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In the present low-energy electron-diffraction (LEED) study of the copper (111)surface the inner

potential and the surface relaxation are determined independently from the subthreshold effect and

from Bragg-type diffraction. A "subthreshold effect" is a narrow LEED intensity structure occur-

ring at a setting where new beams have an emergence threshold in the metal: a "subthreshold. " We
reconsider the absorption of electrons with regard to its spatial distribution in the crystal and design
a phenomenological model comprising two parameters which are adjusted to the absorptive scatter-
ing cross section of the ion cores and that of the interstitial region. The two-parameter model for
the interlayer attenuation indicates the existence of a transparent scattering channel "pseudopara-
llel" to the surface for beams emerging in the crystal. The channeling extends over all layers
penetrated by the LEED electrons, giving the subthreshold effect a peak width of about 2 eV. Each
observable subthreshold effect fixes a point on the energy-dependent inner potential; for the copper
(111)surface we are able to measure the inner potential at 19.5-, 73.6-, and 109-eV incidence energy.
A local excited-state potential of the Hedin-Lundqvist type produces for the copper (111)surface an
inner-potential curve that agrees well with the measured points. From LEED spectra for the 00, 10,
and 01 beams from the copper (111) surface in the energy range 16—190 eV we infer a top-layer

spacing contracted (0.7+0.5)%%uo relative to the layer spacing in the bulk. The theoretical and experi-

mental spectra are compared by means of metric distances, which are stable with respect to noise in

the data and give a linear response to small variations of the structural parameters.

I. INTRODUCTION

We have observed that the specular low-energy
electron-diffraction (LEED) spectrum from the (111) sur-
face of copper contains narrow features which are poorly
described by customary LEED theory. The narrow
features are observed when the incidence of the primary
beam is close to normal, and they occur near threshold en-
ergies where new beams start to propagate in the metal.
We shall refer to narrow features associated with a beam
threshold in the metal as the "subthreshold effect, "' using
the prefix "sub" to make a distinction from the "threshold
effect, " or Rydberg fine structure, connected with the
grazing emergence of beams in the vacuum.

At very low energy and normal incidence where only
the specular beam is reflected from the surface, a shoulder
at 19.5 eV leaning against a Bragg peak at 22.5 eV attracts
particular attention. The shoulder is the second most in-
tense part of the entire specular spectrum and is correlated
with the threshold at approximately 18 eV where six
beams, those equivalent by symmetry to 10 and 01, are
emergent in the metal. At higher energies and near-
normal incidence similar structure is observed in the
neighborhood of the sixfold degenerate 11 and 20 thresh-
olds in the metal. Similar observations are made by Bedell
and Farnsworth on the copper (111), nickel (111), and

.cadmium sulfide (0001) surfaces, and by Jaklevic and
Davis on the (111)surfaces of six fcc metals.

An intriguing fact is that the subthreshold effects are
considerably narrower than 2P, where P is the absorptive
inner potential. To study the phenomenon we have recon-
sidered the absorption of electrons and its distribution in
the ion cores and in the interstitial region. In a theoretical
model where we assume the absorption to be lower in the
ion cores than in the interstitial region, the interlayer flux
transmitted by the beams emergent in the metal is rein-
forced in comparison with the situation that the absorp-
tion is uniform in the layer. These beams open an impor-
tant scattering channel almost parallel (within 10 ) to the
surface. In all layers penetrated, the primary beam
scatters a flux into the transparent channel, which in turn
rescatters some flux into the specular beam. One finds
that a scattering channel which is pseudoparallel to the
surface and extends over many layers will create construc-
tive interferences narrower than 2P in the visible beams.

Our LEED calculations on the copper (111) surface
reproduce the observed subthreshold effect with excellent
accuracy. Because its creation takes place in the bulk, the
subthreshold effect proves insensitive to surface relaxa-
tion. An inference of great physical interest is that the
narrow spectral features fix a number of points on the
inner-potential —versus —energy curve Vo(E).
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In a recent LEED investigation, Tear et al. have
recorded 21 beam spectra in the energy interval 50—400
eV and fit theory to data whose center of gravity lies in a
region where the inner potential is constant to a good ap-
proximation; they report (0.3+1)% contraction of the
top-layer spacing. Using a much smaller data base, the
00, 10, and 01 spectra in the energy region 16—190 eV, we
find the contraction (0.7+0.5)%. We argue that the
agreement with the previous elaborate investigation is not
accidental but is due to our establishing, firstly, the
energy-dependent inner potential from the subthreshold
effect and, secondly, the top-layer spacing from the Bragg
structure of the spectra. Extensive photoemission mea-
surements show that the low-index surfaces of copper
have a number of electronic surface bands below the Fer-
mi level. A good knowledge of the deformation of the
lattice near the surface, such as the relaxation of the top-
layer spacing, is a necessary prerequisite for surface-band
calculations.

For the calculation of the inner potential, which is
strongly energy dependent in the region 16—190 eV con-
sidered in this work, we use the Hedin-Lundqvist version
local-density theory. %'e have treated the potential part
of the LEED calculations in two earlier papers' '" and
found that the local-density theory gives excellent agree-
ment with LEED experiments when applied to alumi-
num' and copper. "

The comparison of theoretical and experimental LEED
intensities is made in a novel manner by means of metric
distances between beam spectra and sets of beam spectra. '

The search for a new measure of the misfit between theory
and experiment was started in the course of this work
since it was felt that current reliability indexes, ' ' based
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FIG. 1. Sample-to-ground current i(E) in an experiment on
LEED from the copper (111) surface. Normal incidence. Inset
at the bottom shows the specularly reflected intensity. B denotes
Bragg peak, and S denotes subthreshold effect. See Secs. III C
and IV B.

on the differentiation of data, depend too much on the
curve-smoothing procedure. The calculation of the metric
distances involves integration of spectra and is therefore
stable with respect to noise in the data. The metric dis-
tances have the interesting property that they give a linear
response to small variations of the structural parameters.

The paper is organized as follows. In Sec. II the LEED
experiment on the copper (111) surface is described, and
particular attention is paid to the specular spectrum in
which a strong and narrow feature is observed at very low
energy. In Sec. III the layer-Korringa-Kohn-Rostoker
(KKR) model for LEED is provided with an electron ab-
sorption distributed less on the ion cores and more on the
interstitial region, opening a transparent scattering chan-
nel pseudoparallel to the surface and creating a subthresh-
old effect in the visible beams. In Sec. IV, LEED spectra
are calculated and surface parameters are found which
represent the experimental spectra with great accuracy
both with respect to major peaks and subthreshold effects.
In Sec. V metric distances between spectra are used for
measuring the misfit between theory and experiment. In
Sec. VI we establish that observed subthreshold effects fix
the shape of the inner-potential —versus —energy curve
Vo(E), and we sum up the physical properties of metric
distances between spectra.

II. EXPERIMENT

The LEED experiment was made with standard three-
grid display optics and a spot photometer. A disk-shaped
sample of 25 mm diam. and 1.5 mm thickness was spark-
cut from a rod (delivered by Materials Research Corp. ),
and the (111) surface was oriented by spark erosion to
within 1'. Before being mounted the sample was mechani-
cally polished and electropolished as described by
Tegart. ' The sample was cleaned inside the vacuum
chamber by cycles of argon-ion bombardment (1 pA, 250
eV) followed by heating (750 K). The temperature was
measured by a thermocouple located in one of four spark-
drilled holes used for fixing the sample to a molybdenum
ribbon which served as a holder and a heater. A surface
with a particularly high electron reflectivity was obtained
if the sample was kept at an elevated temperature (650 K)
during the final ion bombardment. The pressure was
about 10 ' Torr.

One can observe the specular beam at normal incidence
in a narrow energy range around 20 eV by bending the re-
flected beam out from the axis of the electron gun by
means of a magnetic field and a small sample tilt. We
first obtained evidence that this was an interesting obser-
vation to make by recording the sample to ground current
as a function of the primary energy at normal incidence.
As seen in Fig. 1, the current-versus-energy curve shows a
dip on the low-energy side of the minimum at 22.5 eV
above the vacuum level. The dip is very sensitive to the
angle of incidence and is observed only within 2' from the
surface normal. It can therefore be used to check that the
electrons are incident near the normal direction after
proper adjustment of the magnetic field. %hen the pri-
mary beam is set at normal incidence in the manner just
described, it turns out that the intensity of the specular
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beam is the inverse of the sample to ground current shown
in Fig. 1. The 00 spectrum has a major peak at 22.5 eV,
and, superposed on that, a shoulder at 19.5 eV. The major
peak corresponds to a Bragg reflection at the (111) layers
of copper.

In the present work beam intensities are normalized to
unit incident current. The electron to photon efficiency of
the fluorescent LEED screen is in good agreement with
the sample-to-ground current curve in Fig. 1, which shows
that the intensity of the Bragg peak at 22.5 eV is 10%%uo.

The measured LEED spectra for the 00, 10, and 01 beams
are discussed together with calculated spectra in Sec. IV.

The observation of the shoulder at 19.5 eV in the 00
spectrum poses a straightforward theoretical problem. On
one hand, the shoulder is the second largest structure in
the beam spectra from the copper (111)surface next to the
Bragg peak at 22.5 eV. On the other hand, the shoulder is
hardly resolved at all by customary LEED calculations,
which reproduce most other features of the measured
spectra. We find that the shoulder at 19.5 eV depends on
the distribution of the electron absorption on the ion cores
and on the interstitial region.

III. A NEW MODEL FOR THE INTERLAYER
ATTENUATION

A. Interlayer propagator

The absorption of LEED electrons in the crystal is
described phenomenologically by means of an imaginary
inner potential P which is energy dependent. The absorp-
tion enters at two stages in the LEED formalism: in the
complex phase shifts describing the scattering within a
single layer and in the propagators accounting for the
phase change and attenuation between layers. The com-
plex phase shifts result from a matching of the radial
wave functions in the ion-core muffin-tin potential
VMT(r)+ip against attenuated plane waves in the intersti-
tial region of potential Vo+iP In the c.ustomary LEED
formalism' the interlayer propagator Pg of beam g
has the magnitude (in Rydberg atomic units)

~
Pg

~

=exp[ —Im(kz, )d],

kg, (E —Vo —
I

key——+g I

—iP)'

where d is the interlayer spacing, E is the primary energy,

Vo is the real inner potential, and k„z is the surface corn-

ponent of the wave vector k of the incident electron. The
crystal is the half-space z & 0. Expression (1) gives a first
approximation to the interlayer attenuation, corresponding
to a picture where the LEED electron is an attenuated
plane wave in jellium of potential Vo+i p

We now consider a physical picture where the absorp-
tive potential is nonuniform in space, pMT(E, r) in the
muffin tins and P&R(E, r) in the interstitial region. T'he
corresponding probability densities of the LEED electron,

~

%MT(r)
~

and
~

'P,R(r) ~, are, in general, different from
a simple attenuated plane wave. The total absorpti
cross section of a unit cell of an atomic layer is '

~abs(+) ~aba, MT(+)+~abs, IR(+) ~
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FIG. 2. Electron absorption in LEED: Ion cores are trans-
parent and interstitial region is opaque, relatively speaking. MT
model (left) and slab model (right). k vectors illustrate the chan-
neling of subemergent beams.

corresponding to a distribution of sinks in the muffin tin
(MT} and the interstitial region (IR). A first approxima-
tion for the interlayer attenuation is given by expression
(1), which for a fixed energy E has a single parameter
13(E). This can be adjusted so as to give a correct value of
tr,b,(&).

A second approximation of the interlayer attenuation is
one in which the total absorptions o,b, ;(E), i=MT, IR,
are fitted separately. We shall propose a model where the
ion cores are rolled out to a slab of uniform thickness as
indicated in Fig. 2. The ion-core slab and the interstitial
slab (consisting of two disconnected parts) have
thicknesses pd and (1—p)d, where p is the packing frac-
tion of the MT's in the crystal volume. Touching spheres
have p =0.74 in a fcc crystal and 0.68 in a bcc crystal. In
the jelliurn picture a beam g propagating in an absorbing
material is a plane wave, exp[(i Re(kg, )z], times an at-
tenuation function, exp[( —Im(ks, )z]. We shall now take
the attenuation to be exp[ —Im(ks, )(1—p)d] across the in-
terstitial plate and exp[ —Im(kg, )p,»d] across the ionic
plate, where p,b, is a new parameter. The condition that
the interstitial plate has the total absorption o,b, tR(E} set-
tles P, and, with P fixed, the condition that the ionic plate
has the total absorption o,b, MT(E) determines p,b, . As a
second approximation of the interlayer attenuation we
therefore introduce the expression

[P, f
=exp[ —Im(k„)(1+p.b, —p)d] .

The slab model is compatible with the surface periodicity
of the crystal. Depending on whether p,b, ~p or p,b, ~p,
the ion-core slab is transparent or opaque, respectively,
compared with the interstitial slab. Of the inelastic-
scattering processes accompanying LEED, the plasmon
excitation has the largest scattering cross section. The
plasmons involve the valence electrons, which are kept
away from the ion cores by the orthogonality of the elec-
tron orbitals. Since possible excitations of the ion cores,
as in the Auger process, have very small cross sections at
LEED energies, the ion-core slab is apt to be transparent.
From a phenomenological determination of p,» and P in
the case of LEED by the copper (111) surface, we find

p,» ——0.44 as compared with p =0.74 (Sec. IV B).
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The slab model for the regions of different absorption
requires that the layers parallel to the surface are close
packed, or almost so, and that the interlayer spacing is
large. Possible instances are the low-index surfaces of fcc,
bcc, and hcp crystals.

B. Emergence of beams in the crystal

corresponding imaginary wave vector component is

—,
' E;, '" i P i, E„)P f

Imkg, = (( —, II31)' '
' iE„['", E„&—[P[.

The second approximation of the interlayer attenuation
given by expression (4) is particularly interesting in con-
nection with the emergence of a new beam in the crystal.
Using a kinematical picture we shall say that the electron
of a beam g carries the energy Eg, =E Vo —'—

~
k„~+g ~

with its propagation normal to the surface, and we shall
divide the beams inside the crystal into three kinds: (i) the
propagating beams having Eg, )

~
13 ~, (ii) the beams close

to internal emergence where Eg, is in the interval +
~
P ~,

and (iii) the evanescent beams having Eg, & —
~
P

~

. The

We normalize the interlayer attenuations ~Pg ~

of the

beams g by setting
~

Po
~

equal to exp( —aod), where ao is
an attenuation exponent which can be determined from
experimental data by means of a LEED calculation. In
the new notation we have

p= —2apEO, ( l+p, b, —p)

exp( aoEo, E—g,
' d), Eg, )

~

13

iPg I

= exp[ —ao Eo, (I+p,b, p)' d],—iEg, & pi

exp[ — E,. ~

'"(I+p.b. —p)d]

(7)

The conclusions are (i) that the propagating beams are in-
dependent of p», to a very accurate approximation, (ii)
that the beams about to emerge in the crystal have an at-
tenuation exponent proportional to (I+p,b, —p)', and
(iii) that the evanescent beams rapidly become unimpor-
tant irrespective of p,b, when Eg, decreases below —p

~

.
As a consequence, the amplitude of the internally emer-
gent beams becomes enhanced when p,b, is smaller than p.
In such a case an important scattering channel is opened
through the internally emergent beams.

Here a few words on terminology are appropriate. In
the literature on LEED the notions "beam threshold, "
"grazing emergence, " and "preemergent" are related to a
beam g having an energy close to E=

~
k„~+g . It is

possible experimentally to determine this energy to any
desired accuracy by observation of the Rydberg reso-
nances that are created by the reflection of beams in
the image-potential barrier. In the present paper
we study the diffuse threshold of extension
E=

~
k„z+ g

~
+ Vo+

~ P ~, where the beams in the crys-
tal turn from the evanescent mode into the propagating
Inode. In order to distinguish one beam threshold from
the other we refer to the low-lying diffuse threshold as the
subthreshold, and to a beam gradually becoming propaga-
ting in the crystal as a subemergent beam. Narrow in-
terference features created by excited subemergent beams
and appearing in the spectra of the visible beams are re-
ferred to as a subthreshold effect.

itive or negative) indicate their direction of propagation
along the surface normal. The field of the LEED elec-
trons in the metal is fed by the primary beam penetrating
successively through the layers. In each layer the primary
beam pumps an electron flux into all of the beams. In
particular, a subemergent beam g receives a flux of ampli-

tude
~

M„'gQ
~

~PO
~

" in the nth layer and transmits a flux of
amplitude

~

M„'~ ~Pg ~

from one layer to the next.
Another part of beam g,

~

M„o'g ~Pg, is scattered into the
specularly reflected beam. The contributions collected by
that beam in different layers n interfere, and if the beam g
is excited so that

~ Pg
~

is large, a subthreshold effect con-
sisting of substantial interference fringes will be observed
in the specular beam. The effect is enhanced at symmetry
settings where several subemergent beams occur simul-
taneously.

From the above scattering scenario it is possible to esti-
mate the least possible linewidth of a subthreshold effect.
We consider the case that the primary energy is varied at
a fixed direction of incidence. The fluxes pumped by the
primary beam into a subemergent beam g at different
layers below the surface are beating wavelets, in general,
but occasionally the wavelets are in phase from one layer
to the next. In such a case, they add up to a single wave
having the wave vector Rekg, ——(

~
P

~

/2)' and the same
attenuation exponent ao as the primary beam. The wave
exp[(iRekg, —ao)z] can be expressed as a superposition of
stationary waves in k space,

C. Subthreshold effect

With a purpose of studying the subthreshold effect we
suppose that the nth layer has the beam scattering matrix
M„'~ where g, g' label the beams and s,s' (each being pos-

%g ——I A (k)exp(ikz)dk,

with a Breit-Wigner intensity distribution

[A(k)
/

= I4m [(k —Rekg, ) +ao]J
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Its full width at half maximum (FWHM) is hk =2ao and
gives a peak of width AE =2 Rekg, hk in the visible ener-

gy spectra. The estimated peak width is, from expression
(6),

-6- I I I I I I

otential p{E)

(10)

The parameter ao can be estimated from a LEED calcula-
tion on the copper (ill) surface at 100 eV where the
penetration of 20 layers spaced 2. 1 A apart attenuates the
beam intensities by a factor of the order of 10 . In the
case considered, where ac=0.043 a.u. and P= —4.5 eV
(p =0.74 and p,b, ——0.44), one or more constructive in-
terferences of linewidth DE = 1 eV can appear in the visi-
ble beams in a 9-eV window enclosing a subthreshold.
The observed width is about 2 eV.

A possible dependence of p on the k vector of the pri-
mary beam gives rise to corrections of the interlayer at-
tenuations of the beams. The study made by Rasolt and
Davis seems to indicate that intensity variations due to
the incident k are broad compared with the narrow
features ensuing from p,b, .
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FIG. 3. Complex inner potential of copper Vo(E)+iP(E) as a
function of the primary electron energy E. Vo(E) is theoretical
(Refs. 9 and 11) and P(E) is phenomenological (Ref. 11 and this
work). Three Vo values determined from the subthreshold effect
are plotted.

IV. LEED CALCULATIONS QN THE COPPER
(111)SURFACE

A. Computer program, crystal potential, and beam spectra

LEED calculations were made by means of a layer-
KKR program. ' In the cases where an experiment has
normal incidence or an oblique incidence in a mirror plane
of the crystal, the code utilizes crystal symmetry for
reducing the plane-wave and angular momentum represen-
tations of the wave field. The symmetry routines are per-
manent in the program and are activated simply by the in-
put of the symmetry elements of the two-dimensional (2D)
space group of the crystal surface; the input follows the
standards of International Tables for X ray Crysta-llogra
phy. The program takes up to 10 phase shifts, but eight
phase shifts give sufficient accuracy for copper in the con-
sidered energy range, 16—190 eV. The interlayer scatter-
ing is calculated by the method of layer doubling, ' and
the scattering at the crystal face is simulated by the nonre-
flecting barrier or, as the case may be, by the image-
potential barrier.

The input of complex phase shifts is obtained from a
crystal potential whose exchange-correlation part is a local
excited-state potential of the type devised by Hedin and
Lundqvist. The design of a crysta1 potential for copper is
described in two papers by Neve et al. ' '" and the result-
ing energy-dependent inner potential Vo(E) is illustrated
in Fig. 3. In the same figure we show a phenomenologi-
cal absorptive inner potential p(E) which we have ob-
tained by adjusting the calculated peak widths to the ex-
perimental ones. The diagram for P is used together with
the value 0.44 for p,b„ further discussion about the choice
of p,b, is contained in Sec. IVB. Furthermore, the calcu-
lated intensity depends on the termination of p in vacuum.
Since the spill out of P only scales the heights of the peaks
with their widths preserved, we take the liberty of cutting
off p half an interlayer spacing outside the topmost layer.
The work function is 4.8 eV; the Bebye temperature is set
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FIG. 4. 00 spectrum from the copper (111) surface at an in-
cidence tilted 5 away from the normal towards [10] in the re-
ciprocal surface net. LEED calculation uses the precalculated
inner potential Vo(E). Intensity scale is beam current relative to
unit incident current in the experiment (the calculated spectrum
is reduced by the factor 0.53). d is the interlayer spacing at the
surface. 8 denotes Bragg peak and S denotes subthreshold ef-
fect.

at 343 K for the copper bulk and 300 K for the top
layer.

The intensity of the 00 beam was recorded with the sur-
face normal of the sample tilted 5' away from the axis of
the electron gun towards [10] in the reciprocal surface net.
As a check we varied the incidence angle in the calcula-
tions and found that 5' off-normal incidence in fact gives
the best fit to the experiment. The intensities of the 10
and 01 beams were measured and analyzed at normal in-
cidence. The measured and calculated spectra are shown

by diagrams in Figs. 4—6.
In order to facilitate visual inspection the calculated
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FIG. 5. 10 spectrum from the copper (111)surface at nodal
incidence. Same symbols as Fig. 4.

spectra are displayed on top of the measured ones; fur-

thermore, a set of spectra is shown on either side of the
best choice of surface relaxation. When the calculated 00,
10, and 01 intensities are scaled by a common factor, 0.53,
they are brought into excellent agreement with the experi-

mental ones. Letters 8 indicate Bragg reflections calculat-

ed kinematically and referred to the energy-dependent

inner potential. The best agreement between theory and

experiment is established by means of a misfit measure,

called metric distance, described in Sec. V. The result is
that the calculated inner potential Vo(E) in Fig. 3 is lifted

by a shift of the order of 1 eV, and we infer that the spac-

ing between thc two topIDost atomic layers ls contI'acted

by (0.7+0.5)% relative to the interlayer spacing in the
bulk.

The calculated and measured spectra in Pigs. 4—6 agree
well everywhere with the exception of the 01 spectrum in
the range 85—105 eV, where the theory has two maxima

{ l I I I t I & I I 1

capper (11'lI 01 beom 0 = 0'

which lie right in energy but have intensities which differ
from the measured values. In this energy range it is ob-
served experimentally that the intensity spectrum of the
01 beam is extraordinarily sensitive to the angle of in-
cidence.

A kinematical study explains why the experiment and
the calculation are particularly difficult in the energy
range 85—105 eV. At 101 eV and normal incidence the 01
beam undergoes diffraction in directions corresponding to
the scattering angle 148' relative to the direction of in-
cidence. The differential scattering cross section of the
ion core of copper 0(8) has a minimum close to zero at
0=145, and when the primary energy varies over the
I'ange 85—105 eV the 01 beam scans thc backscattering
minimum of o(8). In Fig. 7, a(e) is shown by a Cartesian
and a polar dlagraID. Although thc bcaID lntcnsltlcs are
amplified by Hragg reflection, the direct scattering from
thc primary bcaID to thc 01 beam rcIDRins low; thc IDUltl-

ple scattering through several scattering vectors is
prcdoImnant and very scnsltlvc to phases. In conse-
quence, if the ion-core scattering differs the least from the
ideal model, the calculated spectrum of the 01 beam in the
(85—105)-eV range is expected to give poor agreement
with the measurement.

Figure 8 shows a series of LEED calculations where P
and p,b, are adjusted simultaneously in such a manner
that the intensity of the major peak at 22.5 eV is kept ap-
proximately equal to the measured value, 10% of the in-
cident intensity. Multiplying the P curve in Fig. 3 by a
coefficient c=(1+@,b, —p) as indicated by expression
(6), we find, when a decrease of p,» is balanced by an in-
crease of cP, that a shoulder comes up and grows to a nar-
row peak. Since the experimental setup has a finite
resolvmg power, the correc't theoretical curve should ex-
hibit a somewhat sharper structure than the recorded
spectrum. The calculated structure accurately agrees with
the measured one at 19.5 eV for p,b, ——0.44, provided the
calculated inner potential Vo in Fig. 3, is lifted 0.7 eV.

0 50 300 350 200
E-Evclc (eV)

FIG. 6. 01 spectrum from the copper (111)surface Rt normal
incidence. Same symbols as Fig. 4. Near 100 CV the 01 beam

emerges in a direction where the differential cross section for the
direct scattering from thc primary beam has a node (Sec. IVA
and Fig. 7).

~ S t

60 "I 26 't80
8 &dog)

FIG. 7. Differential scattering cI'oss scct1on 0' for thc ion cor'e

of copper Rt, 100 CV. Polar dlaglRIH (left) and Cartesian dIagram

(right); 8 is the scattering angle, Scale is ln(1+g), which is

hncar for 0' small and logarIthmlc for' 0 large.
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we find two features of a similar origin at higher energies,
the prominent peak at 73.6 eV and the small peak at 109
eV, which are localized sharply enough to be suitable for a
determination of the inner potential. Fine-grid LEED cal-
culations and comparison with the experimental data indi-
cate that the precalculated inner potential Vo(E) illustrat-
ed in Fig. 3 should be lifted by 0.7, 1.3, and 1 eV at the in-
cidence energies 19.5, 73.6, and 109 eV, respectively,
where prominent subthreshold effects are observed. The
inner-potential values resulting from the three observa-
tions are plotted in Fig. 3. The errors given are AE from
expression (10) and represent what we think is a possible
accuracy in a determination of the inner potential from
observations of subthresholds. The uncertainty in the an-
gular setting of the incident beam is not taken into ac-
count by the error bars in Fig. 3.

A trial-and-error search of an inner potential from mea-
sured subthreshold effects will converge provided that the
precalculated crystal potential describes the energy depen-
dence of the electron scattering sufficiently well. Both the
calculated inner potential and the phase shifts should be
good approximations. For instance, we find that the
theoretical spectra obtained from the Xa potential" with
o;=0.4 and 0.7 are not accurate enough to permit a deter-
mination of the energy dependence of the inner potential.

V. METRIC DISTANCE BETWEEN THEORY
AND EXPERIMENT

Reproducibility is important in LEED work. The
design of the so-called reliability indexes or 8 factors'
arose from the need of an objective and efficient measure
of the misfit between theory and experiment. Such a mea-
sure has to fulfill a few necessary conditions set by the
LEED method. Since the configuration of atoms is im-
aged by constructive electron interference, the misfit mea-
sure must be sensitive to the position and shape of the
peaks of the LEED spectra. Preferably, a misfit measure
appropriate for structure determination should be insensi-
tive to variations in spectra resulting from errors in non-
structural parameters having a slow energy variation: De-
bye temperature, interlayer attenuation (P and p,b, ), and
atomic scattering amplitude. In addition, the numerical
data treatment should meet the standard requirement of
being independent of the noise of the experimental record-
ings.

In the present work we separate the diffraction peaks
and the slow energy variations by filtering the calculated
and measured spectra. The method of metric distances
suggested by Philip and Rundgren' will be used for
measuring the misfit between the spectra thus obtained.

A. Filtering of spectra

The fast Fourier transform is conveniently used for
separating the diffraction peaks from the slow energy
variations. Let the spectrum Ikk(E) of a beam hk be given
in terms of N intensity values fo,f i, . . . , f~ i distributed
with a uniform mesh over the energy range E~ —E2, and
designate the Fourier components of the spectrum by

The Fourier transform and its inverse

are

N —1

N
—i/2 g f jk

j=o
N —1

N
—i/2 y y

—jk

k=0
(12)

where z =exp(2mi/N). If N is a power of 2, a special al-
gorithm makes the computation particularly fast. One ap-
plies a high-pass Fourier filter to a spectrum by calculat-
ing the Fourier components from the original intensities

fj by expression (11), by setting a number of low-

frequency components equal to zero, P„=P~ „——0,
n =1,2, . . . , and, finally, by calculating new intensities fz
from expression (12). The experimental and theoretical
spectra of a beam hk are supposed to be processed with
the same value of n.

For instance, in the present LEED study the 00 spec-
trum extends from Ei ——16 eV to Ez ——190 eV and the
widths of the major peaks are of the order of 25 eV. The
slow energy variations are represented by Fourier com-
ponents having n &7. In this case, therefore, a few
Fourier components can be neglected without loss of in-
formation about crystal geometry.

The notion of filtering is inherent in some of the
current R factors. Zanazzi and Jona' differentiate the
spectra twice in order to locate peaks by flanks having
large slopes and by tops having large curvature. Pendry'
differentiates the data once with a purpose to represent a
LEED spectrum as a sum of Lorentzian peaks. A prepro-
cessing of data by means of a Fourier filter can be inade in
the high-pass or low-pass mode depending on the structur-
al or nonstructural parameters under consideration. Many
types of filters exist, and the best choice depends on the
LEED case under consideration. In the present work the
Fourier filter is satisfactory since the calculated and mea-
sured spectra in Figs. 4—6 are very similar.

l. Uncertainty of the experiment

We assume that the experimental spectra are recorded
with an uncertainty that is negligible in relation to the
changes which are possible in the theoretical spectra when
different models of crystal structure are tested. The ex-
perimental spectra will therefore be considered as fixed.

2. Topological space of spectra

The space of spectra is generalized to a topological
space. Topology introduces the notions of neighborhood
and misfit. If', during a curve-fitting procedure, a theoret-
ical spectrum f falls into a neighborhood given in advance
of a fixed experimental spectrum g, one can say that f
agrees with g with a measured misfit.

B. Metric distance between spectra

In this section we show that there exists a line of physi-
cal and mathematical arguments which most naturally
lead to the use of metric distances for the comparison of
theoretical and experimental spectra. '



3. Convergence and uniqueness

Let us assume that f'", n = 1,2, . . . , is a set of theoret-
ical spectra corresponding to a sequence of choices of
structural parameters. If for sufficiently high values of n,
all f'"' are situated within a given neighborhood of the
fllxcd spcctlllB1 g, olic cail say thRt thc scqllcilcc f coll-
verges towards g. For physical reasons it is necessary to
stipulate that any trial sequence f'"' shall converge into a
unique spectrum. This imphes that a topological space of
spectra has to be a Hausdorff space.

4. Metric space ofspectra

Metric spaces will be explored in this work. Though re-
stricted in comparison with Hausdorff spaces, they can
serve as frames for a great variety of curve-fitting pro-
cedures. A metric distance D(f,g) between any pair of
spectra f and g obeys the following metric axioms.

(i) Strictness: D (f,g) =0, if, and only if, f=g.
(ii) Symmetry: D(f,g)=D(g,f).
(iii) Triangle inequality: D(f,g) (D(f,h) + D(II,g),

where h is any third spectrum.
A set of spectra f'"' corresponding to successive choices

of parameters, n =1,2, . . . , is said to numerically con-
verge provided D (f'"',g) & e, where e is a given tolerance.
When f'"' and g are Pourier-filtered data, the result of
D (f'"',g) (e is a convergence f'"'~g modulo the Fourier
components removed by the filter.

Explicit metrics wi11 be considered in Sec. VC. In the
spaces of spectra defined by the 8 factors of Zanazzi and
Jona' and Pendry, ' the strictness axiom (i) is not valid:
It is, of course, true that f near g gives an R value near
zero, but the converse does not necessarily hold. There-
fore, it cannot be stated that these R factors satisfy the
physical principle that convergence shall be unique.
Curve fitting is currently made secure by the researcher's
inspection of the various stages of the procedure, but if
the researcher wishes to reduce the job of inspection, a
metric distance is likely to be advantageous because of its
uniqueness property.

5. Normuhzation

For a specified beam hk, the theoretical and experimen-
tal spectra are denoted by fhk(x) and ghk(x), where
x signifies a normalized primary energy,
x =(E Ei )/(E2 —Ei ),—or, as the case may be, a normal-
ized incidence angle. It is already understood that we
leave out the beam indices in contexts where a single beam
is concerned. In cases where fhk(x) and ghk(x) are ob-
tained on different intensity scales, the spectra are con-
veniently made commensurable by normalization to uni-
J. 12—15

1 1f fkh(x)dx =f ghk(x)dx =1 for every Ilk . (13)

This normalization disregards the natural ratios be-
tween the intensities of the beams. In principle, the fol-
lowlIlg IlorBiallzatloil, fhk(XO)=ghk(xo) appllCd to R S1Il-

gle beam Itk at a chosen energy xo, suffices to estabhsh a
common theoretical and experimental intensity scale for
all the beams. In this work we use expression (13).

6. Total mesne

Glvcll tllc lllctrlc dlstallces D (fhk, ghk ) for the lndlvldu
al beams hk considered in a LEED investigation, a total
metric associated with the collection of beams can be de-
fined in the following way:

' 1/q

g IJhkD (fhk 4hk )
h, k

gtohk=l ~

Q„k

where tt is an integer greater than or equal to 1 and Itthk

are relative weights on the beams. T'e' is a metric if whk/e

times D(fhk, ghk) is a metric. This is certainly the case
wllcI1 Iohk Is takcll collstRIlt RIld lildcpcIldcIlt of thc lntcI1-
sities, for instance, proportional to the energy range where
the experimental spectra gl, k are recorded. Zanazzi and
Jona use a total R factor that corresponds to T, and
Pendry uses another that corresponds to T . The total
metrics defined in expression (14) are interrelated by the
inequalities

T"'&T"'& . (r'"'=maxID(fhk, ghk)I .
III, k

C. Four metrics

The strong integrated distance Dl is a standard metric
used in x-ray crystallography and by many I.EED work-

13, 14

Di(f g)= —,
' f i

f(x)—g(x) i
dx . (16)

The metric D1 reacts strongly by acquiring a large incre-
ment when peaks are moved out of place; this is the sig-
nificance of the topological term strong' ' given to Di.

Three weak distances which react by increments pro-
portional to peak displacements will now be considered.
They are expressed by means of the indefinite integrals

F(x)=f f(t)dt and G(x)= f g(t)dt . (17)

With a normalized energy variable x and with normalized
intensities f(x) and g(x), the functions F(x) and 6(x) are
confined to a square of unit edge where they increase
monotonically from F(0)=6(0)=0 to F(1)=6(1)=1.
In Fig. 9 we illustrate the integrated spectra by showing I'
and 6 for the 00 spectrum in Fig. 4.
We discuss the following.
(a) The weak integrated distance' D2(f,g),

1

DI(f g) =f ~
F(x) 6(x)

~
dx . — (18)

(b) The Levy distance (Refs. 12 and 29) DI (f,g). A hne
of slope —1 is moved across F and 6, and for each posi-
tion of the line, the segment between F and 6 is projected
on the intensity axis. The longest projection is D3.

(c) The Hausdorff distance (Refs. 12 and 30) D4(f,g).
The distance 18 obtained by tracking I' and G. At each
point on the upper curve the shortest distance to the lower
curve is measured and stored, and the process is repeated
with "upper" and "lower" reversed. The longest distance
stored is then D4.

The strong metric D1 and the weak metrics D2, D3, and
D4 take values that are less than or equal to 100%. This
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normalized ener gy

the response is limited by ~=D(f,f+4f). ~e shall
therefore take ~ as an approximate value of the response
of D (f,g) to the variation hf for any spectrum g.

Changes of the position and of the height of peaks are
of particular interest in diffraction theory. A.s a matter of
illustration we shall consider a spectrum fwhich contains
a narrow peak, H5(x —xo), situated at the point xo and
having the area H. A displacement M and an area incre-
ment hH of the peak under consideration give a varied
spectrum f+hf that contains a peak H5(x —xo —M) or
a peak (H+ ddt)5(x —xo). In Ref. 12 and an accompany-
ing report ' it was shown that the responses to the changes
M and i[[.H are

FIG. 9. Integrated spectra normalized to unit integral.
Metric distances: D2 dcnotcs thc area cncloscd bctvMcn the
curves, D3 denotes maximum vertical projection of the —1 slope
segment L, and Bq denotes maximum of the minimum distances
H. Integral of the 00 spectrum in Fig. 4 is shown. Theoretical
spcctruHl is intentional displaced 5 cV. ' =f 'F(x)dr+ f [( P(xl[dx—,

(20)

follows from the confinement of the energy (angular) vari-
able x to the interval (0,1) and from the normalization of
the spectra to the unit integral. The limit 100% is at-
tained for metric distances between the idealized spectra
5(x —a) and 5(x b), where—5 signifies Dirac's 5 function
and a and b denote points in the interval (0,1). As a
matter of fact, the strong metric Di immediately becomes
unity when

I
a b

I
diff—ers the least from zero, whereas

the weak Qletrlcs D~, D3, Rnd D4 grow lillcarly Rs

I
a b I, which—exceptionally becomes unity when one 5

peak is situat& at either end of the interval (0,1). As a
rule of thumb one can say that Dl less than 10% and DI,
D3, and D4 less than 1% indicate good agreement between
two givcIl spe«:tra.

Numerically the four metrics have the following
characteristics. Since they are based on the integration of
data, they are perfectly stable with respect to noise,
whereas the R factors ' use differentiation of the data
and require smoothing. The four metrics give rise to very
fast algorithms, and calculation times are considerably
shorter than for the 8 factors. ' '~

The weak metrics g1ve a linear response to SIDRll varIR-

tions of an intensity curve. As a consequence, in every
case wllcrc 'tlm bcRnl ill'tcIlsltlcs vary lineal'ly wl'th rcspcct
to small variations of a structural parameter, the metric
distances will likewise respond hnearly to that parameter.
This is the physical basis for the use of weak metric dis-
tances for structural analysis.

Taking f and g to be a theoretical and an experimental
spectrum, we shaH study the response of the metric dis-
tances, D;{f,g), i =2,3,4, to a variation of f to f+hf.
Because of the strictness axiom (Sec. V B) the response of
D(f,g) to bf is never zero unless hf =0, and because of
the triRQgle iQcqURllty

I D(f +~f g) D(f g) I &D(f*f+~f—),

AA4
and (maxI'F(xo), 1 —F(xo)] .

The response to ~ depends on the position xo of the
peak and on the shape of the integrated spectrum F. In
partIOUlar, 1Q Rppllcat1ons where I' var1es 1Q the Qelgh&r-
hood of F{x)=x,the values of ~;/~ are of the order
of —,

' .
The integrals F and G consist of a succession of

rounded-off steps corresponding to the peaks of the spec-
tra f and g. Iff and g have the same long-range behavior,
I' Rnd 6 have many crossovers or run close together with
vertical separations less than the average height of the
steps. Ulldcl' 'tllcsc c1rcumstanccs thc wcRk metrics aic
sensitive to the position and shape of peaks. Iff and g ex-
hibit slow energy variations which are substantially dif-
ferent, F and G bend apart much more than the average
step height, and the weak metrics lose sensitivity to short-
I'RllgC fCatul Cs.

High-pass filtering is one possibility of enhancing the
diffraction peaks of f and g (Sec. VA). There are also
metrics which are less sensitive to slow ener-gy variation
than DI, D3, and D4, though a metric will always give
some response to any misfit because of the strictness ax-
ioHl. Fox' instRIlce, the Hletr1c

D2y(f, g) =min I I F(x)+y G(x)
I
dx-

y 0

brings F(x) and G(x) together by a constant shift y, so
that Dz~(f g) &D2(f,g). New metrics Dl„and D&z are de-
rived in a similar way by mininlization of DI and D4 with
respect to a constant shift of F(x) relative to G(x).

Theoretical and experimental spectra for the three
beams 00, 10, and 01 are compared by means of the strong
metric Di and the weak metrics Dq~, Dz~, and Dq„. The
total metric T's' for the set of beams is calculated from
expression (14) with weights II[sk proportional to the con-
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sidered energy ranges 16—190, 48—190, and 31—190 eV
for the 00, 10, and 01 beams. We take q =1 so that the
total metric is the linear average of the beam metrics (see
Table II). We exclude a part of the 10 spectrum corre-
sponding to the experimentally difficult region just above
30.8 eV where the 10 beam emerges grazingly in the vacu-
um with a very high intensity. We likewise exclude a part
of the 01 spectrum where the beam propagates through a
node of the differential cross section and the calculated
spectrum is inaccurate (Sec. IVA). Afterwards we apply
the total metric to the disconnected pieces of the 01 spec-
trum.

The comparison of theoretical and experimental spectra
in Table II is made for a grid of overlayer relaxations
hd =0.005 A about the bulk interlayer spacing
d =2.084 A. and for a grid of shifts b, Vo of the inner po-
tential Vo(E). Our study of the subthreshold effect in Sec.
IVB indicates that the precalculated Vo(E), given a con-
stant shift AVO, agrees closely with the measurements.
Each value of b,d demands a complete LEED calculation
with Vo(E) fixed, whereas b, VO is easily added during the
calculation of the metric distances. In the 2D space of b,d
and AVO, each metric distance is mapped by isometric
contours which prove similar to ellipses. They are cen-
tered about a minimum point, the b,d and b, Vo values of
which indicate the best fit to experiment as established by
the metric under consideration. The strong metric D& is
applied directly to the spectra and gives an upper bound
for the misfit of theory and experiment. The weak
metrics D2~, D3~, and D4y are applied after the spectra
have been processed through a Fourier high-pass filter
with n =1 in the manner defined by expressions (11) and
(12). The filtering of spectra detaches the diffraction
features from a slowly varying nonstructural background
which is somewhat different for the calculation and the
measurement.

Table II shows that the spread of bd and 5Vo over four
metrics and over three beams is small, although the hd
and 5Vo values for the 10 beam differ noticeably from the
values given by the total metric. Filtering helps signifi-
cantly to diminish the spread for the weak metrics. The
total metric distances listed at the bottom of Table II give
EVo-—-1.3+0.3 eV. The result follows essentially from a

matching of the Bragg peaks which predominate over the
subthreshold effects in the metric analysis. The agree-
ment with the energy-dependent 6Vo determined separate-
ly from the subthreshold effects observed in the 00 beam
(Sec. IV B) is satisfactory.

Figure 10 illustrates the total metric distances as func-
tions of b,d for the pertaining optimum values of EVO.
The metric distance against relaxation curves prove to
have their minima placed in close agreement, and the sur-
face relaxation b,d is found to be ( —0.7+0.5)% of the in-
terlayer separation in the bulk. The error given is estimat-
ed from the spread of 5Vo ——0.3 eV in the metric deter-
mination of Vo by the simple argument that LEED mea-
sures layer separation in units of the inverse wave number
k=(E —Vo)'~. Hence, the relative error in the layer
separation is at least

d-'6d= k '-6k—= -,'(E V—,)-'—6V, .

Since the 00 spectrum has an important low-energy peak
which greatly influences the metric distances, we take
E —Vo equal to 30 eV and find d 'M=0. 5% as written
above.

VI. DISCUSSION AND CONCLUSIONS

A. New method of determining the inner potential

In a structure determination by LEED, the inner poten-
tial has to be known as a function of energy, Vo(E), in
particular, below 100 eV where the energy variation is ra-
pid. In principle, a LEED calculation of the major peaks
of the spectra of several beams determines both the crystal
structure and Vo(E), but in practice one is met with the
difficult problem of separating the geometrical parameters
and the function Vo(E). The difficulty has hitherto been
circumvented in two ways. Either the structure deter-
mination is performed at such high energies (above 100
eV) that the inner potential can be considered constant, or
else a function Vo(E) is supplied by a purportedly reliable
electron-gas theory. ' "

Another possibility to determine fixed points on the
function Vo(E) arises if the LEED spectra exhibit pro-
nounced subthreshold effects. Since an excited scattering

TABLE II. Surface relaxation Ad, inner-potential correction AVp, and metric distance D calculated
from the 00, 10, and 01 intensity spectra. hd signifies surface minus bulk interlayer spacing, EVp is a
constant shift of Vp(E), and 1, Zy, 3y, and 4y stand for the metrics Dl, D~~, D», and D4y and the corre-
sponding totals.

Beam 2y

Ad
(%)

3y 4y

EVp
(eV)

D
(%)

2y 3y 4y

00'
10b
01'
Total

—0.7
—0.3
—0.5
—0.7

—0.5
0

—0.6
—0.6

—0.7
0

—0.8
—0.8

0
—0.7
—0.7

1.0 1.1
2.2 2.5
1.7 1.2
1.1 1.6

1.2 1.5
2.7 2.7
1.2 1.5
1.2 1.5

7 030
8 0.47
6 032
8 039

0.54
0.84
0.52
0.76

0.59
0.93
0.60
0.82

'Energy range 16—190 eV.
"Energy range 48—190 eV.
'Energy range 31—190 eV with 96—124 eV excluded.
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FIG. 10. Surface relaxation determined by means of metric
distances. The strong distance DI is applied directly to the cal-
culated and measured spectra; the weak distances D», D3y and

D4y are applied after Fourier high-pass filtering. Minima indi-

cate a relaxation of —0.7%.

channel pseudoparallel to the surface extends over several
layers below the surface, a subthreshold effect has a
linewidth of the order of 2 eV. Because of the small
linewidth, a subthreshold effect will determine a point on
the energy-dependent inner potential with an accuracy su-
perior to what is attainable from the positions of the ma-
jor peaks. We believe that a calculated subthreshold effect
fitted to a measured one could settle a point on Vo(E)
within a tolerance of +0. 1 eV, if the Rydberg fine struc-
ture at the beam emergences in vacuum are used for cali-
brating the energy scale. Moreover, in this kind of deter-
mination the value of Vo(E) is not coupled to the value of
the interlayer spacing d at the surface. (We speak of a
crystal composed of identical layers. ) Once Vo(E) is
known, the surface relaxation and related parameters can
be determined accurately from the Bragg peaks.

In a recent LEED investigation on the (110) surface of
nickel by Gauthier et al. , the energy-dependent inner
potential is determined from the major peaks of intensity
against energy spectra by means of reliability indexes' '
applied to a very large data base (beam spectra over totally
3000 eV}. The inner potential found for nickel shows a
similar variation with energy as the one determined for
copper in the present work from a calculated potential and
three measured subthreshold effects (Fig. 3); the difference
is less than 1 eV over the common energy range 30—120
eV. The agreement is satisfactory owing to both metals
having similar electron density.

The method of using, first, subthreshold effects for es-
tablishing the inner potential and, afterwards, the Bragg
structures for determining surface geometry, has, in our
view, a great promise. The energy-dependent inner poten-
tial derived from the theory of the excited electron gas can

be checked in a direct manner against LEED measure-
ments. A local excited-state potential can then be used for
interpolating between the fixed points Vo(E) supplied by
the experiment. When the inner potential is a quantita-
tively well-known function of energy, structure determina-
tion by LEED will be accurate also at very low energies.

B. Determination of geometrical structure

When looking at a calculated and a measured LEED
spectrum, one intuitively pays attention to diffraction
peaks (the eye is a filter) and evaluates their agreement
(the eye is a misfit measurer). The visual inspection con-
centrating on Bragg peaks is simulated by means of high-
pass filters and metric distances. For methodological
reasons we prefer to use metric distances and filters for
measuring the misfit between theory and experiment, rath-
er than the reliability indexes used in many LEED investi-
gations today. Our approach implies that the filtering and
the misfit measurement can be designed, tested, and ap-
plied separately. The presently used reliability indexes
have filter and misfit measure in implicit combinations.
The metric distances work with integrated data and are
intrinsically stable with respect to noise. In contradistinc-
tion, the reliability indexes defined on differentiated spec-
tra require careful smoothing of data before they are ap-
plied.

Weak metric distances are used for comparing theoreti-
cal and experimental LEED spectra because of their linear
response to small intensity variations. For physical
reasons, then, the weak metric distances also give a linear
response to variations of structural parameters. The
structural result of this paper is that the topmost inter-
layer spacing at the (111) surface of copper is contracted
by (0.7+0.5)% from the bulk value. The comparison of
theory and experiment is made by metric distances be-
tween spectra and Fourier-type high-pass filtering of spec-
tra. The four metrics which we use determine the surface
relaxation with a very small spread (Table II).

At the 50th anniversary of the discovery of electron dif-
fraction it was estimated that LEED was capable of
measuring interatomic distances with 0.1-L accuracy
The prediction is now radically improved to 0.01 A. in
LEED situations, where the subthreshold effect and the
Rydberg fine structure can be used for establishing the
energy-dependent inner potential Vo(E). This sets up a
very accurate wave-number standard [E—Vo(E)]' not
only for LEED but for all kinds of electron spectroscopies
for surfaces.
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