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Effects of dynamical screening on resonances at inner-shell thresholds in semiconductors
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A theory of core excitons in semiconductors is formulated, taking into account the frequency
dependence of the dielectric matrix which screens the electron-hole attraction. The present ap-
proach combines standard many-body techniques (which reduce the Bethe-Salpctcr equation for the
two-particle Green's function to an effective eigenvalue problem) with elements drawn from Pano's
formalism for discrete states interacting with continuum channels. The positions and the widths of
core-exciton resonances are affected by dynamical screening, which increases the binding energy
above its value for static screening and decreases its Auger width below its value for a core hole.
The latter effect is peculiar to a dynamical theory and has recently been confirmed experimentally.

I. INTRODUCTION

Core cxc1tons 1Il semiconductors can bc considered
resonant leuels since the core hole decays by Auger effect.
Their spectra width is comparable to their binding energy,
being typically of a few tenths of an electron volt. This
paper deals with the relationship between width and bind-
ing energy that rests on the dynamical screening by the
other electrons represented by a frequency-dependent
dlclcctrlc matrix.

Previous attempts to include dynamical screening ef-
fects in the core-exciton problem, either by a Green's-
function approach or by a variational approach to the
electronic polaron problem, have considered only the in-
crease of the core-exciton binding energy which results
from an incomplete screening of the electron-hole attrac-
tion at shorter distances of these two quasiparticles. In
fact, as this distance decreases, the valence electrons pass
from screening two pointlike charges independently (and
statically) to screening a dipolar complex in a complicated
fashion. This reduction of the screening rests on the lo-
caHzation of the core hole and on the resulting strength of
its field within the central cell. Previous work ' con-
sidered the large value of the core-hole effective mass, but
this effect proved insufficient to account quantitatively
for the large increase of the observed binding energy of
core exritons with respect to valence exritons. * Other
workers sought the solutions of the core-exciton problem
in the inclusion of intervalley mixing among equivalent
conduction-band minima ' and central-cell corrections
while treating the screening statically.

The present work revives the role of dynamical screen-
1Ilg lIl thc core-cxclton problcIIl by trcatlng 1ts cffccts
more thoroughly. Specifically, it will be shown that
dynam1cal screening leads not only to an increase of the
binding energy but also to a decrease of the Auger width
of the core exciton. In other words, the electron orbiting
at shorter range about the core hole reduces both the in-
duced scrccn1ng chalgc and thc Auger recombination rate.
The latter effect, which has been reported in recent experi-
ments, ' can be considered a fingerprint of dynamical

screening since it cannot be obtained within the frame-
work of a static theory. Thus, dynamical screening influ-
cllccs thc cole-cxcltoll binding cllci'gy, plovldcd its cffccts
are included on the same footing as intervalley mixing and
central-cell corrections.

Quite generally, to determine the positions and the
widths of resonances in complex systems one may resort
to an effective non-Hermitian eigenvalue problem which
includes the effects of continuum (decay) channels upon
the discrete states, along the lines of the effective Hamil-
tonian method developed for nuclear reactions. ' In the
case of core excitons these channels identify complicated
many-electron processes, such as the virtual excitation of
secondary electron-hole pairs which screen the primary
electron-hole interaction collectively.

The many-body aspect of the bound states of an
electron-hole pair can be dealt with more systematically
by searching for the poles of the particle-hole Green's
function in the complex energy plane, whose positions
provide the excitation energies and the associated spectral
widths of the X-particle exrited states. " All possible
correlation effects are thus included in principle. A suit-
able algorithm to locate these poles reduces the Bethe-
Salpeter integral equation for the two-particle Green's
function to an eigenvalue problem. " ' This reduction,
however, has so far been attempted only in the case of
vanishing spectral widths (i.e., for valence excitons). '
Extension to the case of finite spectral widths (core exci-
tons) would require a nontrivial analytic continuation off
the real energy axis across the branch cut originating from
the continuum states responsible for the decay. Analytic
continuation can, however, be avoided, by combining the
reduction of the Bethe-Salpeter equation with elements of
Pano's mixing of discrete and continuum states, ' pro-
vided the spectral widths of the resonances are small
enough for certain approximations to hold. The resultant
eigenvalue equation will contain an effective non-
Hermitian Hamiltonian which depends on the spectral
widths of both the core hole and the core exciton, thereby
aHowing for the inclusion of lifetime effects in the
electron-hole attraction as well as for a comparison of the
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two w1dths.
Since quantitative results have been presented earlier, '

this paper concentrates on analytical details. Section II
contains a detailed derivation of thc effective eigenvalue
problem for core excitons, Sec. III a discussion of the
physical effects which originate from dynamical screen-
ing, and Sec. IV gives the conclusions.

its center and its full width at half maximum, while
remaining on the real energy axis by performing a suitable
average across the range of the. resonance with the same
Lorentzian weight. The procedure thus restricts the valid-
ity of the final equations to narrow resonances, as implied
by the very concept of elementary excitations in con-
densed matter. '

II. REDUCTION TO AN EFFECTIVE
EIGENVALUE PROBLEM

The derivation of the effective eigenvalue equation,
which determines binding energies and lifetimes of core
excitons, rests on the reduction of the Bethe-Salpeter
equation for the two-particle Green's function to an effec-
tive non-Hermitian eigenvalue problem within the ladder
approximation with a dynamically screened interaction.
It starts from the analysis of the linear combinations of
the four time variables in the two-particle Green's func-
tion which identifies its particle-hole portion for the
relevant types of excited states. It will then proceed by
Fourier-transforming a single linear combination to ex-
tract the dominant contribution in the neighborhood of a
core-exciton resonance. The effects of the decay channels
upon the core exciton will be taken into account by
rcprcscnt1ng thc approximate bound state as a 11ncar su-
perposition of N-particle exact excited states with a
I.orentzian weight. This approach will thus enable us to
determine the relevant parameters of the Lorentzian, i.e.,

l

A. Particle-hole correlation function

Consider the usual single-particle, '

Gi(1,2) =—i(N
I T [i'(1)1Pt{2)]I

N ),
and two-particle,

6 (1,2;1',2') ={—i) (N
I T[$(1)g(2)1tt(2')gt(1')]

I
N ),

(2.2)

Green's functions, where
I
N ) stands for the ground state

of the interacting N-electron system, T is Wicks time-
ordering operator, the P are field operators in the Heisen-
berg picture, and the labels 1,2, . . . signify the set of
space, spin, and time variables. It is convenient to intro-
duce the two-particle correlation function defined as

I.(1,2;1',2')= —62(1,2;1',2')+Gi(1, 1')Gi(2, 2') . (2.3)

This function satisfies the following form of the Bethe-
Salpeter integral equation:

L(1 2;(', 2')=Gi(( 2')Gi(2, 1')+f 63456Gi(1, 3)Gi(4, (') (3,5;4,6)L(6,2;5,2'), (2.4)

where the kernel:" is an effective two-particle interaction expressed compactly as the functional derivative of thc self-
energy operator with respect to the single-particle Green's function:

:-(3,5;4,6)= 5X(3,4)
56i 6, 5 (2.5)

It has long been known' ' that Eq. (2A) or its equivalents provide information about the excitation energies Es Eo-
of the N-particle system. These energy differences appear only in the phase factors of the two-particle Green s function
(2.2), multiplied by the symmetric combinations of time variables:

tI +t I t2+t2
j &2=t2 —t2* .

(2.6b)

6$ ( 1 2 1 2 )= g+s( xi xi' ri)+s( x2 x2' ~2)exp[i {Es—Eo){t —t ')le{t'—t —
2 I

~i
I

—-'
I
~2 I

)
S

For our pug oses it is sufficient to choose infinitesimal values ~i ——0- and ~2 ——0-, whereby the spect~m depends only
The 8 (out of 24) terms of the two-particle Green's function which contain the phase factors

exp[;(E E )t'] and exp[i(Es Eo)t2] are then called the particle-hole Green's function. They are expressed con-
veniently in terms of the right- and left-hand particle-hole amplitudes

Xs(x;,XJ.,t; tJ) =(N
I
T[it(i)yt—(j)] I

N, &)exp[i(Es —Eo)(t;+tJ)J'2] (2.6a)

Xs(x;, xJ., t; tJ)=(N S
I
T[—ifJ(i)y (j)] IN)exp[ —t'(Es —Eo)(t;+t, )J'2]

in thc following way:"

—g&s(x2 x2 &2)&s(xi xi '&i)exp['{Es —Eo&{t'—t &]e{t 2 I
ri

I

S
(2.7)

In Eqs. (2.6) and (2.7) the x signify the set of space r and spin variables, the generalized sum extends over the complete
set of N-particle excited states

I
N, S), and 8 is the unit step function.

We proceed now to the Fouricr transformation whose result will exhibit the poles of the spectrum Es Zo. The vari-—
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able to be transformed is t =(t2+t2)/2=t2 ——,r2~t2 because it appears in the function L on both sides of Eq. (2.4)
(the corresponding variable t' will eventually factor out). The symbol t2 t——2+ —,'5, where 5 is a positive infinitesimal,
will replace t2 to indicate that the proper limit of a step function within L is to be taken before the transform. The
particle-hole portion of the left-hand side of Eq. (2.4) yields

+ 00

L ( xi& x2' xi x2
~
t)~ti co)'—:— dt2e 'L "(x it» X2t2, xiti, x2t2+)

—tto(t —
)
t')

)
/2) + S( x yii'i 1)+S( 2t 2'i 5) —t(Eg Eo) )

—t't
)
/2ic- e

(E, —E,)+—t5

ito(—t i+ (w) /2) +s( x2~ x2 i '5)+s( x 1~ x i'i&1) t (Eg —E—()) )
t't

)
/2

+ie S 0 1

~+ (Es Eo )—i5— (2.8)

Notice that the transform of the single-particle factor in
Eq. (2.3) vanishes provided co is nonzero.

B. Relevant approximations

Equation (2.8) is still exact. Our aim, however, is to ex-
tract the dominant contribution to the Fourier transform
of Eq. (2.4} near a core-exciton resonance. To this end, we
adopt the following approximations.

(i) The dynamics of the bound electron-hole pair is em-
bodied in the effective two-particle interaction =. Sham
and Rice' have shown that, in the effective-mass limit, =
reduces to a Coulomb potential modified by the macro-
scopic dielectric constant of the insulating medium. Quite
generally, this limit can be recovered from Eq. (2.5) by
taking the non-Hartree part M of the self-energy operator
X within the so-called GR'approximation,

M(1,2)=iW(1+,2)Gi(1,2) . (2.9)

W(1,2)= J d3ET (1,3)v(3,2), (2.10)

and 1+ implies that the time variable t, is augmented by
a positive infinitesimal. By further neglecting the implicit
dependence of the screened interaction on Gi while taking
the functional derivative, one obtains, in fact,

:-(3,5;4,6)= —i5(3,4)5(5,6)v(3, 6)

+i5(3,6)5(4,5}W(3+,4) . (2.11)

The first term originates from the Hartree part of the
self-energy and the second from the screened Fock term
(2.9). Diagrammatically, the two terms represent the

I

Here W is the dynamically screened interaction defined in
terms of the bare Coulomb potential

v(1,2) =25(t) —t2)/
~

and of the (time-ordered) inverse dielectric matrix, '

ux( x i)ux( x2)
6) (Xi, X2;Ct))=g

CO —6'g
(2.12b)

where the ux( x ) are (orthonormalized) single-particle
wave functions which are assumed to be known by a pre-
vious solution of a band eigenvalue problem, and the e~
are the corresponding eigenvalues. Moreover, we set, as
usual, EE~EX i 5 for—the conduction bands and

EE—+EE+i5 for the valence bands of the semiconductor,
retaining for the core band a finite imaginary part y.

(iii) An explicit, albeit approximate, expression for the
particle-hole amplitudes can be obtained from their defi-
nition (2.6) by expanding the field operators in terms of
the single-particle wave functions ux. (x) introduced above
and retaining the same approximation that has led to the
energy denominators of Eq. (2.12b). For the states of in-
terest to us we set

random-phase-approximation (RPA) contribution to the
polarizability and its screened exchange counterpart,
respectively, the latter giving rise to the so-called ladder
approximation.

Here, we extend the form (2.11) for = to the case of
core excitons, whose ratio EEIEE is of the order of 0.1,
even though the form (2.11) is exact only within the
effective-mass limit' in which the excitonic radius is
large compared with lattice spacing, and the exciton bind-
ing energy E~ is much smaller than the valence energy

gap E'g In this sense, we limit our goal to the study of the
effects of dynamical screening on core-exciton resonances,
but our procedure may be supported later by experimental
verification of novel effects to be discussed below.

(ii} We represent all single-particle Greens functions
entering Eq. (2.4) in the quasiparticle approximation:

Gi(1,2)=G)(xi, x2, ti —t2)

+ ~ dco iso(t( t& )— —
e ' ' G, (xi, x2,'co), (2.12a)

00

ys(x, x';r)= e' yu—,(x)ud(x')As(d, c)[e(7)e ' +e( 7)e — ],
d, c

(2.13)

where d and c stand for deep (core) and conduction-band
quantum numbers, respectively. The (yet to be deter-
mined) expansion coefficients A, (d, c) can be expressed as
transition matrix elements in terms of creation and de-

siruction operators,

As(d, c)=(N
~
ttda, ~X,S) .

A similar expression holds for Xs( x, x ';r)

(2.14)
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(iv) We restrict the range of the frequency to in the
Fourier transform of Eq. (2.4) to a neighborhood of the
(yet to be determined) position Q of a core-exciton reso-
nance; the second term on the right-hand side of Eq. (2.8)
whose energy denominators remain large will accordingly
be discarded. Physically, ra plays the role of the frequen-
cy of the impinging photon which creates the exciton and
can thus be regarded as a parameter.

(v) We note that the generalized sum over the complete
set of N-particle exact excited states

~
X,S) in the first

term on the right-hand side of Eq. (2.8) includes an in-
tegration over the continuous variable Ez —Eo ranging
across Q. Aiming only at determining the position Q and
the full width at half maximum 2I of a core-exciton reso-

nance, we perform the integration approximately as fol-
lows. According to Fano's formalism for discrete states
interacting with continuum channels ' the integrand
contains a density-of-states factor D(Es Eo—) which de-
scribes the dilution of the approximate electron-hole —pair
excited states into exact X-particle excited states. If I" is
sufficiently small, one can represent this factor by a
Lorelltzlail of llillt weight

D(Es —Eo)= (2.15)
(E —E,—Q)'+ I'

We also neglect the variation of all other factors in the in-
tegrand across the resonance (2.15), taking their values at
the resonance frequency Q. For co=Q one then obtains

WlI » ( x i, x2,
' x i, x2 ~

t i ~ t ~,co ) '—t e QX, (x),xi, r))X, (x2, xg', —5) .
N (Q -fr) —

(, )

(2.16)

The sum is now restricted to the discrete set Is I of (possi-
bly) degenerate core-exciton resonances (thereby disre-
garding the contribution of a smooth background). The
bars over the particle-hole amplitudes signify that the
density of states (2.15) has been factored out from the ex-
pressions (2.6), and that the excitation energy Es Eo has-
been replaced by the variable co. We shall refer to the ex-
pression (2.16} as the quasi bound electron-hole pair ap-
proximation in analogy with the more familiar quasipar-
ticle approximation for the single-particle Green's func-
tion.

C. Effect&ve inverse d&electrIc matrix

Vhth these approximations, we now proceed to reduce
the Bethe-Salpeter equation (2.4) to an effective eigenvalue
problem which will determine the core-exriton excitation
energy Q, its spectral width I, and the expansion coeffi-
cients A. To achieve this reduction, we insert the expres-
sions (2.'l l)—(2.13) and (2.16} into the. Fourier transform

t

[o) (Q i I—)][to—(e, e—d i y)] —. —

of Eq. {2.4) and perform the following steps in the resul-
tant equation.

(i) Prospect both sides onto u, (x&)uq(x& ) and make use
of the assumed orthonormality of the single-particle wave
functions.

(ii) Take the limit as ~, =0 and drop the common fac-
tor exp( itot i ).—

(iii) Multiply both sides by X„(x2,x2, —5) where r be-
longs to the degenerate set Isj appearing in the expression
(2.16), integrate over x2 and x2, and utilize the orthonor-
mality of the coefficients 7T;

g A„(d,c)A,*(d,c)=5 (2.17)
d, c

[Recall that the bars over the coefficients A signify that
their value is taken at the resonance center after extracting
the square root of the density-of-states factor (2.15). The
orthonormality (2.17) holds in the present form only in
the limit of narrow resonances, assumed throughout the
present treatment. ]

(iv) Multiply both sides by

[e,—ed iy (Q—i I—)]A„—(d, c)

+ g Ap(d qc ) . fd x id x2u~ ( x i )ug( x i ) u~l( x2)ug'( x2)
d ic r~ —r2

+ 00

dxid zu,*(xi)u, ( i)fdr3 i e ez(1 i, jcor3).
2%

1 Ix +
co —co —(e~ —eg)+ty to+co —(e~ —ed)+ly ud(x2)ud (xi) =0 . (2.18)

This equation should be read as follows. First, suppose that the effective two-particle interaction were switched off. In
this case one would obtain, from Eq. {2.18), Q=e, —ed and I =y, as expected for an uncorrelated electron-hole pair.
Consider, next, the first term in large curly brackets which does not contain any effect of screening. This term is known
to be responsible for the longitudinal-transverse splitting of the excitonic states and is also known to induce a mixing of
different spin-orbit eigenstates. This term will be neglected in what follows since, being of short-range character, it
does not affect the excitonic energy when the excitonic radius is relatively large. The last term in large curly brackets in
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Eq. (2.18) is the only one to depend on the frequency co. To interpret it physically, we recast it in a more meaningful
form by making use of the relation between time-ordered ( T) and -retarded (R) inverse dielectric matrices ' and of the
Kramers-Kronig relations obeyed by the latter. This term then reads

dx1dx2u,*(x1)u, (xt) f dr3egfg'dg (11 r3 co) ud(x 2) ud(x2),
r21

where we have introduced the following notation:

(2.19)

The diagonal elements (c=c') of expression (2.19) can thus be interpreted as defining an effective inverse dielectric ma
trix, whereby an electron excited into a conduction-band state c probes the density response of the system with a hole in
the state d. This expression has to be contrasted with the ordinary inverse dielectric matrix of linear response theory,
that is,

e11 '(r1, r3, co) =5(r& —r3) —— dto'Im[e11 '(r&, r3 co )]
1

co —co +15
1

co+co +15
(2.20)

whereby an external (test) charge probes the density response of the system in the ground state. The effective and the or-
dinary inverse dielectric matrices coincide, however, in the static limit when y vanishes and the differences co —(ez —E'd )

and to (e—z —ed ) can be neglected in comparison to the characteristic energies in the loss matrix —Im[e11 (r&, r3,co')],
which are at least of the order of the valence energy gap. When these conditions are met, as in the case of valence (shal-

low) excitons, Eq. (2.18) reduces to the ordinary integral equations for excitons with static screening. For core excitons,
however, deviations from static screening (the so-called dynamical corrections) need to be considered.

D. Effective eigenvalue equation

Equation (2.18) is not yet, in general, an eigenvalue
equation, since it depends parametrically on the frequency
co, although this frequency has been assumed to be close
to the position 0 of the core-exciton resonance. To deter-
mine the proper value of co consistently with the assump-
tions of Sec. IIB, we average Eq. (2.18) over iu with the

I

weighting function D (to) of the form (2.15) which
represents the probability for the exciton to be formed by
radiation at frequency co. This averaging procedure thus
bears some resemblance to the experimental situation
where the absorption spectrum is weighted by the mono-
chromator spectral function. One is then led to the fol-
lowing non-Hermitian eigenvalue problem:

[e, e iy— (0— 1—l)]A—(d', c) QA(—d', c')f dx, dx u, (x, )u, (x, )

X f dr3egzdz(r1, r3,'0+iI') ud(Xz)ud (x2)=0, (2.21)

where the suffix r labeling degenerate eigenvectors has
been dropped. We note the following features.

(i) The eigenvalue 0—i I of Eq. (2.21) needs to be con-
sistent with the energy dependence of the Hamiltonian
matrix. Moreover, the Hamiltonian matrix is non-
Hermitian, its skew Hermitian part arising from the finite
values of y and I . Both facts are familiar for the quasi-
particle equation which is derived from Dysons equa-
tion.

(ii) Equation (2.21) generalizes the equation reported in
Ref. 2 which can be recovered in the limit of stable exci-
tons when y=I =0. In this case, the reduction of the
Bethe-Salpeter equation to an eigenvalue problem is
achieved by performing a complex integration along an
infinitesimal contour enclosing the pole of the function
(2.8) located along the real energy axis at Es Ev."'—

III. PHYSICAL INTERPRETATION

This section is devoted to gaining physical insight into
the main analytical result of this paper, Eq. (2.21), and to
discussing the observable consequences of dynamical
screening predicted from that equation.

A. Exponential decay of the core hole

The Eq. (2.21) derived in Sec. II reduces, in the limit

y =I =0, to the equation for true bound states which fol-
lows from the Bethe-Salpeter equation by established pro-
cedures. We shall now explore this connection by arguing
that Eq. (2.21) with y and I finite could have been
guessed directly from the corresponding true bound-state
equation with y =I =0 on physical grounds. In fact, the
effective electron-hole potential in Eq. (2.21) can be recast
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=f dte ~'W(ri, rz', t)
0

i {Q—Gc +Ed )t i {0—ec+e~)tX(e ' +e ' ), (3.1)

in the following form that shows the time-dependence of
the interaction by Fourier-transforming the frequency in-

tegration in Eq. (2.19) into a time integration:

2

(a)

//////I //////I////
CONOU CT ION

I

EXCITON

I
I

I
I

I
t ik
I

f
t
I

/

IIIIIIIIII/IIII!i II
---Ql--—

where we have set y=I as a first approximation. Here the
core-hole decay factor exp( 2y—t) combines with the
time-dependent screened potential 8'( r i, r2, t) defined by
Eq. (2.10) to yield the effective potential

W ff( r i, r2', t) =e 'W( r i, ri,'t) (3.2)

S. Direct recombination channels

The structure of the eigenvalue equation (2.21) is of the
type obtained by an effective Hamiltonian method, '

whereby the Schrodinger equation is reduced into the sub-
space of a set of approximate bound states by suitably
eliminating the continuum channels through projection-
operator techniques. The effective Hamiltonian which re-
sults is, in general, non-Hermitian and energy dependent.

The Auger decay of the core hole thus reduces its
response to the excited electron by allowing only an in-
complete relaxation, and might thereby influence the
exciton's binding energy and lifetime.

One may wonder at this point how the exponential fac-
tor in Eq. (3.2) represents the lifetime effects related to the
Auger decay of the core hole. One knows, in fact, that
deviations from the exponential decay occur both for
short times [i.e., for (Ez E,t, )t ( 1—, where Ez is the reso-
nance energy and E,f, is the onset of the continuum] and
for large times (i.e., for I t &1). In particular, the decay
law starts as a quadratic function of time and ends as an
inverse power law, thereby being larger in both cases than
the exponential approximation. However, for typical
semiconductors one expects the exponential approxima-
tion to hold since the characteristic screening time (i.e.,
the reciprocal of the characteristic energies entering the
loss function) lies well within its limits of validity.

VALENCE

CORE

I
I
l
I
I

Ilf
I
I
I
I

rL

FIG. 1. (a) Auger process; (b) direct recombination.

On the other hand, the approach to the core-exciton
eigenvalue problem through Green's functions that we
have used has enabled us to separate from the outset two-
particle from single-particle effects, and to treat both the
Auger decay of the core hole and the dynamical screening
effects in the electron-hole interaction in an essentially
phenomenological way through the width y and the loss
matrix —1m[a '( r i, r2,'co }],respectively.

This approach, however, has left out the so-called direct
recombination channels where the bound electron itself
fills the hole and, at the same time, a new hole is pro-
duced in a higher (valence) band (Fig. 1). Note that the
Auger channels contain at least two holes, whereas the
direct recombination channels contain a single hole in the
valence band. This feature can be important for the ex-
perimental detection of the core exciton.

The contribution of the direct recombination channels
to the core-exciton eigenvalue equation (2.21) can be
represented by adding the following term to the interac-
tion Hamiltonian:

(c,u"
~
v(1 P)

~
d, c")(c",d—'

~

v(1 —P}
~

u",c')
A (e,- e—,-)+i—5 (3.3)

Here the labels u" and c" refer to a valence band and to a highly excited conduction state, respectively, the Kapur-
Peierls' boundary conditions are appropriate to a decaying state, and the matrix elements read, in the usual notation,

(c,u
~

v(1 P)
~
d, c")=f dx—idx2u,*(xi)u„(x2) [ud(xi)u, -(xi)—u, -(xi)ud(x2)] . (3.4)

It can be inferred from Eq. (3.3) that the sole contribu-
tion of the direct recombination channels would yield a
value I of the core-exciton width larger than the corre-
sponding value y of the core-hole width. This is to be ex-
pected, because the direct recombination channels are

I

suppressed in the (N 1)-particle problem—for the core
hole. However, values of I smaller than y have been re-
ported experimentally. ' This net narrowing of the spec-
tral width in passing from the core hole to the core exci-
ton can thus only result whenever dynamical screening ef-
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fects in the Auger channels are sufficiently large to com-
pensate for the presence of the direct recombination chan-
nels, as discussed below.

C. Effective-mass limit and the narrowing effect

The net narrowing of the spectral width discussed
above can be predicted analytically from the effective-
mass limit of Eq. (2.21). To this end, one has to follow
the steps leading the usual effective-mass equation for ex-
citons, retaining the full effective inverse dielectric func-
tion and not just its static limit. The results are as fol-
lows.

(i) The excitonic binding energy Es (=e, "' —ed —0)
can bc dctcrImncd by solving a Schroclingcr-11kc cguatlon
with an attractive electron-hole Coulomb interaction
screened by the real part of the effective inverse dielectric
function

2 I"d
—Im[e '(q=O;pi)]
co+Es i(I —+y)

(3.5)

where —Im[e '(q =0;co)] is the loss function.
(ii) The difference y —I" can then be calculated from

the expression

y —I'= Im[e—p '(Es, I'+y)] f dr F*(r) F(r), —

where F(r) is the (normalized) envelope function solution
of the effective-mass equation with eigenvalue Eii. —

Assume now that this simplified version of the core-
exciton eigenvalue problem has been solved to self-
consistency. From Eq. (3.5) one then verifies that the
imaginary part of the effective inverse dielectric function
is negative for any value of its arguments, thereby yielding
positive values for the difference y —I in Eq. (3.6). Devi-
ations from static screening can thus indeed lead to a nar-
rowing of the Auger width in passing from the core hole to
the core exciton. Pictorially, this effect can be described
by saying that the presence of the electron orbiting about
the hole hinders the Auger filling of the hole by the
remaining (valence) electrons. This intuitive physical
representation of the narrowing effect and its experimen-
tal observation give confidence that the core-exciton
eigenvalue equation (2.21) could be extrapolated in prac-
tice beyond the limits within which it was derived.

In addition to the narrowing effect, dynamical screen-
ing also leads to an increase of the binding energy over its
static value obtained by setting Es —I +y =0 in Fq. {3.5).
In fact, for finite values of Es and I +y the effective
dielectric constant Ep(Eg I +y) [defined as the reciprocal
of the real part of Eq. (3.5)] is smaller than its static
value, i.e., the macroscopic dielectric constant eo. A plot
of ep(Es, I +y) as a function of Es for various values of
I +y is shown in Fig. 2 for the case of silicon. ' Physi-
cally, these curves represent two distinct effects, namely
(i) the curve with I'+y=0 shows that electronic relaxa-
t1on is reduced when the electron orbits at shorter range
about the core hole or, equivalently, when the excitonic

D. Normalization condition

The normalization condition (2.17) with r =s merits
some comments. This condition is altogether trivial in the
lowest approximation when the exciton is built up as a
linear superposition of single electron-hole —pair excita-
tions from the Hartree-Fock ground state and screening
effects due to multiple electron-hole pairs are neglected.
When screening effects are introduced, however, Eq.
(2.17) becomes nontrivial since the coefficients A refer
only to a subset of the states needed to describe the exci-
ton. In this case, Eq. (2.17) can be supported by the
theory of Refs. 14 and 15, whereby the coefficients of
multiple electron-hole pairs are expressed in terms of
those for single pairs.

SILICON
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O.b
Ee«(i)

FIG. 2. Effective dielectric constant (silicon) versus the exci-
tonic binding energy E~ for various values of the sum I +y of
the core-exciton and core-hole widths.
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binding energy Es is increased, and (ii) the curves with
I'+@+0 show that, in addition, the decay of the core
hole induces an incomplete electronic relaxation. The in-
crease of the excitonic binding energy over its static
screening value will result mostly from dynamical effects
of the type of (i).

Numerical estimates of these dynamical effects have
been reported in Ref. 1 for the case of the Si 2p transition.
They were based on a suitable modification of the
effective-mass limit discussed above to include band-
structure effects, such as intervalley mixing and central-
cell corrections, in an effective manner. Typically,
dynamical screening effects may yield a 20—30% increase
of the binding energy over its static value and a compar-
able percentage decrease of the spectral width.
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IV. CONCLUDING REMARKS

An eigenvalue equation to determine binding energies
and spectral widths of core excitons in semiconductors
has been derived, taking into account the time dependence
of screening effects through the dielectric matrix
e '( r, r ';co). Dynamical screening effects have been
shown to lead to an observable narrowing of the core-
exciton width, accompanied by an increase of the core-
exciton binding energy over its value for static screening.

These dynamical effects are missing in the isochoric
impurity problem to which the core-exciton problem has
been traditionally associated. This association has rested
on the intuitive replacement of the massive core hole by a
static charge which is localized at a lattice site and acts as
an external potential on the excited electron and on the
polarizable medium. This picture, however, disregards
the quantum nature of the core hole which manifests it-
self in the scattering with the excited electron regardless
of the large value of its effective mass. In our approach
this leads to a modification of the polarization of the
medium where the core hole and the excited electron are
embedded.

The eigenvalue equation (2.21) might be solved numeri-
cally in a local-orbital basis (cf. the Appendix) which is
appropriate when the excitonic size deviates appreciably
from its effective-mass value. This method could be ap-
plied particularly to the study of surface core excitons '

where dynamical effects are expected to be enhanced by
the localization of the surface states.
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APPENDIX

In this Appendix the core-exciton eigenvalue equation
(2.21) is converted into a local-orbital representation along
the approach introduced by Altarelli and Bassani for in-
termediate binding.

The conversion is achieved by expanding the single-
particle conduction Bloch functions g (r) in the matrix

nk
elements of (2.21) into orbitals y„(r —1 ) localized about
the lattice sites l:

(Al)

)&A(p', d', 1 ') =0 . (A2)

Here A (p, d, 1 ) is the lattice Fourier transform of the ex-

pansion coefficients A(p, d, k) in the basis of the Bloch
sums within large parentheses in Eq. (Al), and the
electron-hole effective interaction Hamiltonian in local-
orbital representation reads

Here N is the number of lattice sites, k is the Bloch wave
vector, n is a band index, and the c's are expansion coeffi-
cients to be determined from the band structure. The
number of indices I@I depends on the portion of conduc-
tion bands one is willing to include. For the core bands,
on the other hand, the y are atomic orbitals and c reduces
to 5„g.

Manipulations lead to the eigenvalue equation for sing-
let excitons with Bloch vector Q=O:

[5»5qq5-, , +(pd 1 ~H,«(Q, I")
~
p, 'd'1 ')]

p', d', 1
'

(i d I
~
H,«(n, l.) ~& d I ) =X-' y e'"'&-' y e

—k" ~ 'y
n, k I k J Q+eg —e„(k)+i(y—I')

+~ dco
e t e VV, -(m;co)—00 2~ w' m, dd' 0

with the notation

1 + 1

&+iI' [e„(k ') e— l y] — —II'+iI—' [e„(k) e $y]+
(A3)

W „„, (m', co)= f drdr'p'„(r m)y~(r m m')—8'(r, r', co—)y~(—r')y~(r') . (A4)

Equations (A3) and (A4) omit the negligible overlap between core (atonuc) orbitals centered at different lattice sites; the
direct RPA term, whose expression is not affected by screening, has also been omitted.

The matrix elements (A4) can be evaluated by utilizing the Hanke and Sham formalism within the so-called time-
dependent screened Hartree-Fock approximation. ' The desired values of Q and I then result from the vanishing of
the determinant of the matrix within square brackets in Eq. (A2).
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