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Nonspherical charge distributions and electrostatic interactions in crystals
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A computationally simple method of calculating nonspherical charge distributions in solids from
linear-muffin-tin-orbital band-structure calculations is described. The charge distribution is
described accurately in the region between muffin-tin spheres in terms of wave functions based on

pseudo-muffin-tin olbitals. Thc nonsphcric1ty 1ns1dc thc spheres Rs described by thc same 01bitals
is less accurate. For several applications, however, this is not serious. The density can easily be ex-
pressed as a Fourier series, which is convenient for calculation of interactions. As an example of
application the scheme is used to calculate multipole moments and electrostatic interactions between
%igner-Seitz cells in a monoatomic crystal.

I. INTRODUCTION

The linear-muffin-tin-orbital (LMTO) method' in the
atomic spheres approximation' (ASA) has been applied
sllccessflllly III Illlnleiolls calclllatloIIs of pllysical pI'opei-
ties of solids (see Refs. 2 and 3 and references given there).
This applies to accurate quantitative predictions of
Fermi-surface properties, cohesive properties as well as
trends through the Periodic Table. The LMTO offers, in
addition to an efficient computational scheme, the possi-
bility of a detailed physical picture of the formation of en-

ergy bands and the way they determine, for example, the
cohesive properties. One advantage of the LMTO-ASA in
such studies is that it applies potentials and charge densi-
ties that are spherically symmetric around the atomic
sites. There are cases, however, where quantitative calcu-
lations cannot be performed with sufficient accuracy in
the ASA, since the nonsphericity of the true charge distri-
bution plays an important role. The calculation of elastic
shear constants is one example of such a case. Although
the linear augmented plane wave' (LAPW) and LMTO
schemes can be extended to include the nonspherical
charge self-consistently, it is for some applications suffI-
cient to use the nonspherical distribution corresponding to
the eigenvectors obtained in the last iteration of a self-
conslstcncy cycle 1n thc ASA approximation. Thc clcctro-
static interactions that influence the elastic properties of a
solid are mainly due to the nonspherical charge in the
outer parts of the Wigner-Seitz cells. Therefore, for such
uses, we will only need a scheme which describes the
charge density properly in the region which in a muffin-
tin model is referred to as the interstial region of space.
The accuracy of the description of the nonsphericity in-
side the inscribed spheres (muffin-tin spheres) is less im-
portant. We use such an approximate model for the
charge density in the calculation of the intercellular elec-
trostatic interactions in the transition metals, when we
calculate the elastic shear constants. ' Since a similar ap-
proximation may be sufficiently accurate for other pur-
poses, and because the scheme is considerably simpler
than a fully self-consistent, nonspherical calculation, we
shall in the present paper describe the model in some de-

tail. The wave functions are given as linear combinations
of Bloch sums of the muffin-tin orbitals' (MTO's). In the
interstial region, the MTG's are identical to the "pseudo-
MTO's. "' The MTO's and the pseudo-MTO's match dif-
ferentiably at the sphere (radius S). Knowing the eigen-
vectors of the LMTO calculation, we can then construct a
nonspherical charge density in the interstial regime from
the pseudo-MTO's. As an approximation, for which some
corrections in fact easily could be introduced, ' we as-
sume that the nonspherica/ part of the distribution also in
side the sphere can be represented by the pseudo-MTO's.
This simplified description leads directly to a Fourier rep-
resentation of the charge density which is convenient in
calculation of electron interactions. The calculation of
charge densities in this approximation is described in Sec.
II. As an example of application of the model, we calcu-
late in Sec. III cellular multipole moments used in calcula-
tions of intercellular electrostatic interactions.

II. PSEUDO-MTO DENSITIES

A. Fourier representation

The wave function of a state k, energy E, is in the
LMTO expressed as an expansion in terms of muffin-tin
orbital Bloch sums:

f"(E,r ) = g &I", XL, (r ),

XL", (r)= ge'"'"XL, (r —R) .
R

The present description is restricted to monoatomic crys-
tals. The index I is a short notation of the angular and
RXIIllllthal quRlltuIII numbers, ( j,rn), t}le vectors R are the
real-space lattice vectors, and XL(r —R) is a muffin-tin
orbital centered Rt the position R. A sketch of a muffin-
tin orbital (pp augmented) is given in Fig. 1. This orbital
coincides in the interstitial region, i.e., between the
muffin-tin spheres, with the pseudo-MTO, gz. The
pseudo-MTO Is a smooth function inside the spheres, de-
rived' from a pseudopotential. At r =S, i.e., at the sphere,
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+(XL Xr. —XL XL )8(r)] .k+ k k* k
(8)

The 2 coefficients are the LMTO eigenvectors, the ALj in
Ref. 1 (we have here suppressed the band indexing). The
first term in Eq. (8) gives the nonspherical charge in the
interstitial region. Inside the MT sphere p is given by the
term due to the real MTO's (X). The approximation
which we will use here consists in replacing (XX—XX) in
side the sphere by its spherical average, i.e., we replace (8)
by

FIG. 1. Sketch of muffin-tin orbital (PP augmented) centered
at the origin (R=O) (solid line) and the pseudo-MTO (dashed
line).

p-„(r)= g Al. ALXL, (r)XI. (r)
L', L

+ g[pk( ~

r —R
~

) —pk( ~

r —R
~

)]8(r) .

with [LM(4.14), LM(4. 15)]

XP(r)=XI(DI) ge'"+ ''Fl. (k+G) (4)

X and X match continuously and differentiably. We shall,
in the following, need several expressions from Ref. 1.
They will be referred to as LM, followed by the formula
number in Ref. 1 [e.g., LM(4. 14)].

A Bloch sum of pseudo-MTO's is

XL (r)= ye'"' XL(r —R) (3)

pk(Ek, r)= g AL, j ALJXp (r)XL", (r) .
L', L

(10)

We have here assumed that the nonsphericity of the charge
inside the spheres to sufficient accuracy can be described
by the continuation from the sphere towards its center of
the nonspherical part of the pseudo-MTO density. This
approximation is most approximate for states of large l,
since the radial part of the speudo-MTO's inside the
sphere behave' as -r and r'+ (see Sec. IIB). Although
there are obvious ways to correct for these errors, we shall
not do this here. The first term in (9) gives what we in the
following will refer to as the pseudodensity p:

and

4~ jt+) k+G S
Ft (k+G)= (2l+1)(2l+3)

/

k+G/'

X YL, (k+G) .

The total pseudodensity is obtained by summation over all
occupied states:

p(r)= g p-„(E'„,r) .
k,j

The pseudodensity can conveniently be expressed as a
Fourier sum:

Here jt(x) is a spherical Bessel function, and YL(K) a
spherical harmonic, YI (X). The normalization factor
XI(DI) is defined in Ref. 1 [LM(4.6), LM(2. 13)]. A func-
tion 8( r ) is introduced as

p(r)= gp e'

6
where

(12a)

1 inside any muffin-tin sphere8r ='
0 elsewhere

and in terms of this, we define the function

XI (r)=XL (r)+[XI (r) —XL (r)]8(r) . (6)

with

k,j

pg(E-)= — p (Ej,r)e ' 'dr .
k Q

(12b)

(12c)
Since X and X coincide in the interstitial region, Eq. (6) is
just a rewriting of the ("real" ) MTO.

The electron density associated with the state (k,E) is

p-„(r)=
~

y" (E,r) ~'= g Al"*A,"X,".*(r)X,"(r)
L', L

y A k A kX~ k Xi k

L',L

With the use of (6) we get

XXI (DI )Xt(DI) . (13)

The functions F do not depend on the actual crystal po-

The Fourier components (12c) can, by using (3) and (4), be
expressed as

p -"(EJ-)= g Al.
"

AL", FI*. (G'+k)FI. (G'+G+k)
L',L, G '
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tential. The products FI*.FI can, once for a given struc-
ture, be summed internally over G', and stored on file to-
gether with the structure constants' and combined correc-
tion terms. ' For the transition metals we needed -300
G vectors, and therefore, for a reasonable density of the k
mesh, a substantial amount of data needs to be stored; but
the fact that we only need to calculate these quantities
once for a given structure compensates for the somewhat
long computation times needed. It can easily be demon-
strated that the P coefficients are real for crystals with

G
inversion symmetry. The proper symmetry of p(r), Eq.
(12), is obtained by averaging p- over the star of G. The

G

~

G
~

convergence of p is illustrated in Fig. 2, showing

the Fourier components in the case of Mo. Here as well
as in the further numerical examples that will be shown,
we, in addition to the approximation already mentioned,
replace the muffin-tin radius by the atomic-sphere radius.
A contour plot of the pseudodensity in Mo is shown in
Fig. 3. The variations of the density in the outer part of
the cell, for example, over the muffin-tin sphere, is of the
same order of magnitude as the average density at the sur-
face of the atomic sphere. This explains why the in-
clusion of nonsphericity is important ' in the calculation
of the elastic constants.

B. Spherical average

The present approximation describes the total electron
density as [Eqs. (9)—(12)]

MOLYBDENUM S=2.85
PLANE: 1'IO DIST: 0.00

0.025'
0.020
0.015

0.030
FIG. 3. Contour plot of the pseudo-MTO electron density in

Mo in the (110)plane.

dodensity in the sphere at R=O, can be calculated in two
ways: (i) from a one-center expansion similar to LM(4.21}
(but using pseudo-MTO s} or (ii) by averaging directly
p(r) given by (12). The latter calculation (ii) is easily per-
formed by using the expansion of a plane wave in terms of
spherical Bessel functions:

e' ' ' =4m g ij ((Gr ) Yl' (G ) YI (r ) .
I.

Owing to the orthogonality of the spherical harmonics

p(r) =p(r }+[pAsA —(p&»h]e(r }, (14)
and

(e' ' '
&»h ——V4n jp(Gr ) Yp (G) =jp(Gr )

where pAsA is the usual, spherically-symmetric charge
density used in the LMTO. Inside the (muffin-tin)
spheres we need, in the calculation of p(r) by (14), the
difference between this and the spherical average (p &»h of
the pseudodensity. The spherical average of the pseu-

I l l I
I

& & I &

I
I I I I

(16)

The other method, referred to as (i} above, employs a one-
center expansion' of the pseudo-MTO Bloch sum. We
choose for DI in Eq (4) the. value —l —1, in which case
X~(D~)=4( —l —1)—:@I(—); see LM(4.6) and LM(2. 13).
The one-center expansion of XL"(r) is

u~ -10—
ta.

pa=340 10

Mo
(compressed S =2.85a.u)

XL, (r)= —
( ) g[Q„L(r)IIL I, +Q„L(r)QL L] . (17)

g ( —)

The radial parts, p„g(r) and p„~(r), of Q„L(r) and Q„L(r)
are obtained from the requirement of normalization of P
and the orthogonality of P and P:

1/2 ' I

( )
(2l+3) r

(18)

P„~(r ) = —,
' V(21 +3)S

-20—

5 10 15

GS

1+2

2I+3 SX 2I+5 S (19)

The elements of the 0 and II matrices are defined as in
LM(4.21):

FIG. 2. Fourier components p of the pseudodensity for Mo
as a function of GS.

(20a)
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N+
ALL~=67 5ir ~—

CO —N+
(20b)

The free-electron potential parameters are given in Ref. 1,

CO+ =0
~

1 (21+1)(21+5)
S

2l+5 1

2(2&+3)'" S'" '

@i(+)=p i(&) .

From (21a) it follows that 0 is diagonal,

k+LL' ~ '4I.'—

(21a)

(21b)

(21c)

(20b')

3,5

3.0,—,
"Fourier" .'/

.'/
/2.5—

"pseudo- +TO"

The matrix T is defined in analogy with LM(4. 11).
In terms of the eigenvectors A ", the spherical part of

the pseudo-MTO density is, using

it "(E,r)= QAL"XP(r)

with Eq. (17),

2,4

r {a.u. )

FIG. 4. Radial electron densities in Mo. Solid line: ASA
valence density. Dashed line: spherical average of pseudo-MTO
density froin one-center expansion [Eq. (22)]. Dotted line:
spherical average of pseudo-MTO density in Fourier representa-
tion [Eq. {16}].

4

+2/„L (r){{}„L,(r)Re(P a )], (22)

~k k
where the elements of the vectors a and P are

-@i(—)
(XLI ~ = L j.I ~I ~I ~

@1(—)

-@i(—)k k k
Pl.r. ' +L'L~L'

& 1(—)
(22b)

The spherical averages Eqs. (16) and (22) are in practical
calculations (slightly) different. In Eq. (16) a finite num-

ber of G vectors are included, and in the LMTO a finite
number of partial waves are used, i.e., the maximum value
of 1 in (22) is finite (usually 2 or 3). For the calculation of
the second term (in [ ] in Eq. (14)), the expression (22)
should be used. This ensures that pAsz and (p),~h are
consistent with respect to l convergence. In Fig. 4 we
compare, for Mo, the results obtained from Eq. (22) and
Eq. (16), dashed and dotted curves, respectively. The
spherical symmetric pseudodensities are further compared

I

to the "correct" spherically avex'aged valence-electron den-
sity (sohd hne). Passing from the sphere towards the inte-
rior, thc dcv1at1ons bet%veen thc radial pscudodcns1t1cs and
the correct spherical density increase rapidly, as expected
[Eqs. (18) and (19)].

III. EXAMPLE: MULTIPLE MOMENTS

Although neutral, the Wigner-Seitz cells in a mono-
atomic solid interact electrostatically due to their non-
spherical shape and due to the fact that they contain a
non- spherical charge distribution. The interaction energy
between a selected cell (at R=0) and all the other cells
can ' ' ' beexpx'essed as

2 g gNlttl gN1(gl8 goal
—Itl )4

and6, s, 9

21+ 1 r+~ (21'+ 1){7+1'+m' —m )!{I+i'—m'+ m )!
4~ (21+21'+1)(2l+1 )(I'+m')!(I' —m')!(I+m )!(I—m )!

The multipole moments are obtained by integxating over
the cell:

(26)

It will be demonstrated lmre that the expressio~a (14}and

I

(12) for the charge density allow a computationally quite
simple calculation of the multipole moments [Eq. (26}].
Furthermore, those parts of a practical calculation which
are particular time consuming can be made once and for
all for a given structure, for example, fcc or bcc.

The Vhgner-Seitz cell is neutx'al, i.e., the moment corre-
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sponding to 1=0 is 0. The second term in (14) is nonzero
only inside the inscribed sphere, where it is spherically
symmetric, This term does not contribute to the moments
for l ~0. The density described by Eq. (14) has tacitly
been assumed to be due to the (occupied) band states. In
order to obtain the total density we ought to add the core
density to this. We shall here assume that this (spherical-
ly symmetric) density is 0 outside the muffin-tin sphere (if
not, it is easy to include its contribution to Ql ). Thus
only the pseudodensity P(r ) gives important contributions
to QI .

From Eqs. (12) and (15) we have

QL. =QI = gP-I-m (4Ir)'
21+1 (27a)

I = giI YL.(G) rIJI(Gr)YL (r)YI(r)dr .6 cell 0

yNf ~ yPl

r I II (29)

where 8 is larger than (or equal to) the radius of the cir-
cumscribed sphere. The theta operators are

with (27b), we must calculate integrals of the type

I 11" (6)= I rj'I (Gr)KI" (r)KI"(r )d r . (28)

The Kubic harmonics are nonzero only for l =4,
6,8, 10,12, 14, . . . , and for 1=4, 6, 8, 10 only one KI" exists
for each l. For 1=12, n takes two values. The cellular in-
tegration of a product of YL functions (or KI") and a
spherical symmetric function f(r) can, for example, be
performed by means of the application of "theta opera-
tors"

BII (r)= Y (r)Y (r)dr . (30)
This shows that the only part of the calculation that re-
quires some computational effort, I, can be calculated

once and for all for a given structure. The actual crystal
potential enters via pG in (27a) only. Furthermore, the ap-
plication of symmetry-adapted angular momentum func-
tions greatly reduces the amount of practical computation.
In the cubic cases, Kubic harmonics, KI" are used instead
of the spherical harmonics. This means that, in analogy

sphere(r) G cell

The integral is over that part of the surface of the sphere
with radius r which lies inside the cell. The B operators
can be calculated once and for all for a given structure, for
example, by means of a tetrahedron" integration scheme.
In order to reduce numerical errors it is preferable, instead
of the theta operators to use integrated operators uII (r)
Partial integration in (29) gives

I f(r)r BII (r)dr =[f(r)ull (r)]0 —I f'(r)uII (r)dr,

where

uII~ (r)= r Bg~ (r )dr =
0

cell G sphere(t')

The volume integral in (32) is over that part of the cell which lies inside the sphere of radius r. Separating the contribu-
tions from the inscribed sphere, the u operator is

uII (r)= .

p 3

5II 5m'

Rl
5II5 ~ + J YI (r')YI (r')dr' for r ~81

qI
—— p(r)r KI(r)dr+ 1 cell

(34)

where R, is the inscribed sphere radius. In the calculation
of shear constants we needed to perform integration of
cells of sheared lattices. Since wc did not apply thc
tetrahedron method in these cases, but less accurate Monte
Carlo integrations, the integral representation (31)—(33)
was prefered.

As a numerical example, we show in Fig. 5 the mo-
ments

for Pd (the two contributions for /=12 have been added).
Although the moments decrease fast with i, at least 1 =12
must be included in energy calculations. This follows
from Ref. 4 and from the calculated energies versus l~,„
shown in Fig. 6. The points in Fig. 6 which are connected
by dashed lines were obtained from a muffin-tin charge
density, i.e., only the shape of the cell influences the mo-
ments. The points connected with a full line represent
calculations where the nonsphericity of the charge was
takell Illto accollllt. This Ilonsplle11clty lllfllleIlces 'tile 111-

teraction energy as follows from Fig. 6 and it was found
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FIG. 5. Multipole moments for Pd [Eq. (34)]. Atomic units.
Furthermore, q has been multiplied by (2/a)'+', a being the lat-

tice constant.

FIG. 7. 6 convergence of interaction energy [Eqs. (23), (26),
and (27)]. X,h is the number of "shells" included in the G sum-
rnation. Moments with I up to l =12 included. In addition, the
electrostatic contribution, c,'], to the tetragonal elastic shear con-
stant (Ref. 4) is shown.

IV. CONCLUSIONS

An approximate method for calculating the nonspheri-
cal charge density in a solid from LMTO band calcula-
tions has been described. The method leads to computa-
tionally simple expressions and those quantities which re-
quire most numerical calculation effort can, for a given
structure, be calculated once for all. The Fourier repre-

120—

E 100—

U

8
Iy

t

MT
I I

Pd

to be very important in the calculation of the elastic shear
constants. The interaction energy converges rapidly on

~
G~. This is illustrated in Fig. 7, where the calculated

values of U„are shown as a function of the number of
6 shells included in the reciprocal-space summation.

sentation of the density, which is obtained from the
pseudo-MTO's, is calculated from quantities (F) which
are essentially already included in computer codes which
use the so-called combined correction term. ' The Fourier
representation is convenient in calculations of electron-
electron interactions and is currently being implemented
in total-energy calculations. ' It is not yet clear whether
our approximate treatment of the nonsphericity inside the
spheres is sufficiently good for such calculations. The cal-
culation of the multipole interactions is simple in the
present scheme. In the calculation of the shear elastic
constants we needed to calculate the shear derivatives of
the multipole moments. This was done in the scheme
presented here, taking into account the proper shape of
the Wigner-Seitz cells of the sheared lattice and shear de-
formation of the nonspherical charge. The latter contri-
bution was calculated by changing the 6 vectors in the
Fourier expansion according to the shear and keeping the
p- coefficients unchanged. In this way the sheared mo-

G
ments could be expressed in terms of band-structure quan-
tities derived for the unsheared crystal and purely geome-
trical terms. Although the present model has been suc-
cessful in some applications, its limitations have not yet
been fully examined. The need of a better description of
the nonsphericity inside the muffin-tin spheres may be
more urgent in cases different from those discussed here.

60—

40—

I I i I I I I g

0 2 4 6 8 10 12 14

imCtX

FIG. 6. Electrostatic energy (fcc Pd) calculated from Eq. (23).
Dashed lines: muffin-tin charge density (MT). The interstitial

density in this case is p0 (p for G= 0). Solid line: nonspheri-6
cal charge (NS).
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