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We report calculations of densities of states (DOS) associated with specific atomic configurations
of compact clusters in substitutionally disordered alloys describable by a Hamiltonian with nonover-

lapping muffin-tin potentials. The method of calculation consists in evaluating the Green function

associated with a cluster of atoms embedded in a translationally invariant effective medium such as

the one determined in the Korringa-Kohn-Rostoker, coherent-potential-approximation (KKR-CPA)
method. This method yields well-defined, analytic, and physically meaningful results and takes

proper account of the crystal structure of the lattice. Numerical results are reported for near-

neighbor clusters in both one-dimensional model muffin-tin alloys, as well as in realistic Ag, Pdl
alloys. The DOS associated with many cluster configurations exhibit more structure than the DOS
calculated in the single-site KKR-CPA method, which can be understood in terms of fundamental

physical quantities, such as the relative scattering strength of the alloy constituents, and of the sym-

metry of the lattice. Several possible applications of cluster DOS in calculating the physical proper-

ties of substitutionally disordered alloys are discussed.

I. INTRODUCTION

The coherent-potential approximation' (CPA) is the
most satisfactory single-site theory for the discussion of
the one-particle properties of random, substitutionally
disordered alloys. In the CPA, one considers the real
disordered material replaced with an effective medium
that possesses the symmetry of the underlying lattice.
Each site of the lattice is occupied by an effective scatterer
determined through the self-consistency condition that the
scattering off a real atom embedded in the medium van-
ishes on the average. The CPA has many desirable prop-
erties, and has been reviewed extensively in the litera-
ture. ' It has also been used successfully to calculate elec-
tronic densities of states ' (DOS's) and transport proper-
ties ' of disordered substitutional alloys.

In spite of its many desirable properties, however, the
CPA, as a single-site theory, cannot account for the ef-
fects of fluctuations in the local environment of a site.
Such fluctuations are responsible for sharp structure in
the DOS and may strongly influence physical properties,
e.g. , the formation of magnetic moments. In addition,
short-range order (SRO) can only be taken into account
accurately and convincingly within the context of a mul-
tisite, rather than a single-site, theory.

The need to extend the ideas embodied in the CPA to a
cluster theory was realized almost simultaneously with the
introduction of the CPA, and several attempts have been
reported ' toward such an extension. These attempts
produced theories that were either too difficult to imple-
ment computationally, such as the molecular CPA, ' or

were shown to lack analytical rigor. In other applica-
tions, ' severe simplifications such as the substitution of a
Cayley-tree (or Bethe) lattice for the proper crystal struc-
ture of the material surrounding the cluster were made.

The original applications of the CPA as well as all at-
tempts toward cluster generalizations were made in con-
nection with tight-binding (TB) or interpolation-scheme
Hamiltonians. The first satisfactory cluster method was
consequently developed with respect to such Hamiltoni-
ans. This method, which strikes a balance between con-
ceptual simplicity, analytical rigor, and computational
ease, has been used in several applications ' in connec-
tion with model electron and phonon systems. In this
method, one solves for the Green's function (or scattering
matrix) for a cluster of real atoms embedded in an effec-
tive medium which is determined within the single-site
CPA. The advantages as well as the limitations of this
method have been discussed in a previous publication.

TB Hamiltonians are relatively easy to handle computa-
tionally and are appropriate for many applications, but
also possess severe limitations with respect to a wide class
of disordered systems. One important limitation is the
need for parametrization procedures in order to determine
the values of the various physical quantities that enter a
calculation. For alloys of constituents with different
bandwidths, for example, a TB description requires the in-
troduction of off-diagonal disorder (ODD), i.e., disorder
in the site off-diagonal elements o'f the TB Hamiltonian as
well as in the diagonal ones. The parameters that describe
ODD can be determined only by means of oversimplified
interpolation schemes. Such limitations can be removed
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within the context of a Hamiltonian with nonoverlapping
muffin-tin (MT) potentials.

The application of the CPA to systems described by
MT Hamlltonians 1s a much more arduous computational
task than the app11catlon to TB systems and, therefoI'e, 1t
has materialized comparatively slowly. Now, however,
the computational tools for applying the CPA to MT
Hamiltonians have been developed. ' These computa-
tional techniques are similar ' to those used in
Korringa-Kohn-Rostoker (KKR) calculations of DOS in
pure metals, and an extensive review of these techniques
has appeared in a recent publication. It is now generally
acknowledged that the KKR-CPA method provides a reli-
able, first-principles description of band structure and re-
lated electronic properties of disordered substitutional al-
loys.

In this paper, we extend the cluster method originally
developed in connection with TB Hamiltonians to alloys
describable by MT Hamiltonians. We apply the method
to a cluster consisting of a central site and its shell of
nearest neighbors embedded in a medium determined
within the KKR-CPA method. The DOS's are obtained
from the site-diagonal element of the Green's function at
the center of the cluster, calculated using a cluster general-
Izatloll of tllc KKR-CPA formulas. Tllus thcsc RI'c thc
first a priori cluster DOS calculations based on the actual
potential functions of an alloy and taking realistic account
of local-environment effects and of the proper crystal
strllctlll'c of thc lllatcIlal. An 1ndcpcndcnt Rlld dlffclcIlt
derivation of our formulas has recently appeared in a
treatment of a cluster of impurity atoms embedded in a
puIC hOSt.

The rest of the paper is arranged as follows. In Sec. II
we briefly rederive the KKR-CPA self-consistency condi-
tion in a form that lends itself naturally to the cluster gen-
eralization presented in Sec. III. This form also brings out
the similarity of the cluster method as applied to TB and
MT systems. In Sec. IV we describe the method used to
evaluate the off-diagonal elements of the cluster Green's
function. Section V contains the results of numerical ap-
phcations of the cluster method to a one-dimensional
model MT alloy as well as to Ag, Pd1, alloys. A sum-
mary and a discussion of the method and its potential ap-
plications are contained in Sec. VI.

II. REDERIVATION OF THE KKR-CPA

The KKR-CPA method has been discussed ' ' exten-
sively in the literature. In this section, we present a con-
densed derivation of the self-consistency condition of the
KKR-CPA method in a form that allows the straightfor-
ward generalization to the cluster method presented in the
following section.

The electronic Hamiltonian of the substitutionally
disordered MT alloy is taken to be of the form

(2.1)

where the potential function V corresponds to a collection
of nonoverlapping MT potentials,

V(r)= gu(r —R, )= QU(r„) .

Here, U(r —R„) is the potential centered on site n and is
assumed to vanish outside S„,the radius of the MT sphere
centered at Rn. In a random substitutional binary alloy,
A, B& „u(r„)can assume the values U"(r„) or U (r„), with
corresponding probabilities e and 1 —e, respectively.

The single-particle properties of the alloy are given by
the ensemble average (G) of the one-particle Green's-
function operator. For any alloy configuration and for a
given energy e, the Green's function is given by the expres-
81on

G(k;r, r')= QZL(e, r„)rLLZI (e, r '
)

LL'

—QZL(e, r„)J I( cr„)5„
L

(2.3)

Ill this cxprcssloll, r ( I' ) ls wltlllll 'thc ceil ccntcl cd Rt

R„(R ). The ZL(e, r„) and Jl"(c,r„) are solutions of the
Schrodinger equation for a single MT potential U ( r„) cor-
responding to angular momentum indices I. ( = l,p).
ZL (c, r„) is regular at the origin and joins smoothly to the
function

ZL(e, r„)=[jI(ar)ml" ikIII(ar—)]YI(r), (2.4)

'C7. '= f~ ii~1.' ~

LL ILL nm LL gLJ (2.6)

In these equations, m" is the inverse of the site-diagonal t
matrix, m =t„, which for a spherical MT potential is

iagonal in the angular momentum indices. The gLnL~ are
the elements of the free-electron Green's function. For a
complete discussion of the form taken by the averaged
Green's function and for the expressions for calculating
DOS in the CPA, the reader is directed to Refs. 24 and
25.

It is clear from Eq. (2.3) that in order to evaluate the
average of the site-diagonal element of the Green's func-
tion, one must evaluate the average of the corresponding
element of the scattering path operator. The general ma-
trix elements of this operator satisfy the equation of
motion,

ttm tt (z e ~ ttk km&LL'= tL Unm ~LL'+ ~ gLL "&L"L'
k (+n},

Ltt

(2.7)

OI
r

+m Ill $ + g g Ilk' m

k (~n}
(2.8)

In Eq. (2.8) we suppress the angular momentum indices in
oldcl' to sllllpllfy olll IlotRtloll. F10111 Eq. (2.8) wc obtain
the equations

at r„=S„.Here, jl and hI denote the spherical Bessel and
Hankel functions and ~=v e. Jl"(c, r„) joins smoothly to
jI(ar„)YI,(r„) at r„=S„adnis not regular at the origin in
general. The rlT(e) are the on-the-energy-shell matrix
elements of the scattering path operator defined by Gyorf-
fy and Stott, and are given by the inverse of the matrix
M,
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~n tn 1+ g gnkpm

k (+n)

for the diagonal part, and

(2.9)
gcc, and t c defined by the relations

cc'(7. )" =r" ~ n EC mEC'
CC' )ttttt gttltl n ~ C m ~ Ct

(3.1a)

(3.1b)

Pn tkgkntnn+tk g g g klan

k (+n) l (+k, n)

(2.10) and

(t )LT=[(m +g ) ']LT, n, mEC (3.1c)

where 3 denotes a matrix in both site and angular momen-
tum indices. Here, m is a site-diagonal matrix,
(m )LT ——mL, 5„5Lt. . Quantities analogous to those de-
fined in Eqs. (3.1), corresponding to the effective medium,
can also be defined. In particular, the off-diagonal matrix
elements r" are given by the integrals~n (m n gn) —1 (2.11)

for k~n.
Equation (2.10) can now be iterated with the second

terln on the right-hand side treated formally as a pertur-
bation. When the resulting expression for r ", in terms of
v"n, is substituted into Eq. (2.9), one can express Pn in the
orm

where the "renormalized interactor" 6" has the real-space
expansion,

—nm f —
(k)

' k '
nmd3k

BZ
(3.2)

gn g gnkm kgkn

k (+n)

g nkm kg klm lg1n+. . .
k (+n) l (+k,n)

(2.12)

With these definitions, the equation of motion of the
scattering path operator, Eq. (2.8), can be written in the

It is clear from this expansion that 6" represents the sum
of all paths through the disordered material that start at
site n and end at site n but avoid site n at all intermediate
steps. It is also clear that 5" depends on the constitution
of the material surrounding site n but is independent of
the potential on site n If th. e disordered material is re-
placed by an effective medium characterized by a single-
site effective scattering matrix t (with m=t ) and a
scattering path operator r, then Eq. (2.11) immediately
yields the expressions

r

~C'
t C g + y -CC"-C"C'

C"(~C)
(3.3)

=[(t) ' —b, ] (3.4)

This equation can be treated formally in a manner analo-
gous to that of Eq. (2.8) and one easily derives the expres-
sion

and

tt n m (
—nn) —1 (2.13) for the cluster diagonal part of 7. Here, the cluster renor-

malized interactor 6 has site matrix elements

r""=[m"—m+(r"") '] (2.14)

where g(k) is the Pourier transform of g™(the structure
constants of the underlying lattice) and QBz is the volume
of the BZ. The well-known ' self-consistency condition
for determining t in the KKR-CPA method is now ob-
tained by requiring that the single-site average of r"" is
equal to the corresponding quantity of the effective medi-
um,

(~ )(n[ m n m + (
—nn

) 1]—1 )
——nn (2.16)

III. CLUSTER METHOD

In this section we derive the cluster generalization of
Eq. (2.16). To this end, consider the alloy as a collection
of clusters C with corresponding matrix quantities rcc,

The site-diagonal part of the effective-medium scattering
path operator r"" is given by means of the Brillouin-zone
(BZ) integral

f [m —g(k)] 'd k= f r(k)d k,
BZ BZ

(2.15)

(gC)nm g g nkm kg km+ g g nkm kg klm lg ln+. . .
k (~c) k l(~c)

(3.5)

where k (&C) denotes the restriction that k may not as-
sume a value for a site belonging to cluster C. Finally, if
the mk in Eq. (3.5) are replaced by an effective quantity
m, one obtains the equation

~C [
—C = +(=CC)—1]—1 (3.6)

in complete analogy with its single-site counterpart, Eq.
(2.13). In contrast with the development following Eq.
(2.13), no attempt will be made here to determine the
quantities m self-consistently with respect to the cluster
C. Instead, they will be determined using a simpler self-
consistency condition such as the KKR-CPA method.
The effects of lack of cluster self-consistency are expected
to be small.

Equation (3.6) provides a natural way to treat the ef-
fects of local-environment fluctuations within a cluster of
real atoms in a substitutionally disordered alloy. Note
that the equation yields expressions for any intracluster
matrix elements r™,and hence for G(r, r', e) [see Eq. (2.3)]
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no(e) = ——Im(F )(~ )Oo, (3.7)

which is a generalization of the formula obtained ' in
the KKR-CPA method. Here, all quantities are matrices
in angular momentum space; a denotes the occupation of
the central site of the cluster, a=A or B, and the matrices

have matrix elements of the form,

Fg~. = I ZL, (r)ZL (r)dr,

where the integration is over the volume of the Wigner-
Seitz (WS) cell. Clearly, Eq. (3.8) can be averaged over
cluster configurations and summed to obtain the total
DOS associated with the center of the cluster.

for any given cluster configuration. In particular, it yields
an expression for the diagonal elements r"", n EC, which
may be used to calculate the site DOS for any site in the
cluster. For example, the partial DOS associated with the
center of the cluster, site 0, and with any given cluster
configuration is given by the expression

IV. CALCULATION OF r"

It is clear from Eq. (3.6) that an implementation of the
cluster method requires the evaluation of all the intraclus-
ter matrix elements r" of the effective-medium scatter-
ing path operator. For I =2, each of these elements is a
nine-dimensional matrix, which in turn implies that a 13-
atom, near-neighbor cluster matrix rc on an fcc lattice is
117 dimensional. We will describe the method for
evaluating ~" and H in some detail.

The rows and columns of the matrix r(k) can be la-
beled according to the irreducible representations of the
cubic point group. For I (2, the relevant representations
are I i (s symmetry), I i, (P symmetry), 125 (t,g symme-
try), and I i2 (es symmetry). Thus the matrix elements of
r(k) can be labeled according to these representations and

Sl S2
the corresponding values of I and p, , ri, &, i,&,( k ), where S;
denotes a particular representation. Equation (3.2) can be
written in the form,

48

BZ p=&
(4.1)

where P denotes any one of the 48 symmetry operations of the cubic group, and symmetry has been used to reduce the
volume of integration to the irreducible —„wedge of the Brillouin zone. [For clarity of presentation, we denote r by

r(R„~).] The 48 symmetry operations of the cubic group can be divided into two sets, one including 24 operations, and
the other including the products of these 24 operations with the inversion operation J. Expression (4.1) can then be writ-
ten in the form

24

BZ J=0, 1 p=1

where the summation over J indicates that the inversion is applied (or not), J = 1 (or J=0). Now we can write,

(4.2)

(4.3)

where use has been made of the fact that

S,S
ii» i9'z it&i izI'2

With the definition

2cosx if l& —l2 is even,
Ei, i,(x)=

2i slllx 1f l) —l2 1s odd ,

we have

24

BZ p=i

(4 4)

(4.5)

(4.6)

Finally, we can use the transformation properties of operators (matrices) under the rotations of the symmetry group to
write

S

P=1
(4.7)

In this expression, D~„ i.„(P) denotes the (1p, , l'p')th ele-
ment of the matrix representing the operation P in the ir-
reducible representations; D denotes the transpose of D,
and P ' denotes the inverse of P.

The sum indicated in Eq. (4.7) can be carried out manu-
ally or partly programmed on a computer. Owing to sym-

metry, several of the matrix elements of a given ~(R„) are
equal to zero. This reduces the number of integrals to be
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evaluated numerically and results in substantial savings in
computer time.

Having obtained r(R„) for a particular R„, r(R ) for
all ~R

~

= ~R„~ isobtainedbythetransformation xO xi

r(R~ ) =D(P.~ )~(R. )D(P.~ ) (4.8) vo

where P„denotes the rotation operation that takes the
vector R„ into the vector R~. For example, due to inver-
sion symmetry, we have

20

SiS2 ~ S)S2
rt~~i tiki(

—R„)=rtiq2 tiq (R„) . (4.9)

Finally, using 7(R„), t, and t, one obtains 7" for any
cluster configuration and any energy by inverting the ma-
trix indicated in Eq. (3.6). Explicit expressions for r"
corresponding to one-dimensional (1D) and three-
dimensional (3D) alloys are given in the Appendix.

V. NUMERICAL RESULTS

The cluster method just presented was used to carry out
numerical calculations of cluster DOS in model 1D MT
alloys as well as in real Ag, Pd~, alloys.

A. 1D calculations

The 1D alloy of nonoverlapping MT potentials used in
our calculations is described by the Hamiltonian

2

+ g u(x —na) .
X

We assume u„(x) to be symmetric and to vanish for
~

x
~

greater than some radius S(—,
' a, where a is the interatom-

ic spacing. This 1D model retains many of the features of
a 3D MT alloy while it presents several computational ad-
vantages. Thus in one dimension all BZ integrals can be
evaluated analytically, and there exist only two com-
ponents of the angular momentum, I =0 and I = l. In ad-
dition it is computationally simple to obtain exact DOS
histograms using the Schmidt technique and to average
over all cluster configurations, at least for small clusters
such as near-neighbor clusters. Such averages can be very
time consuming for the case of 3D alloys; a near-neighbor
cluster of a binary alloy in an fcc lattice gives rise to 288
inequivalent configurations. Thus 1D alloys allow a com-
parison between exact DOS and those obtained in the
KKR-CPA method, as well as in the cluster method.

A detailed description of the application of the KKR-
CPA method to 1D MT alloys has been given in previous
publications. ' ' The expressions for the intracluster ma-
trix elements of the scattering path operator for the effec-
tive medium ~zL can be calculated analytically and are
displayed in the Appendix.

Our calculations were carried out for square-well poten-
tials u(x) of the form shown in Fig. 1, which also shows
the band structure of the pure A and B components of the
binary alloy A,Bi, We present . results for the case
c =0.10. The alloy constituents are defined by the poten-
tial parameters as follows: for u"(x), Vo ———2.0 and
Vi ——12.0, and for u (x), Vo = —6.0 and Vi ——2.0. For

l I I r I

0 2 4 6 8 l0

FIG. 1. Upper frame: Schematic of a single A(B) 1D
muffin-tin potential. Strength of the potential is defined by the
two radii, Xo and X~, and by the two constants, Vo and V~.
Lower frame: Band structure corresponding to an infinite array
of A scatterers (solid line) and B scatterers (dashed line); the A

and B scatterers are defined by the parameters given in the text.

both species xp ——0.4 and x ) ——0.5.
In the upper frame of Fig. 2 we compare the DOS cal-

culated in the cluster method (solid curve), and in the
single-site KKR-CPA method (dashed curve) with an ex-
act DOS histogram. The cluster DOS was calculated for
the central site of a three-site cluster and was averaged
over all cluster configurations. It can be seen that both
the CPA and the cluster DOS agree well with one another
and with the exact results; the cluster DOS represents the
exact histogram somewhat more faithfully in the high-
structure region.

The lower frame in Fig. 2 shows the I =0 partial DOS
corresponding to an A atom in the KKR-CPA method
(dashed curve), and to an A atom surrounded by various
configurations of its two near neighbors. When the par-
tial cluster DOS are averaged and combined with the DOS
for I = 1, and with the corresponding DOS for B-centered
clusters, they yield the total cluster DOS shown in the
upper frame. In the figure, the solid curve corresponds to
the configuration BAB, the dotted curve to the configura-
tion BRA, and the dashed-dotted curve to AHA. Such con-



centered cluster. Frame {a) shows the s (l =0) component
DOS for a Ag atom surrounded by (i) 12 Ag atoms (solid
curve), (ii) 10 Ag and 2 Pd atoms (dashed-dotted curve),
(iii) 6 Ag and 6 Pd atoms (dashed curve), and (iv) 12 Pd
atoms (dotted curve). In the configuration containing 10
Ag and 2 Pd atoms, the Pd atoms were second-nearest
neighbors of one another, while the 6 Ag and 6 Pd config-
uration was chosen at random from the many inequivalent
configurations possible. It was found that isoatomic con-
figurations, i.e., configurations with equal numbers of
atoms of each species, yield quite similar DOS so that
classification in terms of numbers of atoms rather than
specific configurations is a meaningful approach.

Frame (c) in Fig. 3 show the p component (I =1) DOS
for the same configurations as those in frame (a), and
frame (e) shows the d component (I =2) DOS. Frame (g)
shows the total DOS at the center of the cluster, i.e., the
sum of the DOS shown in frames (a), (c), and (e). Frames
(b), (d), (f), and (h) (right column of frames) correspond to
frames (a), (c), (e), and (f) but with the roles of Ag and Pd
interchanged. Thus the solid curve in frame (b) shows the
s-component DOS associated with the center of an all Pd
cluster.

The curves depicted in Fig. 3 yield further evidence of
the richness in structure that may be displayed by cluster
DOS curves as well as of the remarkable regularity in
behavior of these curves as functions of cluster content.
This reflects the regular behavior of physical properties,
and specifically of the DOS, with overall alloy composi-
tion found in calculations ' using the KKR-CPA
method. Note that the DOS curve for an all-Pd cluster
[solid curve in frame (h)] displays the two-peaked struc-
ture associated with the bonding (lower peak) and anti-
bonding components of t2z symmetry that is also present
in pure Pd DOS. The high, single peak for a Pd atom sur-
rounded by 12 Ag atoms [dotted curve in frame (h)j is the
characteristic virtual-level impurity peak observed in DOS
calculations" of an impurity atom embedded in a pure
host, somewhat lowered and broadened by disorder. The
DOS curves for intermediate cluster concentrations move
gradually from one to the other DOS curves correspond-
ing to these two extreme configurations.

The s- and p- component DOS's (upper-four frames) de-
pend most strongly on the numbers of Ag and Pd atoms
in the near-neighbor shell and are almost independent of
the occupancy of the central site. For both Ag and Pd
atom occupancy of the central site the major peak in the
s-component DOS is at about —5.0 eV when the neighbor
shell is occupied by 12 Pd atoms, and moves to lower en-
ergies with increasing numbers of Ag near neighbors, and
ending at about —7.0 eV when all 12 near neighbors are
Ag. Presumably the reason for this is that this peak in the
s-component DOS on the central site arises from d states
situated on the neighboring shell that extend into the cen-
tral site, and which, when expanded about the central site,
contribute to the s-component DOS. Thus this peak is
closely tied to the bottom of the d band of the species occ-
uping the neighbor shell, which is lower in energy for Ag
than for Pd. This line of reasoning also explains why the
internal structure of the s-component DOS near the bot-
tom of the band is closely related to the structure in the

0.5—

LI

LLI

0

(.5

IJJ
C5

0.5—

0-
0 6.0 8.0 to.o )2.04.02.0

ENERGY {ARB(TRARY UNITS)

FIG. 2. Upper frame: Total cluster DOS (solid curve) and
the KKR-CPA DOS (dashed curve) compared with an exact
DOS histogram for the one dimensional alloy Ap ~pBp 9p defined
in the text. Lower frame: Component DOS for I =0 associated
with an atom of type A surrounded by various configurations of
its two near neighbors, configuration BAB (solid curve), BAA

(dotted curve), AAA (dashed-dotted curve). 1=0 partial DOS
corresponding to an A atom obtained in the KKR-CPA method
is also shown (dashed curve).

figurational decompositions pinpoint the origin of much
of the structure in the total-DOS curves. For example, it
is seen that the high peak in the exact DOS just below the
gap originates from configurations of the type BAB. We
will return to the discussion of the 1D alloy in Sec. V C.

B. Cluster DOS for Ag, pd~, alloys

In this subsection we report DOS calculations associat-
ed with a near-neighbor cluster of atoms in Ag, Pdi, al-
loys. The single-site KKR-CPA method has been imple-
mented ' for Ag, Pdi, alloys both on the basis of
charge non-self-consistent potentials, as well as charge
self-consistent alloy potentials within local-density
theory. The DOS reported here are associated with the
center of a 13-atom nearest-neighbor cluster embedded in
a medium determined in the KKR-CPA method for
Agp qPde q with self-consistent potentials.

Figure 3 shows partial DOS at the center of a near-
neighbor cluster for various cluster configurations. The
left-four frames show component DOS's for a Ag-

A. GONIS, G. M. STOCKS, W. H. BUTLER, AND H. WINTER
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I.Q—

«4

0
J

0-8.0
ENERGY RELATIVE T0 FERMI LEVEL (eVj

-6.0 -4.0 -2.0 0

ENERGY RELATIVE T0 FERMI LEVEL IeV)

PIG. 4. Frame (a): d-component DOS for a Ag atom surrounded by 6 Ag and 6 Pd atoms (solid curve), compared with the DQS
for a Ag atom obtained in the KKR-CPA method (dashed curve). Frame (c): t2g-component DOS (dotted curve) fox a Ag atom sur-
rounded by 6 Ag and 6 Pd atoms, and the corresponding DOS obtained in the KKR-CPA method. Corresponding 8g-component
DOS's are also shown (dashed-dotted and dashed curves, respectively). Frames (1) and (d) show results analogous to those shown in
frames (a) and (c) but with the roles of Ag and Pd atoms interchanged.

d-component DOS in the same energy range. This latter
effect is particularly noticeable when all near neighbors
are Ag.

Our calculations show that the cluster DOS for cluster
(local) concentrations equal (or similar) to the overall alloy
concentration are quite similar to the DOS obtained in the

single-site KKR-CPA method. This is depicted in frames
(a) and (b) of Fig. 4, which show the d-component partial
DOS for a Ag and Pd atom each surrounded by 6 Ag and
6 Pd atoms [solid curves in frames (a) and (b), respective-
ly]. The KKR-CPA method DOS's for a Ag and a Pd
atom in a 50%-50% Ag-Pd alloy are also shown and are

C))—

2.0—

1)(
I

I

gl g

~II

r hl

ENERGY RELATIVE TQ FERMI LEVEL jeV)

FIG. 5. t2g-component (solid curves) and eg-component (dashed curves) associated with the center of an all-Ag cluster (left frame)
and an all-Pd-cluster (right frame).
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0.5—

I.O

DOS for a Ag atom surrounded by 6 Ag and 6 Pd atoms
(solid and dashed-dotted curves, respectively) in frame (c),
and for a Pd atom in frame (d).

Figure 5 depicts the t2g (solid curves) and es (dashed
curves) components of the d-band DOS at the center of an
all Ag cluster (left frame) and an all Pd cluster (right
frame). Note that the tzz is much more affected by local
fluctuations than the ez component when compared with
the corresponding DOS obtained in the CPA (see Fig. 4,
lower frames). This behavior is consistent with the sym-
metry of the d bands and of an fcc lattice: The t2g com-
ponent transforms as the functions xy, xz, and yz, which
in an fcc lattice are directed along the positions of the
nearest neighbors.

C. Clusters embedded in an average —t-matrix
approxlmat10n medium

0.5

0

l,
I

I

l

I

6.0 8,0 l0.0 I2.0

FIG. 6. Frame (a): Total cluster DQS (solid curve) for a
three-site cluster embedded in a KKR-CPA medium, and corre-
sponding DQS for a cluster embedded in an ATA medium com-
pared with an exact DQS histogram for the 1D model alloy de-
fined in the text. Frame (b): I =0 partial DOS associated with
the center of the cluster for the configuration BAB for clusters
embedded in a KKR-CPA medium (solid curve) and in an ATA
medium (dashed curve). Frame (c): Results analogous to those
shown in frame (b) but for the configuration BRA.

seen to be almost identical to the cluster DOS. The simi-
larity between DOS's corresponding to similar local and
overall concentrations persists in the t2g- and eg-
component DOS's. Frames (c}and (d) exhibit the t2g- and
eg-component DOS's obtained in the CPA (dotted and
dashed curves, respectively}, for a Ag atom [frame (c)] and
a Pd atom [frame (d)]. Also shown are the corresponding

%ithin the context of a single-site approximation, the
most serious challenge to the CPA as a viable method for
calculating physical properties I substltutlonally disor-
dered systems has come from the average —t-matrix ap-
proximation (ATA). The ATA holds a computation-
al advantage over the CPA since it does not require the
solution of self-consistent equations. In the ATA, one ap-
proximates the real, disordered alloy by a translationally
invariant effective medium characterized by a single-site t
matrix that is the weighted average of the t matrices of
the alloy constituents. The ATA has been used ' to cal-
culate DOS's in various alloys, and has been compared
extensively to the CPA in terms of the 1D model MT
Hamiltonian described in Sec. VA. These comparisons
firmly establish the CPA as the most satisfactory of the
two single-site theories, the computational advantage of
the ATA notwithstanding.

It is therefore interesting to inquire as to the possible
use of the ATA in connection with a cluster theory. In
such an application, one uses Eq. (3.6) to calculate the
cluster-diagonal part of the scattering path operator but
uses the ATA scattering matrix in the evaluation of the
effective-medium quantities m and ~" .

Frame (a) in Fig. 6 exhibits DOS curves for the 1D
model MT alloy discussed in Sec. V A. Here, the cluster-
averaged DOS at the center of a three-site cluster embed-
ded in the CPA, solid curve, and in the ATA, dashed
curve, are compared with an exact DOS histogram. It is
seen that overall the DOS for the clusters embedded in the
CPA represent the exact results somewhat more accurate-
ly than do the DOS's for the ATA. Even though there is
an attempt by the ATA to reproduce the peak at the low-

energy side of the gap, all of the A.TA peaks are displaced
from the exact results and the ATA curves entirely miss
the gap itself. In addition, the ATA curves agree rather
poorly with the exact results for energies below the gap.
On the other hand, the CPA-embedded cluster DOS's
reproduce the gap and follow the rest of the structure of
the exact DOS quite faithfully. Previous experience with
model TB cluster calculations indicate that self-
consistent theories, such as the CPA, produce DOS curves
that are smoother as well as more accurate than those pro-
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duced by non-self-consistent cluster theories such as the
ATA.

Frames (b) and (c) show the l =0 DOS's at the center of
the cluster for the configurations BAB and MA, respec-
tively. It is seen that the CPA-embedded cluster DOS's
(solid curves) and their ATA counterparts (dashed curves)
agree rather well, while reflecting many of the features of
the total DOS shown in the previous figure. Thus the
ATA curves are somewhat narrower and displaced with
respect to those of the CPA.

Cluster DOS's obtained with CPA- and ATA-embedded
clusters are shown in Fig 7.for the case of the Ago 5Pdo 5

alloy. Here, the solid curve represents the d-band DOS at
the center of an all-Ag cluster, the dotted curve is the
DOS for a Ag atom surrounded by 6 Ag and 6 Pd atoms,
and the dashed curve is the Ag-site DOS obtained in the
CPA. The dashed-dotted curve is the DOS for a Ag atom
surrounded by 6 Ag and 6 Pd atoms embedded in an ATA
effective medium. It is seen here that the ATA curve is
much more jagged than the CPA curves, especially in the
region where the Ag cluster displays a great deal of struc-
ture. In a sense, these results are not qualitatively unlike
those obtained in the 1D case, since the ATA curves are
again found to be less smooth than, and with structure
displaced from, the CPA DOS. On the other hand, the
differences are much larger, quantitively, in the 3D than
in the 1D case. This difference may be partly related to
the fact that in three dimensions BZ integrals must be
evaluated numerically, whereas analytical expressions are
possible in the 1D model. Thus the CPA would seem to
provide a medium that yields more reliable numerical re-

suits. In any case, further investigation is needed in order
to establish the possible usefulness of the ATA in connec-
tion with a cluster method such as the one described in
this paper.

VI. DISCUSSION

We have presented a method for the calculation of
DOS's associated with clusters of atoms in disordered sub-
stitutional alloys describable by nonoverlapping MT Ham-
iltonians. Taken together with similar previous work in
connection with TB systems, the method allows the treat-
ment of the effects of local-environment fluctuations in
the DOS's in substitutionally disordered systems. This
method yields Green's functions and spectral-weight func-
tions having the proper analytic structure, provided that
one considers the clusters embedded in an analytic effec-
tive medium such as the one determined in the CPA. The
method is applicable to multicomponent alloys and allows
for the treatment of multiple and/or degenerate bands and
of hybridization in a straightforward way.

We have used this method to calculate DOS in both 1D
MT model alloys and in Ag, Pd~, alloys. Our numerical
results show that the effects on the central-site DOS's of
fluctuations in the chemical occupation of the first shell
can be large. These results also show a regular variation
of the DOS as a function of local environment, which can
be understood in terms of basic notions such as the sym-
metry of the lattice and the relative scattering strengths of
the alloy constituents. Finally, even though the effects of
fluctuations in coordination shells beyond the first must

2. 0
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FIG. '7. DOS associated with the center of near-neighbor clusters embedded in a KKR-CPA and an ATA effective-medium. d-
band &OS for a Ag atom surrounded by (i) 12 Ag atoms embedded in KKR-CPA medium (solid curve), (ii) 6 Ag and 6 Pd atoms em-
bedded in a KKR-CPA medium, (iii) 6 Ag and 6 Pd atoms embedded in an ATA medium {dashed-dotted curve), and for a Ag atom
in the KKR-CPA method (dashed curve).
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be of some importance, these effects die out rapidly with
increasing shell number for realistic 2D and 3D systems.
FoI such systems, we anticipate that calculations such as
those presented in this paper will suffice for the deter-
mination of many physical observables in disordered sys-
tems.

The detailed information provided by cluster calcula-
tions of the type reported in this paper affords one a great
freedom in the investigation of the physical properties of
disordcrcd systems. Gnc possible and imIDediatc applica-
tion is related to the questions of charge transfer and SRO
in substitutionally disordered alloys. Such an application
has been undertaken and initial results are being report-
ed' elsewhere. Further applications can be made in con-
nection with magnetic moment formation and the trans-
port pI'opcrtlcs of dlsoI'dcl'cd systcIIls.

Investigations of this sort as well as further experience
vnth other alloy systems are being prepared. Also, at-
tempts vrill be made to carry the cluster calculations to
electronic self-consistency within local-density theory.
Such a task is indeed computationally difficult but may be
rcRllstlc Rt least fol clustcl' confllguratlolls wltll 1'otatlollR1

symmetry.

C i5IE8 sln51 (Al)

The effective scattering matrices II determined in the
KKR-CPA method can be expressed in terms of effective
(in general complex) phase shifts 5&. By defining the
quantltlcs

x =cos(P+5o+5i)/cos(5o —5i),

fo =cosg —tan5oslnp,

fI
——cosg —tan5i sing,

(A2a)

tan5o
~oo= vs— I(X,f I)= 2maI(X, fi)1+tan5otan51

tan51
~oo= —~Z I(x,fo) =2IrPI(x,fo),1+tan5otan51

(A3b)

I(x,f)=1+(x f)/(x —1)'/—
where P is V E times the lattice constant a, it can be
shown that the matrix elements ~ and l II (the scatter-
ing path operator for site 0 and I =0 and 1) are given by
the expressions,
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&OI =&~0=0 .

The last expression, Eq. (A3c), is a consequence of the odd

parity of 7( k ), which implies that ~,o ———~,o —0.
Now consider a cluster of three sites, labeled consecu-

tively 1, 0, and 1, embedded in a KKR-CPA effective
medium. The effective-medium cluster matrix 7. can be
written in the form

APPENDIX

In order to exemplify the formalism presented in the
main body of the paper, we present explicit expressions
for various matrix elements of the cluster matrix 7, for
both (1D) and (3D) systems.

r,

I l 2 5 t 2 3 I

The KKR formalism for determining the band struc-
ture of pure 1D materials, as well as the formalism for the
KKR-CPA method for such materials, has been described
fully by Butler. l' In a previous publicationlo extensive
calculations based on that forma11sm and Using the ID
model MT alloy potentials described in Sec. V a&ere re-
ported.

Thc polilt glollp of R 1D 1Rttlcc con'tR1Ils only tlm Idcntl-
and thc mvcrslon opcI'at j.ons. Thus 1D systems arc

characterized by only two values of I, I =0 and 1=1,cor-
responding to even and odd parity. Letting 5I denote the
phase shift for a given value of I corresponding to the po-
tential for species a, we have

X X 0 0 X X X

X X X 0 0 0
X X 0 0 0

X X O

X 0

FIG. 8. Structure of the 9&9 matrix for the near-neighbor

matrix element ~" with R„=R(Ito).
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where each matrix element v'J is a 2&(2 matrix in I space.
In paftlculal",

(A5)

where rpp and F11 are given by Eqs. (A3). The other ele-

ments of r can be evaluated analytically by performing
the integrations indicated in Eq. (4.1), which for 1D sys-
tcIIls fcducc to contoUI' illtcgrals ovcf thc Un1t clrclc. VAth
y=atan5, =Ptan50, we find

( —&f1+x~pp) —y[x +(1—x )/(x —I)'i2]
—01

y[x+(1—x )/(x —1)'~ ] ( &fo—+x&») (A6)

RIld

[a—~pp+2x/pp] —y[1 —2x 2 —2x (x 2 —1)'~ ]
y[1—2x —2x(x —1)'~ ] (p—~„+2xrii)

Equations (A3) and (A5)—(A7) along with relations (r )„,=(r )„„completely determine r

2. 3D Systems

For 3D systems, the integrals in Kq. (3.1) [or
equivalently in Eq. (4.1)] must be evaluated numerically.
The integrations were carried out over the irreducible —„th
of the BZ as is indicated in Eq. (4.7), using the ray tech-
nique that has been described elsewhere. In the following

expressions, we use a notation where k stands for (a/2)k,
and we identify the matrix elements of r(k) with the 1,114

indices, neglecting the symmetry superscripts S for the
sake of clarity.

For R„=O, «0) is diagonal and its matrix elements are
given by the integrals of the expressions

P(0)]11=[-.(0)]IIQQ=
" f d'k[-.(k)0000],

[ (o)l =[ (0)] —", -"
16 f d k[r(k)ii 1T+r(k)10 10

P(o) l55= P(0)]22,'22"

Q 1 j4s n7 [ 22122 2T12T

+&(k )21,21l

=r(0)66

=«0)ss

I F2~12[«0)]77=P(0)12o,'2o"

f d k[«k)20, 20+&(k)22, 22]

=r(0)99 ~

(A8c)

(A8d)

= r(0)32

=r(0)44,

+&(")»,111

(A8b)

For &n =R110, there are 17 nonvanishing matrix ele-

ments of r(R, 10), as is indicated by the X s in Fig. 8.
These elements are obtained as the integrals of expressions
such as those shown below:

I(I) 3[&(R»o)]i i = [&(Riio) ]00,00=
QBZ 1/48 BZ

d k[(cask„cosk„+cosk~cosk, +cosk„cosk, )r(k)00 00],

I Is"12fr«1 10)]29=[r«110)]11,22

QBZ 1/48 BZ
d k[ — v 3sikn»cos, k( r)41211+sink»(2cosk~+cosk, )r(k)1122

—'1/3 Slnkycosk»r( k )1 1 20
—

sinky (2 Cosk» +Coskg )1 ( k )11

+v 3sink, (cosk„+Cosk&)i(k)ip 20+sink, (coskz —cosk„)T(k)10 22] . (A9b)

Fol a Ilcar-neighbor clustcI' 1Il an fcc latt1cc, there RI'c 82 such complex iIltegrals to bc evaluated Ilumerically cofI'csponc1-

lng to iiltracluster vectors RppQ, R1111, R2QQ, R211, aild R220. The otller r(R„) cail be obtaliled by the use of Eq. (4.8).
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