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We develop a general formulation of quantum mechanics within the lowest Landau level in two

dimensions. Making use of Bargmann's Hilbert space of analytic functions we obtain a simple algo-

rithm for the projection of any quantum operator onto the subspace of the lowest Landau level.

With this scheme we obtain the Schrodinger equation in both real-space and coherent-state represen-

tations. A Gaussian interaction among the particles leads to a particularly simple form in which the

eigenvalue condition reduces to a purely algebraic property of the polynomial wave function. Final-

ly, we formulate path integration within the lowest Landau level using the coherent-state representa-

tion. The techniques developed here should prove to be convenient for the study of the anomalous

quantum Hall effect and other phenomena involving electron-electron interactions.

I. INTRODUCTION II. HILBERT SPACE OF ANALYTIC FUNCTIONS

Recent experiments which have studied the quantum
Hall effect' and the anomalous quantum Hall effect
have pointed up the need for a concise theoretical formu-
lation of the two-dimensional Landau-level problem in-
cluding electron-electron interactions. The remarkable
phenomena associated with the anomalous quantum Hall
effect are possible because of two strong constraints on
the system. The very high magnetic field dominates the
physics, and, as has been discussed previously, severely
restricts the dynamics of the particle motion. Low tem-
peratures limit the electronic inversion layer to occupancy
of the lowest spin state of the lowest Landau level. Under
these conditions a commensuration energy exists which
lowers the ground-state energy and introduces an excita-
tion gap whenever the Landau-level filling is a simple ra-
tional fraction of the form p/q with q odd. The origin
of this commensuration effect is currently the object of in-
tense experimental and theoretical interest.

We wish to take advantage of the constraints on the
dynamics mentioned above to present a general formalism
for doing quantum mechanics within the lowest Landau
level in two dimensions. The formalism we have
developed is quite simple, easy to implement, and provides
a useful language with which to discuss the physics of
Landau levels in two dimensions. This formalism should
find application in both analytic and numerical studies of
the interacting electron problem.

The paper is organized as follows. Section II intro-
duces a Hilbert space of analytic functions which spans
the states of interest and with which the Schrodinger
equation is very conveniently projected onto the lowest
Landau level. Section III discusses the formal evaluation
of the partition function. Section IV introduces coherent
states and a formulation of path integrals for the lowest
Landau level. A summary is presented in Sec. V. The
formalism developed here is illustrated with simple
analytical examples. Applications of these techniques will
be presented in a sequel to the present paper.

Consider a two-dimensional electron gas lying in the
x-y plane and subject to a perpendicular magnetic field
8=Bz. The Hamiltonian is taken to be

Hp g——p;+ —A;
1 e ~

2p?l C

'2

V= g v(r; —ri),

4[zl=f[zlexp ——'g lz I' (4)

where [z] means (zi,zi, . . . , ztv) and f is a polynomial in
the N variables zk —=xk iyk The ex—ponen. tial factor in

where V is the Coulomb interaction or some other model
interaction among the particles. The eigenvalues of the
kinetic energy lie in discrete, highly degenerate Landau
levels uniformly spaced in energy by fico, where co, is the
classical cyclotron frequency. We will assume B is suffi-
ciently large that the magnetic energy greatly exceeds
characteristic thermal and potential energies, so that mix-
ing of Landau levels can be neglected. This (by now stan-
dard) assumption is not necessarily strictly valid for real
systems, but will presumably lead only to quantitative er-
rors not qualitative changes in the physics. Restriction of
the electrons to the lowest spin state of the lowest Landau
level yields a considerable advantage since the wave func-
tions for these states have a simple analytic form. Our
central purpose in this section is to develop a systematic
formalism for doing quantum mechanics in the lowest
Landau level.

We begin with the kinetic energy. In the symmetric
gauge with vector potential A;= ——, r;XB the lowest
Landau level eigenfunctions of Hp have the form (in
units where 1 =eBItic =1)
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(4) will be common to all wave functions, and the manipu-
lations we wish to carry out are simplified considerably if
this common factor can be removed. We do this now by
formally defining a Hilbert space of analytic functions
following Bargmann. '

Consider the set of entire functions of N complex vari-
ables,

zf =V2V'm+1 f
d
dz f =&m l2f

Hence,

a'=zyv 2,

(12)

(13)

(f,g) = J dp[zlf'[z]g[z],

where the measure is

dIM[z]= g e ' dx;dy; .(z,. )2'
217

(6)

(7)

We restrict 6 to include only those functions with finite
norm (f,f) «n.

The Hilbert space thus defined is realized by the wave
functions of the lowest Landau level since these may al-
ways be written as in Eq. (4) with f being a member of 8.
Furthermore, the inner product on 8 has been defined in
such a way that wave function overlaps are given by

These functions are analytic in each of their arguments
everywhere in the complex plane. Thus for N =1, for ex-
ample, the function defined by

f(z) =z

is an element of 6, but the function defined by

f (z) =z*

is not analytic (since z* cannot be expressed as a power
series in z) and is thus excluded from 6. This is a crucial
point to which we shall return later.

Define an inner product on 6 via

(14)

are boson ladder operators and are easily seen to be mu-
tually adjoint with respect to the inner product defined on
6. Our present discussion of these operators in terms of
the Bargmann space 8 makes formal Laughlin's' pro-
cedure of having d!dz not apply to the exponential part
of the wave function in Eq. (4).

Having obtained these fundamental operators we now
consider how to project the Hamiltonian onto the lowest
Landau level by expressing it in terms of these operators.
Because the lowest-Landau-level eigenfunctions are all de-

generate, the kinetic energy cornrnutes with any operator
that has been projected on to that level. The kinetic ener-

gy is thus a constant which can be ignored. The
Schrodinger equation becomes simply

Vf[z] =Eg[z],

where V is the projection of the potential operator onto
the lowest Landau level. Returning to the case of N parti-
cles let us assume a central two-body potential which may
be expanded in the form

V= g g y„(r J.
.r,j)",

i &j n=O

which may be rewritten

N Do

V[z',z]= g g y„(z;*—z')"(z; —z )" .
i &j n=0

(16)

The primary advantage of defining the Hilbert space so
that we can work with f instead of g in (4) is that f is an-
alytic while f is not.

We now investigate what linear operators can be de-
fined on 8, focusing on the case N =1 to obtain some
useful results which are easily generalized to arbitrary N.
Consider

where 0 is a linear operator and f and g are in 8. The re-

quirement of analyticity severely restricts the form of 0.
There are only three fundainental operations allowed: (1)
multiplication by a complex constant, (2) multiplication
by a power of z (but not z'), and (3) differentiation with
respect to z. Any linear operator on 6 can be expressed in
terms of these fundamental operations.

In order to study these fundamental operators it is use-
ful to define orthonormal basis functions by

+nmk = (fn ~Zkfm ) . (17)

Although zkf is outside the Hilbert space, a„k is per-
fectly well defined. Indeed from the definition of the
inner product it is clear that

(f zkf ) (zkf. f ) (18)

since zk is the Hermitian conjugate of zk. However, using
(13) and (14) we have that the adjoint of zk is

so that (18) becomes

We are now faced with the problem that z' takes states
out of the Hilbert space (it mixes Landau levels). We need
to project z* onto our fundamental operators. Consider
the matrix element

Z7k

(2n& I)1/2„(z)= (10)
(f.,zkf ) = f.,2 f

k
(20)

These have the property
Thus zk and 28/Bzk have the same matrix elements
within the space 6. Despite this, the two operators are
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not completely equivalent since zI, commutes with zk and
8/Bzk does not. For example, we have

{fzkzkg) =(f»kzkg»

f~zk2
g g A f&2 zkg

zk ~&k

Only the right-hand side of (22) is in agreement with (21),
showing that occasionally it is important even for physi-
cists to distinguish between the Hermitian conjugate and
the adjoint.

The message in (21) and (22) is that z* makes sense
only when operating to the left. Hence, in order to project
the potential energy onto the lowest Landau level one sim-
ply uses

V[z*,z]~NV 2,z

where N is a normal ordering operator that keeps all the
derivatives on the left. Note that if one has the product of
two operators each of which is separately pmjected onto
the lowest Landau level one has

k(l
(29)

where pal is an odd integer. Separating ter%is involving
only z; or zj individually yields

Vg =A, (m+1)N(N —1)1t

l QJ k+/, J

z —z.
g J

zk
(30)

ZJ' Zk

The summation ln {30)may be evaluated by choosing any
three electrons (e.g. , 1,2,3), and noting

3 3

g&J k~I'J ) k J k

There are

The Schrodinger equation becomes

N

A, g — (z; zj—)g[z]=EQ[z] .
Bz( Bzj

Let us choose for 1( (the polynomial part of) Laughlin's
wave function

A[z', z]B[z*,z]~ NA 2,z
Bz

whereas if only the product is to be projected one has

distinct ways of choosing these three electrons so that (30)
becoIDes

Vg~ =N(N —1)(1+mN/2)$~, (32)
A[z', z]8[z*,z]-+N A 2,z 8 2-,z

Bz Bz

Using these rules we obtain our central result: the pmjec-
tion of the Schrodinger equation onto the lowest Landau
level,

r

NV 2,z P[z]=EQ[z], (26)

where V[z*,z] is the classical potential.
We now turn to some illustrative examples using (26).

Consider the case of harmonic interaction among the par-
ticles,

V[z*,z]= —,g'g (z,
*

z,')(z; z, ) . — —

IV[z*,z]= g
~&J ~ J ~ J

(z*—z*)(z —z. )
{33)

We can rewrite this by means of the following integral
repl esentatlon:

N

0
f gJ

Projection onto the lowest Landau level yields

(34)

and as previously found by other means, Laughlin's wave
function is an exact eigenfunction of the harmonic in-
teraction.

As a second example, we consider how one can
represent the 1/r potential,

P

aV 2,z = gN f di exp —2A,
Bz BZI

(z —z. )J (35)

Similarly, the Coulomb potential may be expressed as a Gaussian integral,
P'

2V 2,z = g N dk, exp —2A,
()Zg

(z; —zJ )
8
ZJ

These results are not very useful as they stand because of the presence of the normal ordering operator. Fortunately, this
difficulty can be bypassed as we now demonstrate. Consider the operator (which contains no normal ordering)
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(37)

00
1

u; = dA, g(A, )exp ——A(z; —z )EJ 0 l J
C

a
BZj

where g is an arbitrary, real-valued function. To see the effect of V we note that any wave function may always be writ-
ten (for a given i and j )

P[z]= g a„(z;+zj)"(z;—zJ )
n, m =0

where a„~ depends only on coordinates other than z; and zi and where m is odd. Applying (38) yields

uij P[z]= g I d A, g(A, )e ™a„~(z; +zJ )"(z;—zJ )
n, m =0

Suppose the actual potential obeys

v J (z; +zj )"(z; —zj ) =e(m )(z; +zj )"(z;—z~ )

(39)

(41)

If we regard e as a function of a continuous variable m then we can always achieve (41) by choosing g in (40) to be the
inverse Laplace transform of e. Thus it is possible to avoid the normal ordering problem. For example, the choice
g(l)= —,

'
reproduces the matrix elements of 1/r& exactly. The choice g(A, )=5(A,—Au) corresponds to a Gaussian in-

teraction. With the use of (37) and (38) the Schrodinger equation becomes

COI dkg(A, ) g exp ——,'l, (z; —z )
a

Bzi
(42)

zi' ——zi+ Q(zi —zj ), (43)

For the remainder of the discussion we shall specialize to
the case of a Gaussian interaction which is obtained by
simply dropping the coupling constant integration in (42).

We see from (42) that the Schrodinger equation con-
tains an infinite number of derivatives, but fortunately we
can take advantage of the fact that exp(d/dz) is a dis-
placement operator and exp(zd/dz) is a dilation operator.
Defining

of P. Note that the effect of the potential v,J on the left-
hand side of (47) is to compress the distance between par-
ticles i and jby a factor 1 + 2Q=exp( —A, ). The multipli-
cation by E on the right-hand side of (47) can also be re-
lated to a dilation in the following way. The wave func-
tion P may always be taken to be an eigenfunction of the
total angular momentum. However, P has angular
momentum L if and only if P is homogeneous of degree
L. Hence,

zJ ——zj —Q(z; —zj ), Eiti[z] =P[Kz], (48)

where

Q =(e —1)/2, (45)

we see that Eq. (40) may be rewritten (dropping the cou-
pling constant integration)

uijiti[z]= g a„(z +zj )"(z —zJ )
n, m =0

Hence, the Schrodinger equation becomes

(46)

2 i ~zjp ' ' '~zN) E0[ ].z (47)

%e have thus reduced the Schrodinger equation to a pure-
ly algebraic statement about the polynomial P.

We can gain further insight into the meaning of (47) if
we think of it as a statement about the dilation symmetry

where K=E' . Thus, the right-hand side of (47) corre-
sponds to a global dilation (or contraction). The
Schrodinger eigenvalue condition is simply that the sum
of local contractions of individual bonds generated by the
potential is equivalent to a single global contraction pro-
duced by the eigenvalue.

It is useful to consider the Gaussian interaction for
various limiting values of the coupling constant A, . For
infinitesimal A, we obtain the harmonic interaction dis-
cussed earlier. In the opposite limit A, ~00 we have
Q = ——,

' so that [as can be seen from (43) and (44)] the ef-
fect of the potential is to bring the particles very close to-
gether. This is consistent with the short-range nature of
the potential in this limit. If we allow for the possibility
of complex coupling constants we see that for A=in, ,

.

Q = —1 and zi' =zz, and zj' ——z;. Hence,
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:-;J=exp (im. /2)(z; —zJ)
Bzr clzJ

(49)

is an explicit representation of the particle exchange
operator. Since P must be totally antisymmetric we may
deduce that the energy eigenvalue obeys

E(A, +i n)= .—E(A, ) . (50)

Hence, E must have the form

E(A, )= g a e ™,
m odd

(51)

III. PARTITION FUNCTION

Having established how to project the Harniltonian
onto the lowest Landau level we are in a position to dis-
cuss the forrnal evaluation of the partition function

—13(HO+ v)Z—:Tre (52)

a fact which could also be deduced from (40).
In summary we have, by making use of Bargmann's

Hilbert space of analytic functions, derived a simple for-
malism for projecting the Schrodinger equation onto the
lowest Landau level. We have shown how to do this for
arbitrary forms of central interactions among the parti-
cles. We found that the case of a Gaussian interaction
leads to a particularly simple form in which the
Schrodinger eigenvalue condition reduces to a purely alge-
braic property of the eigenfunction polynomial. Finally,
we note that this last result suggests that it may be possi-
ble to attack the problem of solving the many-body wave
equation by abstract group-theoretic methods. Of partic-
ular interest in this regard is the connection made by
Bargmann' between polynomials in two variables, SU(2)
and the rotation group. It may be possible to extend these
ideas to polynomials in many variables.

where d zJ =dxrdyJ and

P[z]=—g Ifs[z] I' (55)

1
1( [z]= DetMs,

N!
where Mq is an X&(N matrix with

(Ms) =Ps;(z, ) (57)

and Ps; is the ith orbital in the Sth configuration. Thus
(55) becomes

P[z]= g (DetMs)(DetMs) .1
(58)

However, from the Cauchy-Binet theorem' we have

P[z]= Det(L tL ),1

Qf

where 1. is a rectangular matrix given by

(59)

Lk, pk(z, ), —— (60)

with j running from 1 to N, and k running over all orbi-
tals (occupied or empty). Setting (60) into (59) gives

P[z]=,DetG [z],1
(61)

where the sum is over all Slater determinants 1lrs of N
electrons in the lowest Landau level [note the Ps used here
is the actual wave function including the exponential fac-
tor as in (4)]. Equation (54) resembles the classical parti-
tion function modified by a quantum correction P. TP
argue that P contains the commensuration energy. We
will now extend the analysis of TP by explicitly perform-
ing the summation in (55) to show that P does not pro-
duce a significant commensuration energy.

The Sth wave function is

We begin by considering the recent work of Tosatti and
Parrinello' (TP) which we believe treats the projection
onto the lowest Landau level incorrectly. TP approximate
(52) bY

where G is the matrix defined by

GJJ ——g pk(zr )pk(zJ ) .
k

(62)

Z= Tre 'e (53)

N
Z= Q f d'z, e I"(*'IP[z]-, (54)

and then restrict the trace to the lowest Landau level. The
use of (53) ignores the fact that Ho and V do not com-
mute. We have been able to show that the use of this ap-
proximation destroys any possibility of observing a com-
mensuration energy. We will demonstrate this by review-
ing the derivation of TP and then extending it to obtain
some new results. Following this we will present what we
believe is the correct formulation of the partition function
using the projection technique developed in the preceding
section.

Assuming (53) to be valid we may neglect the kinetic
energy since it is a constant for the lowest Landau level.
Taking the trace in (53) in a coordinate representation
yields

1
I
z —z'

I
/4 —(i/2)(~ x' —y ~'6,— e J e ii' j j'

JJ (63)

so that G is a Gaussian with a magnetic flux phase factor.
The partition function may now be written

Z=, g d'z, e i'!' "DetG[z]-.
Pf I

(64)

Because of the strong Gaussian falloff of GJJ, it is use-
ful to separate G into a diagonal and an off-diagonal part,

1
JJ ~JJ + JJ2' (65)

where E;; =0. We now use Det(G)=exp(TrlnG) and ex-
pand

We see that GJJ is simply the one-body Green's function
for propagation from zJ to zJ . In the symmetric gauge,
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N dz.2

z= —PV[z, z] TrI —(1/2)F +(1/3)F —.. . ]3

pf f

(66)

The first term in the expansion may be viewed as a correc-
tion to the classical potential which introduces an effec-
tive interaction

1v 3 The higher-order contributions are even smal ler.
Thus, this is much too small to explain the experimentally
observed commensuration energy.

The origin of this difficulty is the approximation made
by TP in using Eq. (53). We will now remedy this by go-
ing back to (52) and first projecting the Hamiltonian onto
the lowest Landau level and likewise restricting the trace.
One then has

—~z; —zj ~

/2N

(67) —P(HO+ V)Z= Tre (69)

1
—( ~z; —zk I + ~zk —z

~
+ ~z. —z, ~

)/41
e ' ' ' '

—,cos(A;,k) .
i,j,k

(6&)

The oscillating area term does produce a commensuration
energy, but unfortunately the Gaussian falloff is quite
severe. For a filling factor v the quantity in (68) is of or-
der exp( —v 3m. /v) which is approximately 10 for

This short-range repulsion represents the lowest-order ex-
change interaction. The next terms in the expansion
represent cyclic three-particle exchange, etc.

We seek in this expansion a source of the commensura-
tion energy which is observed experimentally to lower the
free energy whenever the Landau-level filling is a simple
rational fraction. The first such term in (66) is the cyclic
three-particle exchange. The three particles i, j, and k
form a triangle of area A,Jk containing a certain magnetic
flux 4 which controls the phase of the three-particle ex-
change term

The kinetic energy Ho is a constant for the lowest Landau
level and, bemuse the projection has already been per-
formed, now commutes with the potential energy V.

The corrected version of (54) becomes [using (23)]

, f dP[z]&~'s[z]exp pV 2,z 4 [z],
1 8

Nf S Bz

(70)

where 4s is the polynomial part of gs defined in (56). It
is assumed that V has been expressed in the manner
described previously so that the normal ordering problem
has been eliminated.

We would like to perform the summation in (70) to ob-
tain the corrected version of Eq. (64). This may be done
as follows. We rewrite (70) as

N
Z =

&, II f " z g ~'sexp —
4 g ~z;~ exp ——, g ~z;~' exp —pV 2 ,z C

j=1 S i z
(7I)

We may move the second Gaussian weight factor to the right provided we make the transforation

2 ~2 + 2z
1 )fc

az az

and make the rule

(72)

z =0. (73)

This leaves

N
Z= ', y f "'z~yqs[z]exp —pv 2 +-,'z*,z qs[z],

' j=1 S

d z, exp —pV 2 + —,z*,z DetG[z', z],
N

1

(z') (zl Et . gZJ=1

(74)

~* i
—'k'i*G„[z' z]= e ' e

2m
(76)

This formal expression for the partition function should

where G[z',z] is an N&&X matrix elements given by the
one-body propagator,

prove to be a useful starting point for evaluation by a
variety of numeriml and analytic techniques, both pertur-
bative and nonperturbative. The expression we have ob-
tained is necessarily more complicated than that used by
TP, but we have demonstrated that the latter does not
yield a commensuration energy. In the next section we
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will discuss path-integral techniques for the evaluation of
this more complicated expression for the partition func-
tion. or

—s l4; —kjlf=1—e

IV. COHERENT STATE REPRESENTATION
AND PATH INTEGRATION

Consider the analytic function defined by

4g[z] =exp —,
' g g'z, (77)

both discourage close encounters of the particles. By us-
ing the first form of f, the integral in (82) may be explicit-
ly carried out to yield

r

aI [z]=g
Bzi

Recalling Eq. (13), which shows that z; is effectively a
harmonic-oscillator raising operator, we see that P& is
nothing more than a coherent state of the oscillator. '

This is an eigenfunction of the lowering operator,

(78)

One can verify, in a straightforward manner, that Pg has
the norm

(79)

[z]= f dp, [g]g (g; —g ) exp —,
' g gzk (81)

With this representation it is quite easy to see how to in-
clude additional correlations in Laughlin's wave function
by simply writing

+[z]= f ")MM) II(&I—kg) f(
I ki —

&g I
)exp 2Xdjj;zk

(82)

The form of f determines the additional correlations. F«
example,

and corresponds to a Gaussian wave packet centered at
point [g] (when the exponential factor is restored to the
wave function). These coherent states have several possi-
ble uses which we now explore.

There is currently a very active search underway for an-
alytic wave functions to describe the ground state of in-
teracting Landau-level electrons and to explain the energy
excitation gap required by the existence of the anomalous
quantum Hall effect. ""' One potentially useful ap-
proach to this problem is to take advantage of an integral
representation of the wave function through the following
identity

Pl*)= f dI M)4lÃld~l~)

where the measure is defined in Eq. (7). As Bargmann
points out, the meaning of this identity is that Pg is analo-
gous to the Dirac 5 function. Consistent with this is the
fact that P~ is the most hightly localized wave packet that
can be constructed within the lowest Landau level.

As an example of the use of Eq. (80), Laughlin's wave
function given by Eq. (29) may be written

This seems likely to have a more favorable ground-state
energy than Laughlin's wave function.

One of the attractive features of this representation is
that since f is real, the total angular momentum, and
hence the particle density, is independent of the form of f.
This is thus a very convenient way in which to include
variational freedom in the wave function while keeping
the density automatically constrained. We note that Eq.
(82) could also be easily generalized to include additional
three-body and higher correlations as variational degrees
of freedom.

A further advantage of the representation given in (80)
is the complete factorization of the z dependence [as can
be seen in the specific examples (81) and (82)]. We can
take advantage of this factoriz ation to cast the
Schrodinger equation for the Gaussian interaction into a
new form. Setting (80) into (47) yields

i k&1

or, equivalently,

f d [g)y[g)
) yg* E y ~&~')«k Pl)(zk —Zj)

k&1

=0. (84)

I=fdI [kl I dq&&Pal

is a straightforward procedure. Specializing to the case
W=1, the single-particle propagator may be rewritten us-
ing

This is simply the integral form of the Schrodinger equa-
tion conjugate to the differential form obtained previous-
ly.

Another important use of the coherent state representa-
tion is in the development of a path-integration scheme
projected onto the lowest Landau level. To verify that the
resolution of the identity within the coherent representa-
tion is
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G(zg, t;z;)=A '(P,g, e ' 'P„) (85a) (94)

where

n+1
= g fdV(k, )(kq, (85b)

as the canonically conjugate momentum, the path integral
(86) assumes the phase-space form

G D e —is(t)

where D means

dx; dye

1l ~ oo ) 2'7l

and the action S is given by

(86)

A —=(P„.,P„)' '(P,y, P,y)' ',
and e=t/(n + 1), go=z;, and g„+ i

—=z~. Following Schul-
man' a series of standard manipulations leads to the path
integral

D DIIe'

where the action is now

(95)

—,
' II —rr —a (96)

(97)

The variational equations for the extremal path now be-
come

~( ) f'd 1 ~dg (dP
4l 8'T 87

H(P, g)— (87) II=— (98)

with

$,HPt3

(0 0p)
(88)

dg . BH(g', g)
de. (90)

dg . aa(P, g) (91)
ag

Since H is real these are consistent. Returning to the
original coordinates x and y via g=x —ty yields

aH
(92)

(93)

These are simply the classical E)&8 drift equations.
We notice that the action in (87) is peculiar in that it is

linear in the time derivatives. This violation of time re-
versal symmetry is, of course, due to the presence of the
magnetic field. The form of the action suggests that we
do not have an ordinary path integral, but rather some-
thing similar to a phase-space path integral. ' Indeed if
we treat g as a canonical coordinate and identify

Since the coherent states are all degenerate eigenstates of
the kinetic energy (which is therefore being neglected), Eq.
(88) is readily evaluated

a(g, g)= f " ' V(z*,z)e-~'-~~'"
2m

where V is the classical potential. This is simply the ex-
pectation value of the potential energy for a Gaussian
wave packet centered at z =g.

From the action in (87) we may find the variational
equations for the extremal path

which are nothing more than the usual Hamilton's equa-
tions.

There is a very nice connection between this and our
previous results for the projection of the Schrodinger
equation onto the lowest Landau level. To see this we
consider the canonical quantization procedure for the
classical theory represented by Eqs. (97) and (98). In a
coordinate representation we quantize the classical theory
by replacing the momentum by the operator

(99)

From Eq. (94) we see that this requires the substitution

—+2
8

(100)

This is, however, precisely the rule given previously in
Eq. (23) for projecting the quantum Hamiltonian onto the
lowest Landau level. The fact that the path-integration
scheme we have found is analogous to a phase-space path
integral suggests that caution is required in making use of
this scheme. Schulman' points out that phase-space path
integrals are notoriously ill behaved. The problem here is
that when we project the free propagator onto the lowest
Landau level it becomes time independent. Thus, even for
infinitesimal times the particle can propagate a finite
length (on the order of the magnetic length). Formal ma-
nipulations of the path-integral expression must therefore
be treated with care. Klauder has recently considered
these questions in connection with the quantum Hall ef-
fect."

One standard manipulation is to expand the path in-
tegral in fluctuations about the extremal path obtained in
Eqs. (90) and (91). This procedure fails because of the
pathological nature of the paths. ' It is possible, however,
to avoid this difficulty, and we plan to present a rigorous
derivation of the propagator in the semiclassical limit else-
where 2o
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V. SUMMARY

We have presented a general formulation of quantum
mechanics within the lowest Landau level in two dimen-
sions. This scheme involves study of the Hilbert space of
functions analytic in the complex coordinate z=x iy-
The quantity z* is related to the conjugate momentum
and the simple replacement z'~2dldz converts any
classical quantity f(z*,z) into the associated quantum
operator f,~ properly projected onto the lowest Landau

level Within this formalism we have obtained expres
sions for the Schrodinger equation in both the real-space
and coherent state representations. We have shown that a
Gaussian interaction between the particles leads to a par-
ticularly simple form for the Schrodinger equation with
the eigenvalue condition being reduced to a purely alge-
braic property of the polynomial wave function. We have
also formulated path integration within the lowest Landau
level by making use of the coherent state representation.
Numerical application of the formalism presented here is
currently in progress.
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