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A method for improving the trial wave function for a system in a magnetic field using the
Rayleigh-Ritz energy variational principle is applied to anisotropic excitons. When the trial wave
function is adapted to the gauge of the vector potential using a phase factor, a gauge-invariant vari-
ational energy is obtained, and the charge conservation equation is satisfied. The gauge-invariant
variational method is used to obtain an upper bound to the ground-state energy of an exciton in the
axially anisotropic semiconductors CdS and GaSe when magnetic fields in the megagauss range are
applied. The variational calculations predict a measurable dependence of ground-state energy on

field orientation.

I. INTRODUCTION

The Rayleigh-Ritz energy variational principle provides
one of the best approximation methods for the solution of
the Schrédinger equation for atoms and molecules in mag-
netic fields.!~7 The energy operator involves the vector
potential, the curl of which gives the magnetic field. Two
significant difficulties arise, however, in applying the vari-
ational principle to such systems. First, the energy expec-
tation value for an arbitrary trial wave function depends
on the choice of the gauge of the vector potential. Second,
charge conservation is found to be violated for an arbi-
trary choice of gauge when the current density is calculat-
ed from the trial wave function. These problems are seri-
ous and should be remedied.

In previous work® we have given a method for removing
these difficulties by adapting the chosen trial wave func-
tion to the gauge of the vector potential using a phase fac-
tor. Use of a phase factor containing an arbitrary varia-
tional function to remove the gauge dependence was first
suggested by Epstein,” but he gave no method for obtain-
ing the phase factor in a general case. Epstein®!” also
pointed out that the charge-conservation condition should
be satisfied, but did not show how to obtain this condition
in variational calculations. In our method® the trial wave
function is multiplied by a phase factor and the energy is
varied with respect to the variational phase function. The
variation yields the condition for charge conservation.
This condition provides a differential equation which can
be solved to obtain the phase function that minimizes the
energy.

The improved trial wave function obtained by using this
phase function has a number of desirable properties. Be-
cause it is obtained using the charge-conservation condi-
tion, it satisfies this condition identically. The charge-
conservation condition contains the vector potential, so

the minimizing phase function depends on the gauge of

the potential. The phase factor thus adapts the trial wave
function to the gauge of the vector potential and removes
the gauge dependence of the energy expectation value.
The energy expectation value is also lower than the origi-
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nal energy expectation value, since the energy has been
minimized with respect to an additional variational func-
tion.

The method has been applied previously to an anisotro-
pic harmonic oscillator in a constant magnetic field.® In
this paper it is applied to excitons (bound electron-hole
pairs) in the axially anisotropic semiconductors CdS and
GaSe in strong uniform magnetic fields. The variational
upper bound to the ground-state energy in high magnetic
fields is calculated as a function of field strength and
orientation for GaSe excitons and excitons formed from
the A-valence band of CdS.

The results of the gauge-invariant variational calcula-
tion give good agreement with the experimental data of
Aldrich et al.!! for GaSe excitons in high fields parallel to
the crystal axis. The theory predicts a decrease in the
ground-state energy of GaSe excitons and CdS A4 excitons
as the field is shifted from parallel to perpendicular orien-
tations with respect to the crystal axis. The superiority of
the gauge-invariant method is demonstrated by compar-
ison with energies obtained by a gauge-dependent ap-
proach. The effect of spin splitting on the exciton
ground-state spectrum is also considered.

Numerous theoretical studies of the energy states of ex-
citons in magnetic fields have been made both for isotro-
pic!>~!% and anisotropic'!!¢~!® semiconductors. Fritsche
and Heidt'® were the first to develop a formalism for com-
puting the exciton spectrum of axially anisotropic semi-
conductors in high magnetic fields. They used the adia-
batic approximation of Elliot and Loudon,'> where the
Coulomb attraction is neglected in the plane perpendicular
to the field. Axially anisotropic excitons in high magnetic
fields have also been treated in the adiabatic approxima-
tion by others.!""17!8 No formalism has previously been
developed, however, for treating excitons in totally aniso-
tropic semiconductors in high magnetic fields. The for-
malism developed here may be applied to totally anisotro-
pic semiconductors, does not neglect the Coulomb attrac-
tion in the plane perpendicular to the field, and gives
ground-state energies for arbitrary field orientations. No
previous calculation has been made of the variation of
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ground-state energy with field angle for excitons in axially
anisotropic semiconductors. Monozon and co-workers!” 18
have stated that the ground-state energy of excitons in
uniaxial crystals varies with field angle; however, they do
not state precisely how it varies or make computations.
Most other studies have assumed that the field is aligned
with the crystal axis.

In Sec. II the quasiparticle Hamiltonian for an exciton
in a totally anisotropic semiconductor in a static magnetic
field is derived. The gauge-invariant variational method is
applied to this system in Sec. III and the quasiparticle
current-conservation equation for the exciton is obtained.
In Sec. IV a Gaussian trial wave function valid at high
magnetic fields is shown to give a gauge-dependent energy
expectation value. When the current-conservation condi-
tion is solved with this Gaussian trial wave function, the
resulting improved trial wave function yields a gauge-
invariant energy expectation value. The results of Sec. IV
are specialized to the axially anisotropic case in Sec. V and
applied to the axially anisotropic semiconductors GaSe
and CdS. The conclusion is given in Sec. VL

II. HAMILTONIAN FOR ANISOTROPIC EXCITONS

In this section the Hamiltonian is obtained for anisotro-
pic excitons in nondegenerate semiconductors in a uni-
form strong magnetic field. After a brief description of
the system, the single-particle effective Hamiltonian in
relative coordinates is derived for the vector potential in
an arbitrary gauge and then expressed in dimensionless
units.

A. Exciton in a uniform magnetic field

The system consists of a single electron-hole pair creat-
ed by a direct transition (direct exciton) in a semiconduct-
or with anisotropic conduction and valence bands. The

energy is calculated using the effective mass approxima-
tion for the exciton problem first given by Wannier."”
The Wannier exciton may be pictured as an electron in a
conduction band bound to a hole in a valence band.?® The
valence bands of the semiconductor are assumed to be
nondegenerate in the magnetic field, when spin effects are
neglected.”> For nondegenerate valence bands a simple
two-band model may be used.?! The formalism is
developed for a completely anisotropic semiconductor
where the dielectric anisotropy is given by a diagonal
dielectric tensor and the effective electron and hole masses
are also diagonal tensors.?

A Cartesian coordinate system (x,x,,x3) which diago-
nalizes the dielectric and effective mass tensors is
chosen.? A uniform magnetic field B is applied with a
polar angle 6 and an azimuthal angle ¢. The field com-
ponents may be written ﬁ:Bé, where

C=(C,, C3, C3)
=(sinf cos¢, sinfsing, cosb) . (2.1

The vector potential A, the curl of which gives the mag-
netic induction field B, is chosen to be in the mixed gauge®
with components

A,~=(1—§j)Bjxk——xj§kBk ’ (2.2)

where (i,j,k) are cyclic permutations of (1,2,3) and the
gauge parameters (£,£,,£3) are arbitrary real numbers. If
£,=&,=£3=7, the symmetric gauge is obtained, while if
£1=§,=E&3=0 or 1, the two Landau gauges are obtained.
The mixed gauge is chosen for generality and to demon-
strate the gauge invariance of the method, since the gauge
parameters act as indicators of gauge dependence in later
results.

B. Hamiltonian

For a Wannier exciton in an anisotropic semiconductor in the presence of an external magnetic field, the minimally

coupled Hamiltonian in Gaussian units is given by'®
2

3 3 e 1 d e 2
(F..T, S AT, —i# ——A;(T)
(Te:Th 2 Zme, ﬁaxe,- e () | + 2my | oxp ¢ i(Th)
—e XK KoK3) T VKT (% —xp 124K 5 (Xea—x32) 2 + K3 (X3 —x53)21 7172, (2.3)

where T,=(x,1,X.2,X.3) and Tj,=(x,1,X,2,X3) are the
displacement vectors of the electron and hole, respectively,
A; (i =1,2,3) are the components of the vector potential,
and —e is the electronic charge. The elements of the di-
agonal electron and hole effective mass tensors are m,;
and my,;, respectively, and K; are the elements of the diag-
onal dielectric tensor. The Coulomb potential energy term
in Eq. (2.3) is derived using Poisson’s equation.?* Exciton
spin terms have been omitted in the Hamiltonian since
they simply add a constant to the total energy and do not

affect the variational calculations.!! Spin effects are con-
sidered later. In the effective mass approximation, where
the exciton dimension is large compared to the lattice con-
stant, the effective Schrédinger equation is'®

H(T,, ) O(F,,T)) =e®(T,,T) - 2.4)

The envelope function ®(T,,1},) describes the electron and
hole motion on a scale large compared to atomic dimen-
o 25
sions.
The motion of the exciton can be expressed in relative
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coordinates T=T,—Tr,=(x,X;,x3), and in center-of-
mass coordinates R=(X,X,,X3), where

X;=(myXe +mpxy; )/ (Mg +my;) (i =1,2,3). (2.5
When Eq. (2.3) is written in terms of relative and center-
of-mass coordinates, then because of the magnetic field
the two motions of the exciton are coupled in the Hamil-
tonian in a complicated manner. In a magnetic field there
is no way to separate them exactly.’® An approximate
separation may be achieved, however, if the center-of-
mass motion is negligible in comparison to the relative
motion. In this case Eq. (2.4) can be transformed into a
one-particle (quasiparticle) Schréodinger equation for the
relative motion in terms of reduced effective masses.

A partial decoupling of the center-of-mass and relative
motions may be achieved using an envelope function of
the form!6-26—28

2
3 1 d e, o
H(T)= — | —ifim— +—4;(b;'T)
g'l 2u; ax; ¢
2
ZCZM,-
The diagonal dyads
3
= mu%i%; , (2.8)
i=1
3
Be= D, —mu%i%; , (2.9)
i=1
and
b= /e iy + (i /mp)Be (1=1,2,3),  (2.10)

are used to express some of the vector potential terms in
weighted relative coordinates. The potential energy is

V(?)= -—ez(KleK?,)—l/z

X[(x3/K )+ (x3/K,)+(x5/K3)]712 .0 (2.11)
The reduced effective masses (i =1,2,3) are
pit=ma my " (2.12)
the total effective masses are
M;=mg+my; , (2.13)
and the dimensionless relative masses are
my=me/M;, a=eh . (2.14)

Equation (2.7) is the sum of the effective kinetic energy of
the quasiparticle in the field in terms of the reduced effec-
tive masses y; which characterize the quasiparticle, a di-
amagnetic term which is proportional to the square of the
field strength, and a Coulomb potential energy.
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®(T,,T;)=exp[ —ie AR )-F/%clexp(ik-R)W(T),  (2.6)
where A(R ) is the vector potential at the center of mass,
K is the exciton wave vector, and P(T’) is the envelope
function for the relative motion.!?! If Eq. (2.6) is used in
Eq. (2.4), terms containing A(R ) are removed.?%?’ There
are still terms containing components of the exciton wave
vector 1?, however, which are the kinetic energy of the
center of mass and coupling between the center of mass
and relative motions in the field.?® It is commonly as-
sumed that the center of mass of the exciton is at rest
(K=0) (Refs. 11, 16, and 21) and calculations made in
this approximation give satisfactory results when com-
pared to experimental data.

When the center-of-mass terms are neglected, the
single-particle effective Schrodinger equation for the rela-
tive motion can be written as

2.7

C. Dimensionless units

In order to find an upper bound to the exciton ground-
state energy, the expectation value of Eq. (2.7) with
respect to the trial wave function must be minimized with
respect to the variational parameters. The energy expecta-
tion value of this system is too complicated to minimize
analytically, so numerical methods are required. For con-
venience in numerical computation, dimensionless units of
length and energy are used. First, however, it is necessary
to define some constants of the system.

For the anisotropic exciton the effective Larmor fre-
quency in Gaussian units is defined as'"'?

oy =eB/2uc , (2.15)
the effective Bohr radius a is

ag=K#/ue?, (2.16)
and the effective rydberg Z is

R=H/2uay=pe*/2#°K? . 2.17)

The geometrical mean of the anisotropic reduced effective
mass is

p=(ppap)'”?, (2.18)

and the geometrical mean of the anisotropic dielectric
constant is

K =(K,K,K3;)'3. (2.19)
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The relative reduced effective mass parameters &; are de-
fined as

Gi=p/p; (i=1,2,3). (2.20)

A dimensionless magnetic field parameter is
y=tw; /R =#HK?*/u*c)B , 2.21)
|
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where y is proportional to the field magnitude B and thus
gives a measure of the field strength.® The field com-
ponents are given by B=BC and Eq. (2.1).

When the constants defined above, the mixed gauge of
Eq. (2.2), and Eqgs. (2.8) and (2.1) are used in Eq. (2.7), the
dimensionless Hamiltonian is

2
H(T)= —§1%+2i7(T1x2+T’1x3)%+‘;/2(T12x§+T'12x1x2)+(1-—»2,2——»3,3——»1)-!—(1——»3,2—»1,3—»2)
X1 1

2K V(X3 /K )+ (X3 /Ky +(x3 /K517 12

where energy is in units of the effective rydberg # and
length is in units of the effective Bohr radius a,. The di-
mensionless functions Ty, T, Ty,, and T, are defined as

Ty =pCs[(Br23/me1)—(1n213/mp )], (2.23)
T =—pCal(mzn/me)—(Bsn/my1)] (2.24)
Tty =—2uC1Co(N31Baiames' +Basmznmis') (2.25)
and
T =plCi(minm +Biomii')
+Ci(Bhimas' +mimiz )], (2.26)

where each of these equations gives two others through
cyclic permutation of (1,2,3). Equations (2.23)—(2.26) are
written in terms of the gauge-dependent dimensionless
functions

Nimn =1 =& )Mp +Exme; (2.27)

and

Bimn =(1 ‘"gn )me’1+§nm}ltm ’

where (I,m,n) are cyclic permutations of (1,2,3).

The gauge-dependent Hamiltonian of Eq. (2.22) gives a
gauge-dependent energy expectation value unless the trial
wave function is adapted to the gauge of the vector poten-
tial. In the next section the gauge-invariant variational
method is applied to the anisotropic exciton.

(2.28)

III. GAUGE-INVARIANT VARIATIONAL METHOD
APPLIED TO ANISOTROPIC EXCITONS

When the Rayleigh-Ritz variational method is applied
to a system in a static magnetic field, the energy obtained
is an upper bound to the ground-state energy and depends
on the gauge chosen for the vector potential in the energy
operator. For an arbitrary choice of the trial wave func-
tion ¥ and an arbitrary gauge of vector potential A, the
divergence of the charge current density T does not in
general vanish,

V-T£0. 3.1)

SE[Al=—2g'(#ic)! [ d% SA(F Im{¥™(F)H(¥)¥'(F)}=0,

(2.22)

The charge-conservation condition for stationary states is
therefore violated because the charge density g | ¥ |? is
time independent. The gauge-invariant variational
method® resolves these problems by multiplying the trial
wave function by a phase factor. When the energy is min-
imized with respect to the variational function in the
phase factor, the minimization condition yields the condi-
tion for charge conservation. The charge-conservation
condition provides a differential equation which can be
solved to obtain the phase function that minimizes the en-
ergy and adapts the trial wave function to the gauge of the
vector potential. In this section the gauge-invariant varia-
tional method is applied to the anisotropic exciton system
described in Sec. II which gives the charge-conservation
equation for the quasiparticle.

An improved trial wave function W’ for the quasiparti-
cle is obtained from the initial choice of trial wave func-
tion by multiplication by a phase factor

V' =explig’A/#ic)¥ , (3.2)

where A=A(T) is an arbitrary real variational function
and ¢’ is the effective quasiparticle charge (¢'= —e). The
expectation value of the quasiparticle Hamiltonian H (T)
calculated with respect to ¥’ is a functional of A:

E'=E[A]

=(explig'A/#ic)¥ | H explig’A/#c)¥ ) . (3.3)
The variation of Eq. (3.3) with respect to A is
E[A+8A]—E[A]=8E[A]+&E[Al+---, (34

where 8A(T) is an arbitrary real variation of A(T). For
an extremum in the energy it is necessary that the first
variation vanish, SE[A]=0. For a minimum in the ener-
gy the second variation must be positive, 82E[A]>0. The
condition for an extremum is obtained in this section,
while it has been shown elsewhere® that the extremum is
indeed a minimum.

When the first variation of Eq. (3.3) is set equal to zero,
the minimization condition is

(3.5)
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where Im denotes the imaginary part. To obtain Eq. (3.5)
from Eq. (3.4) the exponential exp(ig 8A /#ic) is expanded
and only terms linear in A are retained. The Hermiticity
of the energy operator is also used. Since SA(T") is arbi-
trary, the only way for Eq. (3.5) to be satisfied is for the
integrand to vanish,

Im{W™*H(T)¥'} =0 (3.6)

If the quasiparticle Hamiltonian H (T") defined in Eq. (2.7)
is used, then Eq. (3.6) becomes

m{W*[ [~ T ]9} =0. (3.7)

The effective kinetic momentum II of the quasiparticle in
the magnetic field is

., 3
fi=3

i=1

.z 0 e o

—1ﬁa—xi+zA,-(b,~-r) i (3.8)
From Eq. (3.8) it is clear that the quasiparticle effective
charge q'= —e. The reciprocal of the reduced effective

mass tensor is

2#"’3?0?. :

i=1

(3.9)

Equation (3.7) can be rewritten as

Im{ — iV [W*u - AW+ (W)~ ()} =

(3.10)

The last term in the curly brackets in Eq. (3.10) is real, so
that Eq. (3.10) gives

V-7'=0. (3.11)

The current density J ’ for the anisotropic exciton is

T '=Re{v*gu- NIV}, (3.12)

where Re denotes the real part.
When Eq. (3.2) is inserted into Eq. (3.12), the result is

-

T= J+‘1 |~y|22§, (3.13)

9A |a
i=1 a

where p is given by Eq. (2.18) and §; (i =1,2,3) are given
by Eq. (2.20). The original current density J is given by

T =Re{W*qu!-TiV} . (3.14)

Equations (3.11) and (3.13) give the differential equation
for the A which minimizes the energy,

E=(V|H(T)¥)
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3
S G2 A+p~ 1 (8;p)0;Al=—puc(V-T ) /g'p, (3.15)
i=1

where 0;=0/9dx;

=q'|W(T)|%

In the next section Eq. (3.15) is solved for a Gaussian
wave function ¥ which is valid at high magnetic fields.
The resulting improved trial wave function is shown to
give a gauge-invariant energy expectation value.

and the charge density is p(T)

IV. ENERGY EXPECTATION VALUE

In this section a Gaussian trial wave function is chosen
which should describe the exciton ground state in high
magnetic fields. When this trial wave function is used to
calculate the expectation value of the energy operator, a
gauge-dependent energy is obtained. The method of Sec.
III is used to improve the trial wave function. When the
energy is minimized with respect to the phase factor, the
charge-conservation condition is obtained. When the
equation of continuity is solved for the phase factor,
which adapts this trial wave function to the gauge of the
vector potential, the resulting improved trial wave func-
tion is shown to give a gauge-invariant energy expectation
value.

A. Trial wave function for high magnetic field

The exciton is considered in the high-field limit where
the magnetic field is sufficiently strong to make the field
parameter ¥ > 1. Since an exciton is hydrogenic, a choice
of trial wave function can be motivated by examining the
case of the hydrogen atom in a high magnetic field.">!3
The magnetic forces on the electron compress the orbitals
in the direction perpendicular to the field and cause oscil-
lations at a frequency comparable to the cyclotron fre-
quency. Oscillations in the field direction are much
slower. The ground-state wave function for a harmonic
oscillator is a Gaussian function. Gaussian wave func-
tions have been used as trial wave functions for the
ground state of hydrogen atoms">?° and hydrogenic sys-
tems such as excitons'' in high magnetic fields. A three-
dimensional normalized Gaussian wave function
W(T)=(8aja,03m ) Pexp( —ax? —apxi—azx3) (4.1
is therefore taken as the initial trial wave function, where
(ay,a,,a3) are real positive variational parameters.

B. Gauge-dependent energy expectation value

When the Gaussian wave function in Eq. (4.1) is used to
calculate the expectation value of the dimensionless exci-
ton Hamiltonian of Eq. (2.22) the result is

= {1014+ Y2 CT X005 + EXas  + Xaas T+ (1—£) 3057 ']

1
+(1—2, 23, 3>1)+(1—3, 21, 3——»2)}—(32a3/7rﬁ3)1/2f0du(au4+bu2+1)"‘/2,

(4.2)
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in units of the rydberg in Eq. (2.17). This energy is gauge
dependent since it contains the gauge parameters
(£1,€2,63). The potential energy integral in Eq. (4.2) in-
volves the parameters

a=—(as/B)[(ay/By) ' +(ay/By) 1]

+(as/B3) ey /B) " Nay/By) " +1 4.3)
and
b=(as/B:)(a1/B) ' +(ay/B)~']-2, 4.4)
where
Bi=K/K; (i=1,2,3). 4.5)
The parameters X; in Eq. (4.2) are
Xi=p/M; (i=1,23), 4.6)

where p is defined in Eq. (2.18) and M; is defined in Eq.
(2.13). The parameter X3, in Eq. (4.2) is

4.7

where m,; (a=e,h) (i =1,2,3) is defined in Eq. (2.14),
and X,3 is obtained by interchange of the indices 2 and 3.
The constants X3 and X,, are obtained from Eq. (4.7) by

2 —1 2. —1 —1
Xp=pulmysms +mosmy, —M3 ),

5793

cyclic permutation of (1,2,3). The energy expectation
value E in Eq. (4.2) is the sum of a positive kinetic energy,
a positive diamagnetic energy shift, and an attractive
Coulomb potential energy. The diamagnetic term is pro-
portional to ¥? and thus is quadratic in the field magni-
tude B.%

C. Improved trial wave function

The energy expectation value of Eq. (4.2) is gauge
dependent because the phase of the trial wave function
Y(7) in Eq. (4.1) is not adapted to the gauge of the vector
potential in the energy operator. The adapting phase
function can be obtained by inserting Eq. (4.1) into the
quasiparticle charge-conservation condition in Eq. (3.14)
and solving for the minimizing A. The solution is

A= —Bxx;[(a;T1 +a,T3)]/(§101+52a3)]

+(1—2, 23, 3—>1)+(1-3, 2—1, 3-52), 4.8)
where the functions (7,7,,T3) and (T7,T3,T%) are
given by cyclic permutation of (1,2,3) in Eqgs. (2.23) and
(2.24), respectively. When Egs. (4.8) and (4.1) are used in

Eq. (3.2), the improved trial wave function is adapted to
the gauge of the vector potential.

D. Gauge-invariant energy expectation value

When the improved trial wave function is used to calculate the energy expectation value, the result is

E'=(V|H({T)¥)

= {611+ 7’ClXaas  + X505 + X (b +sgs) 7'
1
+(1>2, 253, 3514153, 21, 3—2)} —(32a3/7)'2 [ dulau®+bu+1)7172.

This energy is gauge invariant because it does not contain
the gauge parameters (&,£,,£3). The parameters a and b
in the potential energy integral are given in Egs. (4.3) and
(4.4). The parameters X; are defined as

X; =pp; /mgmy (i =1,2,3), (4.10)

where p is given in Eq. (2.18). The parameters X33 are de-
fined as

Xoz=p*(ps3/pa)momis' —mjm3' 2, (4.11)
where my; (a=e,h) (i =1,2,3) is given in Eq. (2.14). The
parameters X3, and X}, are obtained from Eq. (4.11) by cy-
clic permutation of (1,2,3). The energy in Eq. (4.9) con-
sists of a positive kinetic energy term, a positive diamag-
netic term proportional to ¥, and an attractive Coulomb
energy. .

The energy in Eq. (4.9) is a function of the dielectric
constants and effective masses. These parameters have
been experimentally determined for the axially anisotropic
semiconductors GaSe and CdS.**—3% In Sec. V the results
of Secs. II-1IV are applied to these axially anisotropic
semiconductors.

(4.9)

V. GROUND-STATE ENERGIES OF AXIALLY
ANISOTROPIC EXCITONS

In this section the results of Sec. IV are specialized to
the case of axially anisotropic semiconductors. The
gauge-invariant energy expectation value is used to calcu-
late the variational ground-state energies of GaSe excitons
and CdS A4 excitons using numerical minimization. In or-
der to check the validity of the trial wave function at high
fields and of the values used for the material parameters
of GaSe, the results of the theory are compared with the
experimental data of Aldrich et al.!! for GaSe excitons in
high fields aligned with the crystal axis. The theoretical
ground-state energies agree with experimental energies to
within experimental error.

The ground-state energies of GaSe and CdS excitons are
calculated for fields ranging from y=1.0 to ¥ =3.0 as the
angle of the field with the ¢ axis varies from 0 to 90°. As
a demonstration of how widely results can vary if the
gauge-invariant approach is not used, the gauge-dependent
energy expectation value of Eq. (4.2) is used to calculate
the energy as a function of field angle for GaSe excitons
with ¥=3.0. The Landau and symmetric gauges are
shown to give widely differing energies that are higher
than the gauge-invariant energy.
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A. Axially anisotropic semiconductors

Axially anisotropic crystals have a plane of rotational
symmetry perpendicular to the crystal axis (c axis).® The
dielectric tensor and effective mass tensors can be written
in terms of components perpendicular (1) or parallel (||)
to the c¢ axis. If the x; axis is taken to be parallel to the ¢
axis, the subscripts 1 and 2 can be replaced by L and the
subscript 3 can be replaced by || for the dielectric con-
stants, effective masses, and reduced effective masses.

Since the crystal has rotational symmetry about the x;
axis, the field may be assumed to lie in the x,-x; plane
without loss of generality.® The projections of the unit
vector in the magnetic field direction onto the axes are
then 6=(0, sinf, cos@), where the field is at an angle 6 to
the c axis. Only the squares of the field components enter
the energy expectation value so allowing 6 to vary from 0
to 90° covers all possible energies. The axially anisotropic
excitons do not have rotational symmetry in the field un-
less the field is aligned with the crystal axis. Thus, for ar-
bitrary field angles, the method of Sec. III is needed to ad-
just the trial wave function to the gauge of the vector po-
tential.

An effective Larmor frequency w;, effective Bohr ra-
dius ag, and effective rydberg are obtained from Egs.
(2.15)—(2.17), respectively, for the axially anisotropic case.
Instead of K and p as defined in Egs. (2.18) and (2.19),
respectively, with K; =K, and pu;=u,, it is conventional
for axially anisotropic semiconductors to replace K with
(K, K|))"/? and p with p, in Egs. (2.15—(2.17). The field
parameter ¥ in Eq. (2.21) involves the same replacements
for p and K. The gauge-dependent energy E in Eq. (4.2)
and the gauge-invariant energy E’ in Eq. (4.9) can be ob-
tained in terms of the new Larmor frequency, Bohr ra-
dius, and rydberg by making some replacements. The
&i=p/u; is replaced by p, /u;. The u in Egs. (4.6), (4.7),
(4.10), and (4.11) is replaced by u,. The B; in Eq. (4.5) is
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replaced by K, /K;, which occurs in Egs. (4.2)—(4.4) and
(4.9). With these replacements the energies in Egs. (4.2)
and (4.9) are expressed in terms of the new rydberg and
lengths are expressed in terms of the new Bohr radius.

B. Material parameters

The material parameters of CdS and GaSe are discussed
here and given in Table I. In a magnetic field CdS has
three nondegenerate valence bands 4, B, and C.3’ Param-
eters for excitons formed from the A-valence band, associ-
ated with the lowest-energy gap, have been determined by
Seiler et al.?! using two-photon magnetospectroscopy and
by Hopfield and Thomas**3® using linear magnetooptical
absorption. Effective masses and dielectric constants for
CdS obtained from the above sources are listed in Table L.
Parameters which characterize CdS A excitons, either ob-
tained from the above sources or calculated from values
given in them, are also listed in Table I. Values which are
not referenced are calculated from referenced parameters.
Uncertainties have been included when given in the refer-
ences and used in calculated values.

Effective masses of direct excitons in GaAs have been
determined by Ottaviani et al.’° using transport measure-
ments and results of magnetooptical absorption measure-
ments at liquid-helium temperatures.”®3° Parallel and
perpendicular components of the dielectric tensor for
GaSe have been measured by Leung et al.3! Effective
masses, dielectric constants, and exciton parameters for
GaSe, obtained from the above sources or calculated from
values given in them, are also listed in Table I. Although
no uncertainties are given in Ref. 30, effective mass values
of GaSe are uncertain to at least +10%, since the reduced
effective masses used to calculate them have this degree of
uncertainty.

TABLE 1. Material parameters of CdS and GaSe excitons.

GaSe Cds
Parameter® Definition? value value®
me /mg 0.17° 0.210+0.003¢
myL/mg 0.8° 0.64+0.02¢
Mgy /Mo 0.3° 0.204+0.01f
my) /Mg 0.2° 5.0f
(K. K2 8.8¢ 8.9+0.2°
K, /K|, 1.34¢ 0.988+0.0758
/mg [mo(m ! +my7t) ]! 0.14 0.158+0.002°
y/mo [molmey! +myy )] 0.12 0.196+0.010
B/ 1.17 0.806+0.050
R pie*/2K K #? 24.5 meV 27.1%1.5 meV
a (K K\, e? 333 A 29.9+1.0 A
B/y cule’/K K\ # 593 T 74.04£5.0 T

2The symbol my is the free electron mass.
bValues for CdS are for the A-valence band.
°From Ref. 30.

dFrom Ref. 31.

*From Ref. 21.

fFrom Ref. 33.

8From p,, ), and (K, )/(p) K| )=0.797+0.013 in Ref. 21
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C. Energy minimization

The gauge-invariant energy expectation value of Eq.
(4.9) expressed in the new dimensionless units of this sec-
tion was numerically minimized with respect to the varia-
tional parameters (a;,a,a3). For a given set of material
parameters, calculated energies are accurate to within
+5% 1073 effective rydbergs. From Table I the effective
exciton rydbergs are 24.5 meV for GaSe and 27.1 meV for
CdS. These values give a computational error of less than
+0.002 meV. Clearly, the primary source of error in the
calculations is in the values used for the material parame-
ters, especially for GaSe, where the uncertainties of the ef-
fective mass values are not specified in the references.
The accuracy of these values and the validity of the trial
wave function used can be checked by comparison with
experimental measurements in high fields.

D. Comparison with experimental data
for GaSe excitons

From Table I the high-field region (y > 1.0) is roughly
B > 60 T for GaSe excitons and B> 74 T for CdS 4 exci-
tons. Although fields of up to 1000 T have been produced
using explosive flux compression devices,** few exciton
measurements have been made at these fields.

Aldrich et al.!' have measured the energy spectrum of
the ground state and the first two excited states of GaSe
excitons for fields parallel to the ¢ axis (6=0°) up to near-
ly 200 T. The optical exciton energies are the sum of the
direct band-gap energy E, and the exciton energy for the
particular state considered.”® The band-gap energy for
GaSe at extremely low temperatures (1.7 K) was deter-
mined by Mooser and Schliiter’® to be E,=2129.6
+0.05 meV. If this value is subtracted from the optical
energies, the experimental ground-state energies are ob-
tained. These energies are plotted in Fig. 1. Magnetic
fields range from 63 to 167 T. Because of difficulties in
resolution due to diffraction fringes, the energies are only
accurate to +20 cm ™! or roughly +2.5 meV.*! For this
reason the experimental data in Fig. 1 are given with error
bars 5 meV wide. Theoretical values obtained from the
variational calculations described in this section are given
as solid dots. The large uncertainty in the experimental
values makes it difficult to assess the accuracy of the vari-
ational calculations precisely. However, the agreement is
within experimental error, which is excellent considering
that such a simple trial wave function is used.

E. Energy as a function of field strength and orientation
for GaSe and CdS excitons

The data taken by Aldrich et al.!! are for fields parallel
to the ¢ axis (§=0°). Data for the perpendicular orienta-
tion have been taken for GaSe (Ref. 28) and CdS (Ref. 33)
but only for ¥ <0.2. No data have been taken for off-axis
fields in the high-field limit. However, the theory can be
used to predict the variation of energy with respect to
field orientation for such fields.

Theoretical values for the ground-state energies for CdS
A excitons and GaSe excitons were calculated for fields
ranging from ¥ =1.0 to ¥=3.0 and for angles from 0° to
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FIG. 1. Ground-state energies of GaSe excitons for fields
parallel to the ¢ axis (=0°) as a function of the magnetic field.
Error bars are experimental data from Ref. 11. Solid circles are
theoretical values calculated using Eq. (4.9).

90°. These energies are plotted as a function of field angle
in Figs. 2 and 3, respectively. The energy for CdS exci-
tons decreases for all values of y as the field moves off
axis. The decrease is larger for higher field values. For
GaSe excitons the energy first rises above the on-axis
value and then falls below it as the field angle continues to
increase. The rise and fall is more pronounced for higher
fields. The magnitude of the energy variation with angle
is much smaller in GaSe than in CdS at comparable field
strengths. The rise and fall of the GaSe exciton energies
as the field moves off axis occurs because of competition
between the increasingly positive diamagnetic term and
the increasingly negative Coulomb term. For CdS exci-
tons the decrease in the diamagnetic term and the increase
in the Coulomb term both tend to reduce the energy.

Experimental verifications of these results would be dif-
ficult because of the high fields needed and because of the
accuracy required (experimental error was +2.5 meV in
the data of Ref. 11). For GaSe excitons at y=3.0
(B=177.9 T), there is a difference of only 3.5 meV be-
tween the maximum and minimum energies, which is too
small to resolve using current techniques. For CdS exci-
tons, however, a field of 200 T gives a shift of roughly 20
meV between parallel and perpendicular orientations.
This shift could easily be resolved and the experiment
could be simplified by measuring only the parallel and
perpendicular orientations. Ground-state energies of GaSe
excitons do have resolvable energy shifts at fields of 600 T
and higher. Since fields of over 1000 T have been pro-
duced, measurement of energy shifts in GaSe at these
fields is possible.
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FIG. 2. Theoretical ground-state energies of CdS A4 excitons
as a function of field angle 6 at different magnetic fields. Mag-
netic fields in teslas are ¥ X 74.0 T.

F. Gauge-dependent energies of GaSe excitons

In order to demonstrate how strongly results can vary
using the gauge-dependent approach, calculations were
made using the gauge-dependent exciton energy expecta-
tion value of Eq. (4.2) in the units of this section in the
Landau (§,=£&,=£;=1) and symmetric (§;,=£&,=£&;=+
gauges. Gauge-dependent energies of GaSe excitons as a
function of field angle for ¥y =3.0 are listed in Table II.
The Landau- and symmetric-gauge values differ signifi-
cantly, especially in the parallel orientation. Both sets of
energies are higher than the gauge-invariant energies for
v=3.0, except for the symmetric gauge in the field-
parallel case. In this case the system has cylindrical sym-
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FIG. 3. Theoretical ground-state energies of GaSe excitons as
a function of field angle at different magnetic fields. Magnetic
fields in teslas are ¥ X59.3 T.

metry in the field and the real trial wave function is
adapted to the symmetric gauge. The symmetric-gauge
energies are close to the gauge-invariant energies for all
angles because the GaSe exciton is only slightly anisotro-
pic (§=p;/u=1.17). For strongly anisotropic excitons
the symmetric gauge would not fit the symmetry of the
system and the difference between gauge-invariant and
symmetric-gauge values would be greater.

G. Exciton ground-state spin splitting

The energies calculated so far, using the minimally cou-
pled Hamiltonian of Eq. (2.3), neglect the effects of exci-

TABLE II. Gauge-dependent ground-state energies of GaSe excitons. All energies are calculated for

¥ =3.0 (B=177.9 T) and are in units of meV.

0 Symmetric Landau Gauge
(deg) gauge® gauge® invariant®
0 25.97 34.79 25.97
15 26.36 35.10 26.35
30 26.95 35.31 26.90
45 26.91 34.23 26.78
60 25.89 31.35 25.71
75 24.30 27.29 24.19
90 23.42 24.86 23.41

“For the symmetric gauge &;= % in Eq. (4.2) with the units of Sec. V A.
°For the Landau gauge £;=1 in Eq. (4.2) with the units of Sec. V A.
°The gauge-invariant energy is calculated from Eq. (4.9) with the units of Sec. V A.
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ton spin on the ground-state-energy spectrum. For strong
fields the effect of spin splitting is large and must be con-
sidered for completeness. The electron and the hole are
both spin-7 particles. The 1s exciton level thus splits in a
magnetic field into four nondegenerate spin states: a sing-
let of total spin S =0 corresponding to electron and hole
spins antiparallel and three triplets of total spin S =1,
where the component of total spin parallel to the field
Sp=+1,0, —1.2 The variational calculation using Eq.
(4.9) provides an upper bound to the lowest-energy state of
the system for which spin contributions are zero. For the
singlet and the middle triplet (Sp=0) there are no spin
contributions to the energy and in CdS (Ref. 33) and GaSe
(Ref. 28) the middle triplet is lower in energy than the
singlet. Energies calculated previously are thus an upper
bound to the middle triplet.

For fields parallel to the c¢ axis (B =B,) the upper and
lower triplets can be computed by adding a spin term,!"?!

Hs =g;Sz(7//2) ’

to the Hamiltonian, where g is the effective g factor of
the exciton for parallel fields and S,=+1 is the z com-
ponent of total spin. This term has no coordinate depen-
dence and therefore simply adds a constant to the varia-
tional energy obtained previously.

The effective g factor which determines the 1s triplet
splitting in parallel fields has been measured for GaSe
(Ref. 28) and CdS.** The spin splitting of GaSe and CdS
1s triplets has been calculated for on-axis fields. In exper-
imental measurements it may be difficult to resolve the
triplet splitting exactly. Aldrich et al.?? were able to mea-
sure only the center of gravity of the ground-state triplets
with any precision.*! Since this energy corresponds to the
energy of the middle triplet, with spin component S, =0,
the data agree very well with the variational upper bound
to the S, =0 level calculated neglecting spin effects. Since
the g factor for fields at angle 6 is not known in general,
the precise spin splitting in off-axis fields is difficult to
determine; however, the center of gravity of the spin-split
triplets should have the values given by Figs. 2 and 3.

(5.1

VI. CONCLUSION

A gauge-invariant energy variational method has been
developed for application to systems in magnetic fields.
The chosen trial wave function is adapted to the gauge of
the vector potential using a phase factor, which produces
gauge-invariant energies and ensures that the charge-
conservation condition is satisfied.

The method is applied to excitons in the axially aniso-
tropic semiconductors GaSe and CdS in the presence of a
strong uniform magnetic field. The variational upper
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bound to the exciton ground-state energy is calculated as a
function of field strength and orientation for GaSe exci-
tons and excitons formed from the A-valence band of CdS.
The results of the theory give good agreement with the ex-
perimental data of Aldrich et al.!! for GaSe excitons in
high magnetic fields parallel to the crystal axis. The
theory predicts a decrease in the ground-state energy of
CdS A excitons as the field is shifted from parallel to per-
pendicular orientation with respect to the crystal axis.
For GaSe excitons the ground-state energy first rises
above the on-axis value and then falls below it as the field
shifts to the perpendicular orientation. The superiority of
the gauge-invariant approach is demonstrated by the large
variation of energy with respect to gauge when an un-
adapted trial wave function is used.

Experimental verification of the exciton calculations
would be difficult because of the high magnetic fields
needed and large experimental errors. For CdS excitons,
however, the energy shifts are sufficiently large to be
resolved at fields above 100 T. In addition to the high
magnetic fields needed for verification, another restriction
on application of the formalism for excitons and shallow
donors is the need for prior knowledge of the material pa-
rameters. Other axially anisotropic nondegenerate semi-
conductors to which the formalism could be applied are
Te (Ref. 42) and CdSe.*>*

The energy expressions for excitons can be specialized
to the case of a shallow donor (an electron bound to a pos-
itively ionized donor impurity) by setting the effective
hole mass equal to infinity.?® In semiconductors with
nondegenerate valence bands they could also be specialized
to the case of shallow acceptors by setting the effective
electron mass equal to infinity.

In conclusion, the improved trial wave function solves
two problems associated with application of the variation-
al method to systems in magnetic fields: gauge depen-
dence and violation of charge conservation. It ensures
charge conservation, a gauge-invariant energy, and the
best upper bound to the ground-state energy consistent
with the form of trial wave function chosen.
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