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Clustering model in n-doped many-valley semiconductors
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We investigate the microscopic structure of the impurity states in n-silicon as an example of ran-
domly distributed donor impurities in a diamond-structure many-valley semiconductor. An im-

proved Hartree-Fock-Roothaan scheme with spin-polarized potentials and Kohn-t. uttinger donor
wave functions associated with each impurity were used in the calculation. It is shown that the
many-valley character of the host gives rise to a distribution of impurity clusters of various sizes,
quite different from the case of neglecting the valley multiplicity, and that it strongly reduces the
self-compensation effect due to the potential fluctuation. The results are in agreement with recent
investigations that have appeared in the literature.

I. INTRODUCTION

Shallow donor-impurity states in semiconductors have
attracted much attention, because they provide a typical
example which exhibits a metal-nonmetal (MNM) transi-
tion at low temperatures as a function of impurity concen-
tration. This MNM transition, which is usually discussed
in terms of the Mott-Hubbard-Anderson (MHA) (Refs.
1 —3) model, associated with the impurity band, has been
observed as a function of impurity concentration in doped
semiconductors such as doped Si, Ge, GaAs, CdS and oth-
ers. In these systems, e.g., n-type semiconductors, donor
impurities are distributed at random usually occupying
substitutional sites. It has been well established experi-
mentally that doped semiconductors undergo a MNM
transition beyond a certain impurity concentration X,.
Although doped semiconductors have been widely studied
both theoretically and experimentally, the nature of this
transition is still not completely elucidated. ' Mott'
suggested that the zero-temperature conductivity jumps
from zero in the insulator to a certain minimum metallic
conductivity value. Furthermore, the scaling theory of lo-
calization showed that around the critical region the
MNM transition should be continuous, in contradiction to
the existing data that support Mott's original ideas and re-
cent survey. '

Recently, a high-resolution zero-temperature study of
the MNM transition in phosphorus-doped silicon (Si:P),
obtained by a uniaxial compressive stress, found a sharp,
but nearly continuous MNM transition. These results
seem to differ from both predictions cited above. In even
more recent work Kaveh and Mott' argue for a qualita-
tive difference between this transition in compensated and
uncompensated materials.

The experimental results ' ' on electrical conduction,
susceptibility, specific heat, as well as theoretical investi-
gations ' ' ""' suggest that the MHA model prop-
erly describes the novel behavior of a doped semiconduct-
or near the transition. In this model the electron correla-
tion and the Anderson localization are regarded as the
most essential factors, and the impurity density of states

(IDS} is split into two Hubbard bands, situated within the
band gap of the host material. The lower band consists of
D states (related to singly occupied impurities), and the
upper band consists of D states (doubly occupied impur-
ities). These two bands are separated by the intra-atomic
Coulomb correlation energy U. There is direct evidence of
this separation in n-type Si and Ge from submillimeter ab-
sorption ' and photoconductivity3' ' measurements.
The correlation effect is seen in the D state through the
formation of stable bound states, found experimentally by
Narita and co-workers, and investigated by Kamimu-

in a many-valley semiconductor. As the concen-
tration increases the Hubbard bands are broadened and
eventually start overlapping each other as well as with the
host'conduction band (HCB). In essence, it appears that
the role of the HCB in the phenomenon of MNM transi-
tions is important primarily in the sense that it serves to
determine the form of the cluster distribution of the (lo-
calized to extended) impurity states, as we will see later.
In addition, recent work' ' has shown that the calculated
value of the constant in Mott's condition N,' aIt ——const
(Refs. 1 and 2} (art being the effective Bohr radius of the
donor electron) is subject to the vagaries of the choice of
electronic wave function, as well as being sensitive to the
form of the HCB. The influence of the host characteris-
tics, such as the existence of a conduction band with a
many-valley character, is believed to be of central impor-
tance in the behavior of the physical properties and has
been the subject of many recent investiga-
tions. ' ' ' ' This inference does not apply to
direct-gap semiconductors which have an isotropic con-
duction band (e.g., GaAs and CdS), and the isolated donor
problem is thus just that of a hydrogen atom. On the oth-
er hand, in indirect-gap semiconductors (e.g., Si and Ge)
the donor electron wave function is a sum over terms
which are products of a rapidly oscillating Bloch wave
with a hydrogenic envelope which satisfies an effective-
mass Schrodinger equation. In silicon, there are six val-

leys in the HCB at k&0, and thus the ls ground state of
an isolated donor has sixfold degeneracy in the framework
of this effective-mass approximation.
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Work to date has concentrated much effort in investi-

gating cluster states which provide a great deal of interest
in doped semiconductors, particularly the Si:P system,
which is a good system for, e.g., Raman studies, since it
has the many-valley HCB necessary for a large electronic
Raman cross section, as well as for electron spin reso-
nance (ESR), photoconductivity, and far-infrared ab-
sorption spectra measurements, where cluster states have
appeared in a dominant role. In the light of these investi-
gations, some cluster approaches appeared in the
literature, particularly those that take into account the
many-valley character of the HCB. ' ' 3 ' 3 Recently,
the present authors, by employing a simple one-electron
Hamiltonian (for a one-band model), calculated the IDS of
n-type many-valley semiconductors and found it to have a
structure different from that of the corresponding one-
vaiiey system. Franzen and Berggren, in the wake of the
cluster model used by Kummer et al. and Walstedt
et al. to study the susceptibility of CdS:In, using a
Heisenberg Hamiltonian, calculated the magnetic suscepti-
bility and specific heat in the low concentration region,
well below N„ found good agreement with experimental
results in Si:P. For the exchange interaction, they used
the Kohn-Luttinger (KL) (Ref. 45) wave functions because
of the many-valley semiconductors in Si. Their model is
also closely related to previous work by Marko and
Quirt and Marko et al. Takemori and Takemori and
Kamimura with a Gaussian model calculated the mag-
netic susceptibility and the specific heat reproducing fairly
well the characteristic features observed in experiments in
Si:P for 1.7X10' cm . For the specific heat, they have
taken into account the many-valley effects of Si by multi-
plying by a factor of 6, in the final results, corresponding
to the degeneracy.

Searching for a mechanism which would enable us to
take into account the degeneracy of the indirect-gap semi-
conductors, and its infiuence on the impurity cluster states
in the low to intermediate n-type doping regime, i.e.,
10"&X&2g10" and 2g10"&X&4X10" cm-',
respmtively, in Si:P, we have performed an improved
unrestricted Hartree-Fock-Roothaan (HFR) cluster calcu-
lation with such degeneracy effects. In Sec. II we discuss
how the many valleys are introduced in the calculation.
In Sec. III we present our calculation for the IDS. Section
IV is devoted to the investigation of the cluster states to
compare them with other investigations and draw some
conclusions from our results.

II. MANY-VALLEY UNRESTRICTED HFR
APPROACH

For a given impurity concentration X, M random im-

purity sites IR;;i=1,MI are generated with a computer
within a volume Q of a diamond lattice host representing
the location of M substitutional impurities, in order to
simulate a sample of a doped semiconductor with
N =M/Q. Surrounding these M impurities, additional
Ms impurities were similarly generated, in such a way as
to keep the impurity concentration unchanged. These M,
impurities will reduce the surface effects and will provide
a mean field. '~ With each impurity in Q is associated a
Kohn-Luttinger " ' ' donor wave function

g, (r)= g+(r)A(r),

where QI(r) is the Bloch function associated with the 1th
of the v conduction-band minima of the host material
(v=6 for silicon), and EI(r) is a hydrogenic envelope
function in which the effective mass at each of these mini-
ma has been assumed to be isotropic. Thus the calculation
is simplified, since the envelope function can be written as

+g(r ) =(naII')'~'exp( —r/a~) . (2)

The Hamiltonian of the many-electron system is

(r)%„ (r)=E„ 4„ (r), cr= T, g and n = 1,M

where

(4)

~ (r)= + V""(r)+V (r)+ V"(r),0'

V (r) is the Coulomb potential, and V'"(r) is the spin-
dependent exchange potential. Taking I (cr) as a set of in-
dices which specifies the M(cr) single-particle wave func-
tions that are occupied by o.-spin electrons, the Coulomb
and exchange potentials can be expressed as

Vc(r) y y I ~lP (r ) ~2V 1-1

X(r —r')dr', s=o, —a

V'"(r)+„(r)=—g g 5, JV*,(r')V""
s m&I (s)

X(r —r ')lI'„(r ')

X'p, (r)&r ' .

The eigenstates of Eq. (4) can be expressed as

q'.o(r) =QPJ.(r»gn
J

where PJ(r ) are given by Eq. (1).
Following the usual HFR procedure, we obtain

g[s~t~. ),J —E.s,,]c,.=o,

where the matrix elements of A ', are given by

II=+ ++V""(r )+—'g V""(r;—r ),
l l,J

where V'"(r;) is the impurity-ion potential acting on the
ltll clccfl'on, V (I'; —l~ ) 18 tllc Coulomb IIltcl'ac'tloll be-
tween the ith and jth electron, and the summations are
over all the M electrons in the volume Q. This inner clus-
ter will be solved numerically using an unrestricted HFR
formalism with spin-polarized potential. This formal-
ism turns out to be similar to the Hartree-Fock theory
used in previous calculations. '"' Accordingly, the fol-
lowing two sets of coupled Schrodinger equations arise.
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2

A,'J =fP';(r) + V""(r) g, (r)dr

+g QP~i f f P"; ( r )Pp( r ') V""(r —r ')

X [fi(r ')g, (r)

—Pi(r)P&(r ')5, ]dr dr '

(10)

+ g QPkkJ'«k) —QPkkK'«k» (12)
s =cT, —cT k+1 k+i

EgS(RJ.)+——K(Rq)+(P;, +PJJ )L (R,J )

&„* .». ~ ~

m El (s)

To obtain the self-consistent solutions of Eqs. (9) and (10),
we first neglect the exchange term in (5) to obtain the
Hartree eigensolution B . Then we use this B as the ini-
tial input to obtain A ', and the corresponding eigenvec-
tors. Once we know A '

we solve (9) for a new input 8
in order to construct a new A ' from (10). The numerical
interaction continues until a self-consistent solution is
reached. Neglecting the three- and four-center integrals,
the diagonal and off-diagonal matrix elements of (10) are
written explicitly in terms of the Slater integrals

Pi,'gg Eg+ g J(R;k)——+ UP;g +2+P,J L(Rik)
k~i k~i

The expressions J(R;k) and J'(R,J) remain unaltered, the
vector R=R; —RJ =R;J corresponds to the separation of a
pair of donor impurity centers at sites R; and RJ, and the
vectors ki=+kx, +ky, +kz represent the values of the
Bloch wave vectors at the conduction-band minima for
silicon in three mutually perpendicular (100) directions.
Spectroscopic experiment has lead Dumke ' to localize the
minima at 2ir/a(0. 82,0,0), i.e., at about 82%%uo of the dis-
tance to the Brillouin-zone boundary, and equivalent
points, where a is the lattice parameter of Si. According-

ly, the. length of the vector ki is
~

ki
~

=0.82(2ir/a)
=16.41, where aIr ——17.3 A, the Bohr radius of Si:P, and
a =5.42 A were used. As a consequence of the valleys in
Si, Eqs. (15)—(18) have an oscillatory behavior as shown
in Figs. 1 and 2, which will reduce the broadening of the
IDS. Neglecting the valleys, Eq. (1) must be substituted
by Eq. (2). No adjustable parameters whatsoever have
been used other than the above well-known values. We
have used the value of aiI as determined from an ESR in-
vestigation by Cullis and Marko who used the KL wave
function to calculate the donor-pair exchange energy, and
included the conduction-band degeneracy. The term U
remains unaltered at —', (effective hartree). We also use the
corresponding experimental value U/Vo ——0.475 to calcu-
late the density of states. The D band remains unaltered
while the center of gravity of the D band, at very low
concentration, is lowered to a value of —0.0275 effective
hartree which is consistent with experimenal results.
With the use of a Chandrasekhar wave function, con-
veniently parametrized, for the D orbital, Riklund and
Chao found a value consistent with experiment and cal-
culated the impurity states, which will be compared with
our calculation.

PJK'(R J ) PJJ'(R(q—),
S =CT, —CT

(13)
III. IDS

The IDS D (E) is normalized to

K ( R,J ) = V(R,J ) = V(R;~ )I,
the electron correlation is

(16)

L (Rij ) =L (RJ )I,
and the exchange is

K'(R(J ) =K'(R,
q
)I

(17)

(18)

where E~ is the ground-state level of an isolated impurity,
in units of Vo, which is equal to twice the ionization ener-

gy of the material. Some of these Slater integrals are mul-
tiplied by an interference factor, denoted here by I, de-

rived from the many-valley character of the HCB, which
is assumed as a valley-symmetric wave function. It is ob-
tained as

V

I =—+exp(iki R), (14)
1=1

and the integrals are written as follows. The overlap in-

tegral is given by

S ( R;~ ) =S (R,J )I, (15)

the energy for the transfer of electrons between impurity
sites is

fD(E)dE= =(M/Q)aH
32m

(19)

where p is defined as a dimensionless impurity concentra-
tion p =32m.MaH /Q. For Si:P the critical concentration
is around p, =2.0, taking a~ ——17.3 A and

N, =3.74&(10' cm (Ref. 5). In our calculation we use
inner clusters of M =40 impurities, 960 outer impurities,
and a configuration average over 50 samples. The Fermi
energy is obtained through

f D (E)dE = aH, (20)

at 0 K. Of course, EF was assumed to be the same in the
whole sample, that is, in each of the LS configurations.
This should be checked with the assumption made in the
HFR calculations, namely, that the first M states of low
energy were occupied in each configuration. When this
condition is not satisfied, we expect an internal charge
transfer between different configurations, and the HFR
calculations would have to be performed accordingly.
This "charge inhomogeneity" generation can, in some as-
pects, be compared to the self-compensation effects in ear-
ly work, ' and could play a similar role in the physical
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QH = l7. 5 A
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2xlO cm
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FIG. 1. Effective overlap S(R) and electron-hopping energy V(R) integrals as a function of distance R between impurity centers
in Si. The dashed and solid wiggly curves refer to anisotropic equations [(15) and (16)]. The dashed and solid straight curves refer to
the case of neglecting the oscillatory factor deriving from the many-valley character of the HCB. The latter case is relevant to, for
example, n-type CdS and GaAs. The vector R between the two impurity centers is in the (100) direction. The arrows indicate the
mean separation of donors at different concentrations. The effective Bohr radius used was aH ——17.3 A. The impurity critical con-
centration for MNM transition in Si:P is 3.74)& 10' cm

properties. We will call it "inner compensation", stressing
the fact that it is not caused by structural defects or
strange impurities, but only by the potential fluctuation of
the system itself. This effect causes in fact a serious limi-
tation in the cluster approach, since it would be very time
consuming and expensive to incorporate it self-
consistently in the HFR calculations. Fortunately, and
this is a significant result, the incorporation of the many-
valley character of the host causes it to be much reduced
in indirect-gap semiconductors, such as Si or Ge. For an
estimate of this effect, we simply discarded the configura-
tions whose occupations did not conform with the Fermi
energy calculated from Eq. (20). Then Ez is recalculated
again and, in the final sample, we keep the fraction f of
initial configurations, which are consistent with Eq. (20).
With the KL basis functions, the fraction f ranges from 1,
on low concentrations, to more than 0.9 for p =1.0, com-
pared to the value of 0.5 obtained for p =1.0 with the
simple 1s wave function. In Fig. 3 we show the IDS for
p =0.5 (corresponding to N =9.6X10' cm s of Si:P)
from two different clusters calculations. In the histogram
3(a) there is no inner-compensation effect during the self-
consistency, while the histogram 3(b) was obtained by the
selected configurations consistent with Eq. (20), such that
no configuration has an occupation less than M/2 or
greater than 3M/2 (we found that the HFR levels are not
too sensitive in this range). For the latter case [histogram

3(b)], the impurity states are rather sensitive; the overall
IDS will be enhanced, the high-energy tail of the lower
Hubbard band shifts down considerably, and the upper
band remains approximately unaltered and the Fermi en-

ergy (Ez) and D(EF) will be lowered and raised, respec-
tively. Apart from the HFP limitation and the cluster
size, certainly the inner compensation is very important
for higher concentrations, but its effect is greatly reduced
by the inclusion of the oscillatory behavior of the wave
functions due to the HCB minima. In what follows we
will carry out the calculation with the correction discussed
above.

The IDS obtained are shown in Figs. 4 and 5 as a func-
tion of impurity concentration p =0.25 and 1.0 (corre-
sponding to 4.8& 10' and 1.92&(10' cm, respectively,
for Si:P). The histograms 4(a) and 5(a) are obtained by
neglecting the oscillatory factor deriving from the many-

valley character of the HCB, while the histograms 4(b)
and 5(b) take this into account. The bandwidths are much
reduced, the D(E) increases, and the EF decreases by in-

cluding degeneracy. The g ratio defined by Mott as a
measure of the strength of the pseudogap will gradually
diminish. The EF is plotted in Fig. 6 for different situa-
tions showing its sensitivity of the choice of the calcula-
tion. When the E~ passes the HCB, a critical concentra-
tion N, b ~~N, is assumed. It was suggested that this
transition results from the fact that the impurity is im-
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l7
l.92 x lO cm

FIG. 2. Same as Flg, l, for the effective exchange interaction g'(g) pq ($8) as a funct o
m Sl.

E/Vo

p=0.5

~O

Cl

~4%@~ jh ~& It ~ELM

FIG. 3. IBS calculated without and with (b) inner compensation for p =0.5. The arrow indicates E~.
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mersed in a host matrix holding it together, for Si:P,
X,b ——2.0&10' cm, corresponding to @=10. In Fig. 6
we show the change in E~ with concentr'ation obtained
from these cluster calculations with various models. In
fact, the calculations with the single hydrogenoid model
yields a IDS with dispersion tllat is 'too large foi concen-
trations, even below the MNM transition, and the value of
EF cannot be located with reasonable reliability. ' The
curves in Fig. 6 show that the inner-compensation effect
has a considerable influence in the location of Ez, and
that the single hydrogenoid model for the atomic state of
the donor impurity does not reproduce, even qualitatively,
the experimental behavior. The inclusion of the KL wave
functions gives the right behavior of Ez, and reduces the
bandwidth and the dispersion in the IDS. The location of
EF is fairly realistic in the range of concentrations con-
sidered here.

IV. IMPURITY CLUSTER STATES
AND DISCUSSION

In order to have a microscopic view of the IDS, we
have used the inverse participation ratio (IPR) and a prob-
ability distribution of cluster states. The IPR that has
been used in earlier numerical calculations ' ' as a mea-
sure of localization of the eigenstate has been defined as

M M
'2

~ipR~-= X!&,'-I' X I~...!'
j=j. j=&

(where Dip„ is the IPR), for the nth eigenstate with spin
o, where Bj„comes from (8). The IPR, dots appearing
on Figs. 4 and 5, varies from 1, corresponding to a state
which is as localized as possible, to 1/M, corresponding to
a state which is as extended as possible. In Figs. 4(a) and
5(a) the IPR is obtained by neglecting the many-valley ef-
fects of the HCB, while for Figs. 4(b) and 5(b) these ef-
fects are taken into account. For low concentration, most
of the states have an IPR between 0.5 and 1.0 indicating
an isolated impurity state or a pair state. Going to inter-
mediate regions approaching N„where large clusters be-
come more probable than isolated close pairs, the IPR for
case (b) delocalizes less rapidly than for case (a), indicating
a shift in the energy of the delocalized conducting states.
Even for such higher concentrations, some of the occupied
states will be localized, which is supported by the absorp-
tion measurements on doped silicon by Schmid, who
also theoretically estimated the band-gap narrowing using
arguments rather similar to the work of Berggren and Ser-
nelius, and the calculation on direct-gap GaAs by Serre
et al. , who focused attention on the relative of
multiple-impurity scattering and impurity-concentration
fluctuation, obtaining a band tailing. In a recent paper of
Sernelius, where the ion potentials are approximated by
pure Coulomb potentials and the donor electrons are treat-
ed as an electron liquid surrounding the impurity ions, the
high-stress optical birefringence and piezoresistance were
investigated in heavily doped many-valley germanium.
This calculation is carried out including the number of
valleys (v=4), the effective mass, and a screening con-
stant, and it shows that the band-tailing effects are re-
duced when the many-valley character of the HCB is tak-
en into account. Now, taking the mean value of the IPR
for each sample of the cluster, at a fixed concentration,
and also the configuration average of the IPR ((IPR))
over all the sample clusters as shown m Flg. 7, we can see
that in case (a) no valley effect, the (IPR) for p &0.3
(corresponding to N &5.76X10' cm ' for Si:P), is
greater than 0.5, while for case (b), with valley effect, only
for p &0.8 (N &1.92&&10' cm ) the (IPR) is greater
than 0.5. Calculating the magnetic susceptibility by a
modified pair approximation including many-valley ef-
fects Andres et al. showed that their results agree well
with the experimental data up to concentration around
1.2&&10' cm (p=0.6) for P-doped Si, which shows that
the system is composed by isolated impurities or pairs of
impurities. With increasing impurity concentration,
higher density fluctuations will be present and the proba-
bility of having cluster states covering a number of impur-
ities is shown in Fig. 8. In Fig. 8(a) the degeneracy of the
HCB is neglected and the picture is similar to the results
of Riklund and Chao, but p = 1.0 corresponds to
1.92X10' cm, below the MNM transition, while con-
sidering the many-valley effect, Fig. 8(b), a larger cluster
appears around @=2.0 where the MNM transition takes
place. From Figs. 4(b), 5(b), 7(b), and 8(b) the states turn
out to be more extended around p, (N, ). Our results, out-
lined above, are also in agreement with the conclusions
reached by Thomas et al. through their analysis of opti-
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FIG. 6. Fermi energy as a function of the impurity concen-

tration p for different calculations involving the U, many-valley

(MU), and inner-compensation (IC) effects.

cal data. Some experimental clues exist also in ESR (Ref.
37) investigation supporting this clustering evidence. For
low concentration (N & 7 Oy 10'7 cm .—, p ~ 0.4),
hyperfine-split ESR lines exist and they are characteristic
of electrons bound on donor sites. With increasing impur-
ity concentration until clusters of eight or ten atoms form,
this multiple line pattern fades into that of a single un-
resolved ESR line. For Si:P the delocalization occurs at
N=3. 7&&10' cm (p=2.0). It is worth noting that for
the same spatial disorder, the electronic correlation is
much affected by the many-valley effect. The overlap, ex-

change, and the electron-hopping energy integrals on two
neighboring donors are much reduced on the average and
so is the broadening of the IDS, showing a new feature in
the overall impurity states of indirect-gap semiconductors.

The above results should be compared to the work of
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energy in a Coulomb gap. %e think that, at this stage, it
would be interesting to carry out more detailed calcula-
tions with the use of an extended orbital basis of the
Kohn-Luttinger type. This calculation could be carried
out either by our rather detailed HFR approach or by the
density-functional method employed by Bhatt and Rice. '

It is to be noted that, according to the approximations
that led to Eqs. (15)—(18), the Coulomb and exchange in-
teractions would be affected quite differently, and there-
fore the question of the existence of a Coulomb gap at the
Fermi energy must be examined more carefully.

Finally, we point out that the measure of localization
we adopted here, namely, the IPR, as defined by Eq. (21),
should be compared with some care with the localization
in real space. A molecular state that covers X sites equal-

ly would have an IPR of I/¹ for %=5, the IPR is as
small as 0.2, and this can be of little information about lo-
calization in coordinate space, unless we know where the
sltcs arc. Tllc pcrtlllcIlt po1111. 1s that, according to thc
curves of Figure 8, the cluster states that we observed are
almost all very small compared with the cluster size, and
so we expect that a host of physical properties, that do not
depend strongly on the localization in real space, can be
clarified by these simulations. In particular, the correc-
tions in the basis functions of a donor impurity for
indirect-gap semiconductors, that was the main purpose of
the present investigation, was proved to be essential for
the explanation of almost all the electronic properties of
these systems.
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