although
these results are not unlike those obtained in glasses, we
have specifically refrained from making any detailed com-
parisons with experiments. The primary reason for this is
that the purpose of this paper is to demonstrate the effect
of the interactions and how they modifiy the density of
states, even though it is not clear what role such interac-
tions play in realistic glassy systems. A further difficulty
of comparing our results with experiments is that the ef-
fective number of neighbors zp and the effective volume
Vp of the pair of enter as parameters into our problem,
and it is by no means clear&what these parameters should
be in a realistic model of impurities distributed in alkali
halides. 'p " The calculations are performed using a single
value of the tunneling matrix element b, and it is assumed
that 5 does not change with the interaction potential J.
These assumptions may also not be realistic for glassy sys-
tems. ' ' This is another reason for refraining from mak-
ing detailed comparisons with experiment.

the density of states will be qualitatively the same as that
for a potential J(r) = +a /r . It is assumed that

f a (8,$ )sin8 d 8dP =0,

(A3)

APPENDIX B

In this appendix we obtain the expression for the
16/16 matrix M representing the Hamiltonian given by
Eq. (2.23). To obtain the matrix we start with a represen-
tation involving the pair states formed from the product
of

~

+x; ) and
~
+y; ) where i = 1 and 2. The matrix is

04x4 E E
-4x40

M= E o4x4

E 04x4 D

(B1)

where O„x„ is the n-dimensional null matrix, and

a b

bo,„,
—2X20 b

b a

where

b

0 2x2

-2x2E=
—2X2

2X20 b

b —a
(B2)

—J 0
0 J y b 0

0
(B3)

for otherwise the system may undergo a phase transition,
contrary to our assumption.

With Eq. (Al) we have a set of random potentials for
random r, 8, and P, and to obtain the configurational
average ( ), we have to integrate over all three of these
variables. First, we perform the integration over r, and at
the end of our calculation, we perform the integration
over 8 and P.

The only change in Eq. (2.16) is replacing
~

a
~

by
~

a(8,$)
~

. Similarly, in Eqs. (2.19) and (2.20) we replace

~

a
~

by
~
a(8,$) (. Finally, the average of the thermo-

dynamic quantity X(E) is

(X(E))= f X(E)P(E,8,$)sin8d8dg (A2)

=(X(E)/0 f ~a(e, p)/a
~

/"siniidedp,

where (X(E))p is the average value of X(E) calculated
with a potential J(r)=+a/r" The. result of Eq. (A3) is
that a is replaced by some constant a'.
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APPENDIX A

In this appendix we prove that if we start with a poten-
tial

A, =+(J +165 )'

A34 ——+J,
A 5 —X6—Ar7 —Ars —0 p

9 ip
——Aii, u= —,[J+(J +165 ) 1

~i3, i4=~i5, is= —i [J+(J'+16~ )' ']

(B4)
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where AJ is the jth eigenvalue (1 &j& 16).
The partition function Z4 for the pair of interacting

four-level tunneling states is obtained using (B4).

Z& ——4+2cosh(pJ)+2cosh[p(J +166, )'/ ]

+8cosh(pJ/2)cosh[(p/2)(J +166, )'/~]

H =Hp+H' (Cl)

where Hp is the Hamiltonian of the pair given by Eq.
(2.3} for the two-level states. H' is the perturbation aris-
ing from the strain fields ez introduced by the pho-
nons. ' Thus,

=[2(cosh(pJ/2)+coshI p[(J/2) +4k ]'/
I )] . (BS)

Comparing Z4 with the partition function of the in-
teracting pair of two-level tunneling states, Zz, we obtain

1 BHpH'=—
2 BEp

%e let

(C2)

Z4( J)= [Z2(J/2) ]
The partition function Z4 may be written

Z4 ——[4cosh(PU+ )cosh(PU )]

where

(B6)

(B7)

1 ~J" 1 Be 1 Bb,C'=—,y=—,5=—
2 dip 2 dip 2 dip

For the case when e] ——e2, we have

(C3)

U+ ———,
' I[(J/2) +46 ]' +J/2) . (B8)

(B9)

Next we evaluate the eigenvalues of the 4&&4 matrix
H; for the four-level tunneling unit as follows:

A b
Det(H; —A, I zx4 ——Det

1H'=—
2

—C' —2y
—5 C' 0 —5

0 C' —5
—5 —5 —C'+2y

(C4)

where

~I 2&(2 02X2
A=

02X2 ~~ 2X2

and b is given by Eq. (B3)
The eigenvalues of Eq. (B9) are

A) p
——00, A3 4

——+26, .

(B10)

(Bl 1)

Next we let T be the matrix which diagonalizes H p,
such that TH pT '=A~, where A~ is a diagonal matrix
whose eigenvalues are given by Eq. (2.10). Let M p be the
matrix element of transition between the states a and p,
where a and p go from 1 to 4. Let 4 be the ath eigen-
function of Ho associated with the ath eigenvalue. Then
M~p (TH' T '——)~p, or

(CS)

Thus the partition function Z; for the single noninteract-
ing four-level tunneling state i is

Z; =2+2 cosh(2pb, ;)=4[cosh(pb„)]

and for b.;=AJ =6, we have

Intr exp[p(H; +H~ )]=21 [n4 csoh(ph}] .

(B12)

(B13)

Equation (B13) is used in Eq. (2.28) to obtain the second
virial coefficient for the interacting tunneling states.

APPENDIX C

In this appendix we calculate the matrix element of
transition between the energy states shown in Fig. 1 and
represented by the eigenvalues given by Eq. (2.10). We ex-
press the Hamiltonian as

The eigenvectors 4 of Hp, in the order of the eigenvalues
listed in Eq. (2.10), are

4) ——[A(A, —J)] '(b„—,'
(A, —J),—,'(A, —J),b.),

Vq ——(I/v 2)(1, 0, 0, —1),
(C6)

'I/3 ——(I/W2)(0, 1, —1, 0),
P4 ——[A,(A, +J)] '/'(5, ——,'(A, +J), —,'(A, +J), 6),

where A, =(J +45 )' . The matrix element M~& con-
necting the ground state with the first excited state is

M)2 ——— 2yb

I [2(J2+4g2)1/2][(J2+4g2)1/2 J]I1/2
(C7)

This matrix element is used in Eq. (3.19) to calculate the
thermal conductivity.
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