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Behavior-type method for polarized Raman spectra of defects in cubic crystals
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The intensity of polarized-light Raman scattering from a localized vibration of a point defect in a
crystal is a discrete average over all the possible orientations of the defect. Much of the information
contained in the Raman tensor of the vibrational mode is hidden by this discrete averaging. Partial
or complete preferential reorientation or destruction of the defect, achieved by a so-called orientat-

ing operator F, alters this average and permits in principle a determination of the symmetry of the
defect, the nature of the modes, and the relative values of the elements of the Raman tensor. A dis-
cussion based on group theory is given for all of the possible symmetries of a point defect in a cubic

lattice, as well as for all the possible symmetries of the orientating operator F. The concept of
behavior type of the Raman intensity parameters is introduced, which plays a central role in the ap-
plication of the theory because it permits an efficient analysis of the data. The results are summa-
rized in a series of tables. These are also helpful in choosing a suitable symmetry of the preferential

orientating operator F (often from a polarized-light bleaching) and the suitable Raman polarization
geometries. Similar methods can be applied to other host symmetries, and also to the study of the
influence of an applied external field, e.g. , an electric or stress field.

I. INTRODUCTION

Raman scattering has been widely used to study the
properties of dynamical modes of point defects in crystals.
The frequency shift of the scattered light yields the fre-
quency of the dynamical mode. The Raman intensity de-

pends on the polarization of the incident and scattered
light' and permits, as will be discussed in this paper,
determination to a large extent of the symmetry of the de-
fect and the irreducible representation to which the
dynamical mode belongs.

The intensity of the Raman scattering from a localized
dynamical mode of a point defect in a crystal is deter-
mined by the second-rank Raman tensor T, the polariza-
tion vectors of the incident and scattered radiation, a and

b, respectively, and the intensity Io of the exciting light
beam. The measured intensity I is further limited by the
instrumental efficiency k:

I=kI, (a 'Tb)', 0 & k & 1 .

The superscript t means "transpose. " The dynamical
mode is usually a localized vibration of the defect.

The observed intensity of a Raman line is the sum of
the intensities from all the scattering defects. For a mole-
cule which can freely take any orientation, e.g., in the
gaseous state, the observed Raman scattering intensity is a
continuous spatial average over all orientations in space.
Thus only two independent parameters, namely, the mean
polarizability a and the anisotropy y can be obtained from
Raman spectra. a and y are composed of the elements of
the Raman tensor. ' A defect in a crystal can also occu-
py all its equivalent orientations which depend on the
symmetry of both the host crystal and the defect. The re-
sulting discrete space average in the crystal also obscures
much of the information contained in the Raman tensor.

If the defects are equally distributed over all of their pos-
sible orientations in a crystal with cubic structure, three
independent parameters (Sec. II8) can be obtained instead
of the two parameters a and y for scattering of freely ro-
tating or of randomly orientated molecules.

The Raman scattering intensity of an isolated defect in
a crystal is restricted by the symmetry and orientation of
the defect and the nature of the dynamical mode. In this
paper we will treat defects in crystals with the crystallo-
graphic point group O~. The results are immediately
applicable to the groups 0 and Td and the treatment can
be extended to other point groups. %e will consider the
defects to be initially randomly distributed over their pos-
sible orientations. A treatment is then applied which pre-
ferentially alters the populations of the different orienta-
tions. The most common of such treatments is a polar-
ized optical bleaching in an absorption band of an aniso-
tropic defect, but other methods can be applied. An orien-

tating operator F, acting on the populations, is used to
describe this preferential orientation treatment. The sym-

metry of F is given by F'i, the largest subgroup of the cu-
bic point group Ot„which leaves the orientating operator
F invariant.

The consequences of such a preferential orientation of
the defects on the Raman scattering intensities will be
theoretically investigated in Sec. II B. Every possible sym-
metry of the orientating operator F and of the defect,
compatible with a cubic crystal structure, will be con-
sidered. The application of the theory to actual experi-
ments will be discussed in Sec. III. The results are sum-
marized in a series of tables which are useful in the
analysis of experimental data. Final remarks about and a
possible generalization of the present method will be given
in Sec. IV.

We will adopt the following sets of reference axes in
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this paper. The frame (x,y,z) is fixed to the principal
crystal directions x

I I
[100] y I I

[010] and z
I I

[001] while
the frame (x',y', z') is the local reference system for a de-
fect with a given symmetry.

II. THEORY

I„=kIO [(R ' a )'T" '(R ' b )]

in which

T~")=Z„T~')Z' (2b)

A. Raman intensities for a general point defect
in a cubic lattice

Consider a general defect in a crystal with a cubic-
lattice structure. The defect has a certain orientation with
respect to the surrounding crystal lattice. Performing all
of the operations of the point group (Ref. 3) Ol, on the de-

fect, we find all its 48 possible orientations. We denote
the nth orientation by U„, the corresponding second-order
Raman tensor by T'"', and the set of orientations by V.

By applying the rotations R„EOI, with rotation matrices
R„ to an arbitrary original orientation v~ of the defect, a
homomorphic correspondence from the point group Ol, to
the set V is built up, in which the identity operator E cor-
responds to the orientation v ~ with Raman tensor T"' (see
Table I and Fig. 1).

The rotations R„CO are denoted by the symbols C~
(Table I) for clockwise rotation over 2n/m around an axis
indicated by a. This axis is described in the (x,y, z) coordi-
nate system, e.g., a=xy stands for the [110] direction,
while a =xyz describes the [111]crystalline direction.

A transformation operator R„E0~ acting on the crys-
tal is equivalent to the inverse R „with rotation matrix
R„, acting on the polarization vectors of the exciting and
scattered light, if we consider the Raman scattering inten-
sities:

z'

As a trivial result one obtains that the Raman tensor is in-
variant under the inversion operator i, which is equivalent
to the identity E in calculating the Raman intensities.
Thus from now on we shall reduce the size of the point
groups by this equivalence and treat the orientations as be-
ing the same if they transform into each other under in-
version. The homomorphic correspondence becomes that
between the point group 0 and the set V which has 24
possible orientations for a general defect. Because the in-
version transformation has no effect on the Raman tensor,
the subgroups of Ol, reduce to the subgroups of O. For
example, C3„, D3, and D3d reduce to D3, and we call the
subgroup D3CO and its modes the representative of the
subgroups C3 +3+3gf COI, and their modes. This results
in 11 subgroups of 0 and 40 modes as being the represen-
tatives of the 33 subgroups of O~ and the 124 modes (see
Table II). From a subgroup GC:0, but not the cubic
point group itself or the tetrahedral point group
(G&O, T ), one can obtain equivalent subgroups when the
rotations R E0 are applied. For example, D&[100] can be
rotated to D4[010] and D4[001]. For the defect symme-
try this rotation simply amounts to a different choice of
the initial orientation v~ and has no further consequences.
For the representative symmetry F, CO of the orientating

operator F only one of these subgroups will be considered
and listed in the tables. The results are in essence the
same for the rotated subgroups, and when needed the rules
will be given in order to adapt our results (see Sec. II D2).

The observed Raman intensity I is the sum of the inten-
sities I„of the set of scattering orientations weighed by
their population numbers N„:

24I= g X„I„, (3)
n=1

with I„given in (2a).
From Eqs. (2) and (3) one can write the observed Ra-

man intensity as

24

I=kIv g 1V„(a'T'"'b)

with

3 3 3 3

=kI, y y y y a, b, u, ,b, ,P... ,,
i =1j= 1 i'=1j '=1

FIG. 1. Schematic representation of all possible orientations
of a general point defect with symmetry O~ ——C& in a rocksalt
structure, indicated by a vector. Only 24 of the 48 possible
orientations axe given in the figure; the others are at the back
side. The numbers which indicate the orientations correspond to
the numbers in Table I. The bars over the numbers in the figure
mean that the corresponding rotations are improper ones.

24

I'igv) = g &nTgrT ~'.(n) (n) (5)
n=1

There are 81 elements P,&,'&, but because T'"' is a symme-
trical tensor, only 21 different I'z,'J. are left. We call
Pj'j the Raman intensity parameter which we will
denote from here on by IP. The 21 IP's contain all the in-
formation concerning the Raman tensor and the popula-
tions N„which can be derived from the Raman scattering
experiments.
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TABI.E I. Twenty-four Rsman tensoI's src given corresponding to the 24 possible orientations of a
defect wlthagcncrslRRmsntensor T' —=TlnsnsrbltraryorlglnslorlcntstloQU, . Thctcnsorssrcclss-
siflicd according to tllc clcIQcnts of thc cUbi(c' groUp which ls glvcn Rs R direct plodgct
0=Bi[100]SBq[111].The different orientations are given an identifying number for reference. Ap-
plying the rotation matrix on T"' [Eq. (2b)] yields the corresponding tensor T'"'. The defects are rotat-
ed with respect to the fixed reference system (x,y, 8) (see Sec. IIA).
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TABI E II. SUbgroUps F 1 cOI, whicll Rrc considered for the orlcntatlng opcl"Rtor Fsrc classiflicd into
sets indicated by their 1 l representative symmetries Fq Co, relevant in Rsman scattering. Also listed
Rrc g, thc QUmbcr of 1IMIcpcndcnt popUlatlon QUQ1bcrs X„,Rnd pip, the QUInbcI' of independent RRIHRQ
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g
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D4[100], C4„[100],D41, [100], Dsg[100,010,001](011,011), Dsg[100,011,011](010,001)
Yp YI))

Ol T~, OI
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Every matrix R„EO has the property that there is one
element equal to I or —1 and two elements equal to 0 in
each row and each column (see Table I), so that for each
corresponding T

1I1 wlllch tile I'otatlon R„relates (i,j ) to (i ', j ').
Performing 21 suitable measurements one obtains from

Eq. (5) a set of linear equations:
3 3 3 3

Il ——kIp g g g g a; Ib 1a; lbj IP;
i=1j= 1 i '=1 j'=1

3 3 3 3

I2 kIp g——Q g g ag 2bj 2a; 2bJ' 2P;1,. 1
i =1j=l i'=1 j'=1

3 3 3 3

I21 kIO g g g g ai, 21bj,21ai', 2lbj ', 2IFiji 'j' .
i =1j=1i '=1 j'=1

One can solve this set of linear equations for the IP if the
polarization vectors a and b are suitably chosen. Howev-
er, in most practical cases this is impossible, because the
cllolcc of tllc polarlzat1on vcctols 1s oftcI1 llmltcd by tllc
experimental setup, and because too many measurements
with a high precision mould be required. This problem
will be discussed further in Secs. IIIB and III C. In most
circumstances the constant k is unknown and as a result
one can only obtain the relative IP values. For simplicity
of notation, the 21 IP values will be denoted from here on

y

ql =krone II II q2 =k10F2222 q3 =k10F3333

I'I =k10F2233 &2 =krone I 133 &3 =k10~1122

&1 =kIoI'2323 &2 =k10~1313 &3 =k10~1212

tl =kI0~1213 ~2 =k10~1223 ~3 =kI0~1323

u I ——kI0P I 123, u 2 ——kI0P2213, u 3 ——kI0P3312,

kr0~2223 p U2 kI0~3323 p U 3 kI0~1113

U4 kIOF3313~ U5 kIQF1112~ U6 kIOF2212

These IP values, which are the experimentally determined

parameters, are the solutions of Eqs. (7) and, using Eq. (5),
they arc rclatcd to thc population numbers and thc
Raman-tensor elements:

It is easy to see from Table III(a) that the IP q; & 0 and
s; &0, but the others can be either positive or negative.
Similar to the IP, only the relative values of the N„and
the Tj can possibly be determined in Raman experiments.

The Raman tensor, being a symmetrical second-rank
tcllsor, posscsscs 0111y six Independent clcIIlcllts Tij. Tllcl'c
are 20 independent equations in (9) but up to 28 unknowns
(5 Tj and 23 N„), taking into account that only relative
values can be determined. Thus it is, in general, impossi-
ble to solve Eqs. (9) given an experimental set of IP's. In
Sec. II8 we shall see that after producing an anisotropy in
the distribution of the orientation of the defects and after
performing a sufficient number of experiments, it is in
principle possible to solve Eqs. (9). But even so, because
they are cubic equations, this is rather difficult and a high
precision of the experimental data is required. Fortunate-
ly, a two-step approach to the solution of these equations
is possible, as will be discussed in Sec. II D.

However, in many cases it is already of great value to
identify the symmetry of the defec. and the irreducible
repxesentations of its modes. To reach this more modest
aim, it is in most cases not necessary to solve Eqs. (9) (see
Sec. II D). As a result the analysis is feasible, since fewer
experimental data with a lower precision are sufficient
and the processing of the data is facilitated. In fact, once
the symmetry of the defect and the irreducible representa-
tion of the mode are identified by the IP analysis, the
number of independent Tj and population numbers N„, as
well as the number of the independent IP's, are in most
cases reduced by symmetry arguments, and Eqs. (9) be-

come easier to solve. In some cases it remains iInpossiblc
because not enough independent IP values are left.

B. Effect of the symmetry of the partial
preferential orientation on the Raman intensities

Initially the populations N„are all equal to each other,
i.e., the defects are randomly distributed over all the possi-
ble equivalent orientations. As mentioned above a pre-
ferential orientation treatment, described by a so-called
orientating operator F, is applied to the defects. The sym-
metry of the orientating operator F is defined by the larg-
est subgroup I'1 of 0 whIch leaves I InvarIant. The right
cosets of Fl will be indicated by [see Table IV(a)]

q2 =kI0 g N„T 22 T 22',

U6 kIo g N„T22T 1——"2

The RaIIlaIl tcnsors T alc I'clatcd to each othcI' by Eq.
(2b) (explicit expressions are given in Table I) and it is a
long but straightforward calculation to detexminc the Ip
as a function of the population numbers X„and the ele-
ments of only one Raman tensor, T'", corresponding to
the initial orientation Ui of the defect. These explicit ex-
pressions of the IP are given in Table III.

Ollc call dcllloIlstl ate (Appcndlx A) that after 'thc orientat-
ing action of the operator F the populations N„are equal
if the orientations belong to the same subset V„ i.e., if

Up p Uq E Vpp P' = 1,2p. . . p 0 (10a)

pE2p ~ 4 0 p Eg

There exists a homomorphic correspondence from the
point group 0 to the orientation set V. The corresponding
subsets of Vare

Vl p V2p ~ o e p Vg
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TABLE III. (a) Explicit expressions of the Raman IP's as defined in Eqs. (5) and (8}as a function of
the Raman-tensor components Tj of the dynamical mode in the original orientation v~ and the parame-

ters M. The latter are linear combinations of the population numbers N„and are listed in (b).

g2

t'2

82

g2

4

V3

V4

V5

VB

klo [(
klo [(
klo [(
klo [
klo [

klp[
klo [

klp [
klo [

klp [

klo [
klp [

klp [
klp [
klp [

klo [

klo [

klp [

klp [

klo [
klp [

(a)
Ml + Ms)T11 + (M2 + Mg)Tos + (M4 + Ms)T83]
M2 + Ms) T„+(Ml + M4)T„+ (M, + Mg)T„]
M4 + Mg)T'„+ (M, + M5)T', 2+ (M, + M2)T",-, ]

(Ml + Ms)T22 Tss + (M2 + Mg)Tl 1 T38 + (M4 + Ms)T11722]
(M2 + Ms)722 Tss + (M, 4" M4)T1 1 Tss + (Ms + Mg)T11 T22]
(M4 + Mg)722783 + (M8 + Ms)711783 + (Ml + M2)711722]
(M, + Ms)T23 + (M2 + Mg)Tls + (M4 + Ms)T, 2]
(Ms + Ms)T28 + (Ml + M4)T, 8 + (Ms + Mg)T, 2]
(M4+ Mg)T28+ (Ms+ Mg)T, 8+ (Ml+ M2)T, 2]

(Ml + Ms)713712 + (M2 + Mg)723712 + (M4 + Mg)723713]
(M!~ + Ms) T13T12 + (Ml + M4') 728 T12 + (Ms + Mg) T23 Tlg]
(M4 + Mg )713712 +.(Ms + Ms )728712 + (Ml + M2 )723713]
(M'1 + Ms)711 T23 + (M2 + Mg)722 713 + (M4 + Mg)733712]
(M2 + Ms)T1, T23 + (Ml + M4)T22T18 + (M", + Mg)Tss T12]
(M4 + Mg )711728 + (Ms + Ms )722718 + (Ml + M2 }788712]
M1722723 + M3733723 + M2711713 + M6783718 + M4 722712 + Ms 711712]
M'1 T83T23 + M3T22T23 + M2T33718 + M6T11T18 + M4T11T12 + M5T22T12)
M2 T22T23 + Ms T33T23 + Ml T11T13+ M4 T38T18 + Ms T11T12 + Mg T22T12]
M2 738728 + Mg 722723 + Ml 738713 + M4 711718 + M3 722712 + Mg 711712]
M'4'Tss T28 + Mg'T22 T28 + Ms'Tll Tls + Mg'Tss Tls + Ml" T11T12 + M2'T22 712]
M4 722723 + Mg'T33723 + Ms 733T18 + Ms TllTls + Ml 722712 + M2 T11T12)

(b)

MI
M4

MI
Mt4

1~tt
4

~ttt
1

~ttt

NI + N2 + N3 + N4
N13+ N14+ N15+ NIB I

Nl —N2 + Ns —N4
Nls —N14+ Nlg —Nlg I

Nl —N2 —Ns + N,
N13 —N14 —N15 + Ã1B I

NI + N2 —N3 —N4
N13 + N14 N15 N1B

M2
M5

Mt5

M"
2~tt
5

2~ttt
5

N5+NB+N7+N8
N17 + N18 + N1g + N20

Ng —Ng + Nl —Ng

N17 —N18 + N1g —N2p

Ng —Ng —Nl + Ng

N17 N18 N1g + N20

N5 + NB —N7 —N8
N17 + N18 N1g N20

M3
Mg
M'

3

B

~ttt
3

~ttt

Ng + Nlp + N11 + N12
N21 + N22 + N23 + N24

Ng Nlp + Nl1 N12
N» -N22+ N» - N24

Ng Nlp Nll + N12
N21 N22 N23 + N24

Ng + Nlp —Nll —NI &

N»+N»-N» -»4

From Eqs. (5) and (10) one finds

CT

(r)
fiji 'j '= g ~r~iji'j'

r=1

where

(r) ~ (n) (n)
Pg~g j = ~ T tj T

v EV

(1 la)

(11b)

Under the influence of the orientating operator F the
number of different N„eq ul atshe number of right cosets,
o, of the subgroup Fi C 0; o must be a divisor of 24. This
simplifies the expressions of the IP and generally reduces
the number of independent IP's from 21 to a smaller num-
ber.

The effect of F on orientations v„and iv„may be dif-
ferent and different populations for the two orientations

may result. Thus the inversion i cannot be omitted and
the effect of the orientating operator F should be treated
in the point group OI, . Since the Raman tensor is invari-
ant under inversion, an orientation U„can always be con-

in which the rotation relates the sets of indices (i, j,i ',j ')
and (s, t,s', t ') to each other, and K= + 1 or —l. If Eq.
(12a) is determined for a rotation RzE'Fi, it can be
demonstrated that

fiji 'j '=+Ists't' ~ (12b}

Furthermore, it can be shown that if for a general Ra-
man tensor

(&)
~rji 'j' =0, (12c)

sidered together with its partner iv„, and the population
number is taken as the sum of the populations of v„and
iv„Therefore, . it is still possible to consider only the
smaller cubic point group 0. The subgroup F, &0 as de-
fined in the preceding section is a representative of the cor-
responding subgroups I'& COI, to which the orientating
operator really belongs (see Table II).

For a general Raman tensor T"' of the defect and for
given rotation Rz E0 one finds [see also Eq. (6)]

(12a)
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TABLE IV. (a) Right cosetg of the 11 representative symmetries F~ C 0 (see Table II) of the orientating operator P, using the iden-
tifying numbers of the elements of the cubic group as given in Table I. The orientations corresponding to group elements in the same
coset possess the same population numbers. The subscripts identify the different right cosets. (b) Same as (a) but for the left cosets of
the defect symmetry group 0~ &0. The orientations corresponding to group elements in the same coset are in fact identical and as a
trivial result possess the same population numbers. The subscripts identify the different left cosets.

Cg
Cg [100]
C2 [011]
D2 [100]
D. [0»l
C, [111]
Dg [111]
C4 [100]
D, [ioo]

Y
0

(o)
! Yh& Right Cosets of FI

1 2 3 4 5 6 7 8 9 10 ll 12 13 14 15 16 17 18 19 20 21 22 23 24
! (i,3), (2,4), (5,7}, (6,S), (9,li), (iO, i2), (i3,15), (14,i6), (17,i9), (iS,2O)» (21,23)» (22,24)»
! (I,ii), (2,iO), (3,9},(4, i2), (5,23), (6,22), (7,2i}, (8,24), (13,i9), (i4,18)» (15,17)» (16,20)»

(1,2,3,4)1 (5,6,7,8)2 (9,10,11,12)g (13,14,15,16)4 (17,18,19,20)g (21,22,23,24)g
! (1,3,9,11)1 (2,4, 10,12)2 (5,7,21,23)g {6,8,22,24}4 (13,15,17,19)g (14,16,18,20)g

(I)17,21)I (2,19,24)2 (3)20,22)g (4,18,23)4 (5,9)13)g (6,12,15)g (7,10,16)7 (8,11,14)s
! (1,5,9,13,17,21)1 (2,6,12,15,19,24)2 (3,8,11,14,20,22)g (4)7,10,16,18,23)4
! (1,3,10,12] I (2,4,9,11)2 (5,7,22, 24)g (6,8,21,23)4 (13,15,18,20)g (14,16)17,19}g
! (i,2,3,4,9, iO, ii,12]1 (5,6,7,8,2i,22,23,24}, (is, i4, i5, i6, i7, iS,i9,2O),
! (1,2,3,4,17,18,19,20,21,22,23,24)1 (5,6,7,8,9,10,11,12,13,14,15,16)2
! (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24)

01

c,[oio]
Cg [1M]
D, [ioo]
D2 [110]
Cg [111]
D, [111]
C4 [001]
D, [ooi]

! The Left Cosets of OI
! 1 2 3 4 5 6 7 8 9 10 ll 12 13 14 15 16 17 18 19 20 21 22 23 24
! (1,4), (2,3), (5,7), {6,S), (9,iO), (ii, i2), (13,16},(14,15), (17,iS), (19,20)„(21,23)„(22,24)»
I (I 6)1 (2»)s (3 8)g {4»)4 (9 24)g (Io 23)s (» 22)7 (12»)s (13 19)s (14 20)» (» 17)» (» Is)»
! (1,2,3,4)1 (5,6,7,8)2 (9,10,11,12)g (13,14,15,16)4 (17,18,19,20)g (21,22,23,24)g
! (1,2,5,6)1 (3,4,7,8)g (9,12,21,24)g (10,11,22,23)4 (13,15,17,19)g (14,16,18,20)g

(1,17,21)1 (2,18,22)2 (3,19,23)g (4,20,24)4 (5,9,13)g {6,10,14)g (7,11,15]7 (8,12,16)g
! (1,5,9,13,17,21)1 (2,6,10,14,18,22)2 (3,7,11,15,19,23)g (4,8,12,16,20,24)4
! (1,2,7,8)1 (3,4,5,6)2 (9,12,22, 23]g (10,11,21,24)4 (13,15,18,20)g (14,16,17,19)g
! (i,2,3,4,5,6,7,S], (9,IO, II,I2,21,22,23,24), (i3,14,15,i6, i7,1S,i9,2O),
! (1,2,3,4,17,18,19,20,21,22, 23,24)1 (5,6,7,8,9,10,11,12,13,14,15,16)s
! (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22, 23,24)

then the total IP also equals zero:

I
hajj j 0 (12d)

( onsider in Table I the foul' synlIIlctrlcal tcnsors colYc-
sponding to the four elements of F, . The transformations
of the T;J are given by

Together with Eq. (6) these rules [Eqs. (12)], which are
proven in Appendix B, facilitate the calculation of the IP
expressions. Table I shows all the matrices R„EO and
the corresponding T'"' tensors expressed in the lattice
coordinates (x,y,z); they are numbered from 1 to 24. T"'
is the Raman tensor beloIlgi=lg to an arbitrarily chosen ini-

tial orientation of the defect.
By using Table I and the rules mentioned above one can

readily find the independent nonzero IP under a given

orientating operator F. For example, let us take C2, sym-

metry for F with a main axis [100] and two reflection
planes, (011) and (OTl). Its representative point group is

D2 with the axes [100], [011],and [011] (See Table II).
We derote this by Cz„[100](011,011) and Dz [100,011,011],
or simply by Cz„(011)and D2[011]. We will employ these
simplified symbols from now on. The representative sym-

metry group F, =Dz[011] contains the following opera-
tars:

Fl ——[C„Cz,Cz', Cz'] .

T1 1 Tzz T33 T12 T13

T» T» T33 —T» —T13 Tz3

T 11 T33 T22

C~z-. T11 T33 Tzz —T13 —T12 T23

It is readily verified that

1112=Pzzlz =P3312 ——0,
~1113=~2213 =~3313=0

~1223 =~1323=0

~ZZZZ =~3333,

~1212 ~1313 ~

~1122 ~1133

&2223 =~3323 ,

alld thc rclllallllllg flvc IP s al'e independent. Thus, under
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the operator F with E& ——Dq[011], only nine independent
nonzero IP's are left. Similarly one can easily verify the
statement made in Sec. I that there are only three indepen-
dent nonzero IP's for F~ ——T, i.e., when the defects are
equally distributed over a" their possible equivalent orien-
tations.

The numbers of independent population numbers, o,
and of 1Ildependent Raman lntensfty parameters IP, ptp,
are given in Table II. If no additional information about
the Raman tensor is available the number of independent
elements, py, 1s equal to 6. Taking 1nto account that only
the relative values of the N„, T~J, and IP are of interest,
Eqs. (9) reduce to a set of ptp —1 equations containing
a —1+pT—1 unknowns (Table II). As is readily verified
for all cases, too many unknowns occur and the set of
equations cannot be solved. In principle, if p&p~cr, it is
possible to repeat these experiments with different popula-
tion distributions N„ to obtain a sufficient number of in-
dependent equations, but this can hardly be performed in
a practical experiment. Ifptp & o one can never solve Eqs.
(9).

In the following sections we will discuss how to deter-
mine the symmetry of the defect and its mode representa-
tions on the basis of an inspection of the behavior of the
IP without solving Eqs. (9), and we introduce the concept
of behavior type. Once this is achieved the number of in-
dependent equations and the number of unknowns in Eqs.
(9) will be further reduced, and in many cases the relative
values of the population numbers N„and of the Raman-
tensor elements T,j can bc determined.

It is possible to prove (Appendix C) that if

Up«Uq 6 Vr~ P'= 1~2~. . . ~ 0 (13a)

the orientations U~ and U~ are in fact the same and as a
tr1vlal Icsult possess thc sanlc populat1on number:

(13b)

Combining this result with the effect of the orientating
operator E of a given symmetry F~ (see Sec. IIB), the
number of independent population numbers is often re-
duced again. If two directions U~ and U~, which turn out
to be identical because of the defect symmetry O„corre-
spond to different right cosets of E~ these cosets corre-
spond in fact to the same set of orientations, with the
same population number. This can formally be expressed

C. Influence of the symmetry of the defect
on thc preferential orientation process

Take a defect in an arbitrary initial orientation U~ with
symmetry point group 0~ CO and denote the left cosets
by [Table IV(b)]:

0, ,0„.. . , 0
The number o' is a divisor of 24. Using the homomor-
phic correspondence from the point group 0 to the orien-
tation set V, one finds the corresponding sets of orienta-
tions:

tl llV(, V2, . . . , V~-,
all of the orientations belonging to a same set V,", result-
ing from the action of E on a defect of symmetry Ot, will
possess the same population number, i.e., if one has

Up Uq&~r ~=&,» ~ ~ ~ ~ O

(151)

One can easily obtain the S„or V„" from Tables IV(a) and
IV(b). For example, take F& ——D2 [011]as the symmetry of
the orientating operator and 0& ——Dz[110] as the symme-
try of the defect. Check Tables IV(a) and IV(b) to obtain
the right cosets of F, and the left cosets of 0&. Then
combining the left and right cosets, one obtains the set S,:

S) ——(1 2 3 4 5 6 7 8 9 10 11 12 21 22 23 24),
S2 ——(13 15 17 19),
S3 = (14 16 18 20) .

(16)

The numbers ln expressions (16) correspond to the Raman
tensors in Table I. Only three independent N„are left.
This can simplify the set of Eqs. (9) considerably, but can
only be employed after identification of the symmetry of
the defect.

D. Identification of the dynamical mode through
a behavior-type analysis of the Raman IP's

1. Dynamical modes which can be distinguished
by Raman expel'lments

The symmetry of a defect and the representation to
which the mode belongs are reflected in the Raman tensor
(see Table V). The symmetry also determines relations be-
tween the population numbers which result from an orien-
tating operator E of a given symmetry (see Secs. II8 and
IIC). However, only part of this information can be re-
trieved from the Raman scattering experiments. More-
over, it can be derived from the explicit expressions of the
IP (Table III) that for any possible symmetry of the orien-
tating operator I it is impossible to distinguish a defect
with symmetry 0~ T from one with ——symmetry 0~ ——0
by means of Raman scattering. One can also demonstrate
that an orientating operator of tetrahedral (T ) or cubic (0)
symmetry %'ill yield exactly thc same inforIIlatlon about
the symmetry of any defect, and about its dynamical
modes. Therefore, %c shall Qot d1stlngu1sh any morc bc-
tvveen these two point groups.

as follows.
If the sets S,CO,

S1)52p ~ 0 4 p Sg

are constructed by right and left multiplications of each of
the rotation operators R„as follows:

S,=I'iR „OI, (14)

and the corresponding subsets of orientations are denoted
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TABLE V. Symmetric Raman tensors for the dynamical modes which can occur for defects in a cubic crystal structure for each of
the 33 essentially different defect symmetry groups. The tensors have been transformed from the local reference frame (x',y ', z') of
the defect, to the crystal reference frame (x,y, z). The directions of the local axes are given in the Table. The notation of the tensor
elements is mainly taken from Ref. 1, and their explicit expressions are given in the footnote of this table.

Defect symmetry

The local frame

Cg
82

*'
ll [1oo]

ti' ll [o1o]
z'

ll [001]

C2 [010]
Cgt, (010)
C2t, [010]
x'

ll [100]
v' ll [o1o]
z'

ll [001]

C2 [110]
C&t (110)
C2t, [110]

x'
ll [iio]

v'
ll [11o]

z'
ll [00&]

D2 [100,010,001]
C2„[001](100,010)
D2t, [001,100,010]

*'
ll [ioo]

v'
ll [01o]

z'
ll [001]

D2 [001,110,110]
C2„[001](110,110)
D2t, [001,110,110]

*'
ll [iio]

v'
ll [1»]

z'
ll [oo1]

c2.[1»](»o 001)
*'

ll [iio]
g'

ll [»1]
z'

ll [110]
C, [111]
S, [111]

x'
ll [110]

v'
ll [»2]

~ II [»1]
De [111,110,011,101]

Day [111,110,110,101]
x'

ll [iiol
g'

ll [»2]
"II [»1]

C& „[111](110,110,101)
x'

ll [110]
v'

ll [1»]
~ II [1»]

Ramaa active modes

Raman tensors

B2(yt;R„i)
Bg (x';R„)
82e(R„)

ft)l

Be(xt;R t)
B2(yt;R ~)

B3e(R t)

f
E. f J

(x';R t)
(y', R )
ee(R )

fl

2(R t)

Ed d j

asj
B2(yt;R„) Bs
Bg (x';R„t) B2
82e(R„t) B

ft'
I,f f' J-

B2(gt;R i) A

f~
1

j
E g;Rmtl)

E,2) (R„t)
fell C12 C18)

C12 C22 C28

C18 C23 C33

E yt;R„I)
E 2)(R„t)

[, g'-g' J
E(x';R„i)

~3

Bg(zt;R t)
A2(R ~)

Bye(R,t)

(d

Bg(xt;R„i)

(f'

F. x',R,.)
E,'~(R t)

(bii bi2 bi3)
bj.2 b22 b23 ~

(bte b2e besJ
Ex';R )
E 'l(R t)

( a' —2g' g' )
—2~' a'

gt -2atJ
E(yt;R i)

( d' —2e' e'

I

—2e' d' e'

& e' e' —2d'j

A
Ag (z')

Ag

(a —c

~

—ca
a.j

Ag (z')

( a —c'

I

—c' a
aej

A(z';R ~)

Ae(R ~)

b' a' b'

a J
Ag

Agg

tJ

Ag (z')
(at b' bt'I

bt at bt

bt bl t j
( d' —e'

I—6
(-et e'

A(xt, yt, zt;R, t,R„t,R,t)
Ae(R t,R„t,R,t)

(aqdft t

da, f

! A(gt;R„t) B(x',z', R, t,R,t)
A'(x', z';R„t) A"(yt;R, t,R,t)

! Ae(R„~) Be(R i,R,t)
4i (

a2 d f

! A(yt;R„() B(x',z';R ~,R I)
At(xt, zt;R„~) A"(pt;R t,R ~)

! Ae(R„i) Be(R ~,R,t)—'') ("
1 t

v&

J
A Bg(z';R i)

Ag(z') A2(R ~)

! Ag Bye(R ~)

(ay d
a,

l
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TABLE V. (Continued }.
Defect symmetry

The local frame

!c, [oo1]
S4 [001] !

C4t, [001]

g'!! [100]
y' ll [o1o]
2!![oo1]

D4 [001,100,010,110,110]
D4 t, [001,100,010,110,110]
D2& [001,100,010](110,110)

x'!![100]
y' ll [o1o]
z'!! [001]

D2g [001,110,110](100,010)
*'!![1oo]
y' ll [o1o]
z' !![001]

C4„[001](100,010,110,110)

g'!! [1oo]
y'

ll [o1o]
z' !! [001]

Th,
!

x'!![100]
y'

ll [o1o]
2!![oo1]

0
Td

OA

x'!![100]
y'!! [o1o]
z' !![001]

Raman active modes

Raman tensors

E(g';R )
E(x';R i)
K(&}(R,)

(

B2
B2g

B2(z )

A(z';R t)
A(R, t)
A, (R..)

B
B(z')

Bg

('c d

d—C

)

K(yt;Ryt)
E(y';R„t)
K('}(R„)

f f—'

E x';R t) E(yt;R„i)

K(g';R t) E(y';R„t)

f i

(.—f )
K(x';R t) E(yt;Ryt)

t'

(ff ) ( ff—
E(y', R t) E(g';R„t)
t' ) ( f)

fl

T(g';R, t) T yt;Ryt) T(z';R, t)
Te( } (R t) T 2}(R„t) T(3}(R t)

f f

(2) T(3)
2 2

(y') T.(")
(2)
2g 2g

f I ( f

A1

A1g
A1 B1

I'a 't t'c
a ") &

A1

) (d
Bg (z')

( —c
—d") t

Ai (z')

(a i (c
a

a3

B2

( d

)
E(2)

y.(2}

~ (t'

~( 'd)

C

y, (1)
E(1)

("
g..) ( —g)

(a

A1
A1

A1g

(a

E(13 E(2) T(j)
y(1) y, (2}

E(1) T(&)
g 2g

2y& g ! 2@6 g f
2g) ( ) [, f J

The expressions of the symbols of the
In trigonal and tetragonal classes:

1 (gl xt + yl yl)
In cubic classes:

t( l t+ t t+ l l)
In all symmetry groups:

1( t l t t)

v ~ (xt gl ytyl)

a1 ——x'x'

ft 1( tg+ t l)

b =—3a+ qa31 1

gr

v2c+ Wcd+ v3fl + lf

tensor elements:

t. (gtxl yl yt)

c =-' z'z' —x'x'

g = ' (x'g'+ y'y' —2z'z')

gg
———~(2g'g' —y'y' + z'z')

a2 =VV

dl ld+ nfl
h' =-'c+ f-

v2c vod vafl+ if22 —
3 C

1 (gtyt + yt gt)

1 (gl gl yt yl)

f =q(y'z' + z'y')

a3 =z'z'

a =a+ aa32 1

ct 1 d nfl6

bS3 =—b11 —b22

C33 =—C11 —C22

C12 =—C13 —C28
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Even when this is taken into account one can verify that
different modes corresponding to the same defect symme-
try cannot be distinguished from one another, even when a
full set of 21 IP's is available. This results partly from an
internal symmetry of Eqs. {9){see Appendix D} and partly
from the explicit expressions of the IP for each of the de-
fect symmetries. The following modes cannot be dis-
tinguished from each other.

(i) The BI, Bz, and BI modes of a defect with symmetry
01 ——Dz[100]. The three modes possess, in general, dif-
fcrcllt frCqilC11C1CS.

(ii) The components of a twofold-degenerate mode, an
E mode, yield the same contribution to the Raman Ip. In
most circumstances the two modes cannot be measured
separately while possessing the same frequency. However,
the rule can be useful when a perturbation lifts this degen-
eracy, e.g., the perturbation induced by a uniaxial stress on
the crystal. In the same way the three degenerate modes
of a T representation contribute equally to the IP.

Tak1ng into account thc above Icmarks and thc ncglcct
of inversion symmetry, we conclude that of 124 possible
dynamical modes with different symmetry properties only
25 sets can be distinguished from one another on the basis
of Raman experiments on preferentially orientated de-
fects. We have listed these sets in Table VI and will indi-
cate them by 25 so-called representative modes.

When the analysis of the IP is considered for an experi-
ment in which only one mode of a defect is studied, addi-
tional limitations occur. We have checked that the
rcpl'cscll'tRtivc Illodcs wlthlI1 'tllc followlllg sets callllot be
dls'tlllguisllcd froII1 each otllci cvcll by solvillg Eqs. (9):

IDI[100]:BI,Cg.E, D4.BI, EI,
IDI [110]:Bl,D4.BII,

ICOSA,

DIAI I,
IC4A, DgAI] .

{17c)

(17d)

This follows from an inspection of the IP expressions (5)
explicitly taking into account the population numbers and
thc Raman-tensor components. Thus only 19 sets of
representative modes can possibly be distinguished in a
single-mode analysis.

Ill this section wc llavc Ilot cons1dcrcd wllctllcr Eqs. (9)
can actually bc solved, i.e., whether a sufficient number of
independent IP's exists for determination of the unknown
population numbers N„danthe elements T,J of the Ra-
man tensor. For some of the representative modes Eqs.
(9) cannot be solved for any symmetry Fi of the orientat-

ing opcrRtor E~ RQd this puts an RddltloQR1 11mlt to our
analysis, as will be demonstrated now in the following sec-
tion (Sec. IID 2).

2. Symmetry imposed prope-rties of the Baman
II"s: Behavior type

In ordcl to dctermlnc thc populatloll QuIDbcr X~ RIld
the elelnents of the Raman tensor it is necessary to solve
the set of Eqs. (9). However, these are cubic equations,
with a high QuITlber of unknowns. Furthermore, bccausc
of the insufficient precision of the experimental results it

is often hard to proceed along this way. Moreover, for
several of the representative modes it is not possible to
find the solutions.

Therefore, we will try to determine the representative
modes on the basis of a direct i nspection of relations exist
ing betuieen the IP's. As mentioned above in Sec. IID1,
part of the symmetry-imposed information contained in
the Raman tensor of the mode and the population num-
bers N„ is reflected in these parameters. In many cases
this information can be expressed by means of relatively
simple relations between the IP's, which are easy to dis-
cern in the experimental data. We have systematically in-
spected the occurrence of the following types of IP rela-
tions:

XI ~0,
XI =CXJ

x; =c(xj +xk),
x; /xJ =c(xk/xI, ),
x; /x, =c{xk/xl, )I~',

(18c)

(18e)

where x;~j,xk,xs represent specific IP's, and c is a posi-
tive or negative integer or half integer. For a given set of
21 IP's one can check which of the IP relations of the
types shown above are fulfilled. These IP relations define
a so-called behavior type (BT) of the set of IP's.

From the explicit expressions of IP's for all of the pos-
sible representative modes, and after applying a given
orientating operator E, we have determined that 65 dif-
ferent BT's can occur. Their characteristic IP relations
are listed in Table VII: The IP's equal to zero [(18a}]and
the relations between two IP*s [(18c)]can be found direct-
ly ln 'thc table; tllc 0'ther I'clatioIis [(18b)], {18d)—(18f)] arc
given in the footnotes of the table and are referred to in
the last column. If two BT*s differ fmm each other only
by the relations between three or more Ip's, as given in the
last column of Table VII, they are assigned the same num-
ber but with an additional letter, e.g., BT nos. 23a and
23b. Table VIII indicates the BT for each of the modes
and all possible symmetries of the orientating operator F,
using the definition of the BT as given in Table VII.

If onc considers a given defect symmetry 0„ the BT
which is found for F, =Ci (first column of Table VIII) is
the minimum BT for this defect, i.e., all of the IP rela-
tions which are valid in this BT are also obeyed for higher
symmetries Fi of the orientating operator E. This BT is
induced purely by the symmetry of the defect. In a simi-
lar way the BT for a given Ei and for the defect symme-
try 01——Ci (first mw in Table VIII) is characteristic for
the symmetry of the orientating operator, and the IP of a
defect with a higher symmetry 01 will obey the IP rela-
tions of this BT. The 1atter Ip relations can be used in an
experiment to test the symmetry F~ of the orientating
operator. In addition to the sets considered above [Eqs.
(17)] the following sets of modes possess the same BT for
any symmetry Fi (see Table VIII):



BEHAVIOR-TYPE METHOD FOR POLARIZED RAMAN SPECTRA. . .

TABLE VI. Classification of the dynamical modes which can occuI for defects in a cubic crystal according to the 25 representa-

tive modes which can be distinguished by Raman scattering experiments. The representative modes are given an identifying number

for reference in Tables VIII, IX, and XIII(b).

Representative
Mode

1 Cg..A
2 C2 010:A
3 C2 Qloj:B
4 C2 110:A
5 C2,, 110', :B
6 D2 Iloo:A
7 D2 100:Bt
8 D 110]:A
9 D2 110]:Bg

10 Ds ~110:B2

D, [110]:B,
12 Cs 111:A

C, [111I:E
14 Ds 111:Ag
15 Ds [111]:E
16 C4 [001]:A
17 C4 [001]:B
18 C4 ' 001:E
19 Dg (001]:At
20 D4 001':Bg

21 D4 001:B2
22 D4 001:E
23 T:A
24 T:E
25 T:T

Number
of modes

~

2

10

10

Dynamical modes

cg.A S2.Ag

C& oloj:A C»(010):AP C» [010].A,
C2 lolo:B Ct p, (010):A" Cgp, 010:Bg
C2 110:A Cg p, (110):A' C2p, 110:Ag
C2 [110:B Ctp, (110):A" C2p, 110 B

C,„(1OO):A, D» [1OQ]:A,

D2 100]:Bj,B2,Bs C2„(100):A2,Bt,B2 D2p, [100':Bt,B2,Bs
D2 110]:A Cg„(110):Ag D2p, [1loj:A Cs„[110:AI

D2 [110:Bg C2„(110):A2 D2p, 110]:Btg C2„[110:Bt
D2 110):82 C2„(110):Bg D2p, [110]:B2g C2„110:B2
D2 [110]:Bs Cs„(110):B2 D2p, [110]:Bs C2„[1IQ]:A2

Cs.A Ss ..Ag

Cs.E Ss ..Eg

Dsg.'Atg Cs„..At

Dsg. Eg Cs„..E
C4 ..A S4 ..A Cqp, .Ag

S, :B C«..B,
«p 'Eg

D4.At Dgp, .Atg D2g ool Ag D2g 110:Ag C4, .Aq

D,„OO1:B, D,„11O:B, C,„:B,
D4 ..Bs D4g..B2~ Dgg ~001:B2 D2q 110:B, C4„:B2

D4..E D4p, Ey D2g 001:E D2g 110:E C4„..E
T:A Tp, A~ 0:A, Tq..Aq Op, .A, g

T:E Tp, Eg 0:E Tg..E Op, Es
T T Tp Tg 0 T2 Tg.T2 Op, T20

I Ct,A, C2[110]:AI,
IC,[010]&D,[110]:8„83I,
ID2[100]:2, C4.A I .

As a result only 15 sets of modes can be distinguished
from one another by the single-mode BT analysis. In sets
(19a) and (19c) it is possible to solve Eqs. (9) and to decide
between the representative modes on the basis of the popu-
lation numbers X„and the dements TJ of the Raman ten-
sor. Solving Eqs. (9) is not possible for the modes in set
(19b) and as a result it is impossible to decide between

them on the basis of Raman measurements on a sjngle
dynamical mode: This reduces the number of distinguish-
able sets of representatjve modes from 19 to 1'7. This
number should be compared wjth 15 for the BT analysjs

As mentioned in Sec. II A only part of the subgroups of
the cub1c po1nt group 0 were considered ln ou1 analysis,
e.g., D4[100] for F, but not D4[001] and D4[010]. It is
relatively easy to derive the BT for such rotated subgroups
from the BT listed in Table VII. A rotation from one
subgroup to another by R„GQ is equivalent to an inverse

1rotation by It „' of the defects and thar reference axes.
The rotation of the defects need not be taken into account
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V3 V4

t

1 2 3 4 5 6 10 13
!

12
1 2 3 13

456

V3 V4

g

1231113—V5

ql g2 q3

R Q2 V3

Vl

1 2 3 4 10 13
Vl Vl

Vl V2

Vl
—V3

12

2 7 13
8
5

TABLE VII. Sixty-five different BT 's identified by a BT number in the first column are defined by relations of the type given in
Eqs. {18)between the 21 IP's. The IP's which are zero and the relations between two IP's are given as the main BT. The relations be-
tween more than two IP's (the additional BT relations) are given in the footnotes of this table and are indicated in the last column.
The equalities among the IP's existing for a given BT can be substituted into these additional relations. This often permits one to ap-
ply these relations even if the IP's which explicitly appear in them are not directly available from the experiment.

BT Additional
no. Ma, in BY relations BY relations

ql q2'q3 rl ra ra I Bl Ba 33 tl 4 ts I ul ua us vl v2 v3 v4 vs vs

ql q2 'q8 rl ra "3 I Bl 32 Bs I ul u2 us Vl Va V5 V6

83 tl fr2 C3 i

ql qa qa rl r2 r3 I Bl Ba 33 tj 4 ta ul ua us vl v'2 V5 Vo

!ql qa qa rl ra t'3
I

81 82 83 I

ql qa qs rl r2 r3 I Bl Ba 33 ul u2 u3 vl Vl vs va Vs VS

ql qa qs rl ra rs I

ql ql ql ql ql ql I Bl Bl Bl tl 4 ts I ul u2 us ul Vl u2 ua us u3

10 gl Q1 gl 291 2'gl 2/1 81 81 81 tl 52 ~3 &1 &2 &3 Vl V2 V V4 V5 V61.

ql ql 'ql jql 3 ql —aql ! Bl Bl Bl tl 4 4 ul ua us —aul —aua —
a us —aus —aus1 1 1 1

12
I qlq2'qs rl ra r3 I Bl Bg 33 —Vl Va —VS VS

'ql 'ql 'ql ql ql ql !

15 81 81 81
16 rs I Bl Ba Bs&l V2 !

17 rs I Bl Ba Bs Vl V2 !

18 81 82 83 t1

ql qa 'q3 rl r2 rs I Bl 32 33

ql qa q3 tl ra rs! 3, Ba Bs !

ql ql ql ql ql ql I Bl Bl Bl tl tl 1 Ql !8
ql ql ql —', ql aql 2ql! Bl Bl Bl tl tel 4

ql ql 'ql 8'ql ~aql 8 ql ! Bl Bl Bl tl —jul !

23b
! ql ql tll —

8 ql —
3 ql —

3 ql Bl Bl Bl tl —jul !9
ql q2 q3 "l r2 rs I Bl 32 33 !—Vl 1 2 3 ll 13
ql qa q2 rl r2 ra I Bl 32 Ba tl 4 t2 I tll ua ua —vl tll v3 v4

qlqaqa rl r2 r2I 313232 ul ua -u2 Vl Vl Vs V4 V3 V4

27 Bl 33 32 tl t2
1ql qa q, rl —aql —aql! Bl BQ Ba tl tQ 4! ul ua —ua aul ~2ul v3 'v4 vs v4 2571013

ql qa qa

30
I 81 82 82

ql qa q2 rl, rQ rQ I Bl 32 Ba VS VS -Va -VS

R g2 Q2 ~1 —Zgl —Zgl !

ql ql ql ql ql ql I Bl Bl Bl tl 4 t21 ul ua ua ul ul ua ug ua

ql ql 'ql aql aql aql! Bl Bl Bl tl 4 t2! ul ua u2 au2 au2 v3 v4 v3 v4
1 1 1.

ql ql ql —aql ——,ql —,ql ! B»»l tl 4 —&8 ! ul ua —u2 —,ul —,ul —,ua —,ua, ua, ua1 9

because it is equivalent to a different choice of the original
orientation u&. A rotation R „yields a permutation of
the x, y, and z axes, and as a result a permutation of the
IP occurs [see Eqs. (5) and (9)]. The permutation is such
that in the short Ip notation q;,r;,s;, . . . , introduced in
Eqs. (3), only the lower indices are permuted, i.e., the per-
mutation occurs between the q;, between the r;, and so on.
It is evident that the representative modes can be dis-
tinguished from each other in the same way by a rotated
Fj as by the original one listed in the tables.

3. Combined analysis of several modes

of the same point defect

Sometimes it is possible to detect several modes of the
same defect and to analyze the IP of these modes simul-
taneously. If, for a given symmetry Fl, several modes of
the same defect are found to possess a different BT, the
symmetry Ol of this defect can be determined more effi-
ciently. For example, one can decide between the modes
Cl.A and Ca[110]:A [see Eq. (19a)] if a second mode of
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TABLE VII. (Continued. )

Additionil
BT relations

2 7 ll 18

1 2 8 10 18
1 2 8 ll 18

2 V 10 18

2 7 10 18

2 7 ll 18

!

!

I

4 13

!

18

2 7 10 13

2 V1118
!

I

Main BT relations

4Sb
46
47
48

ul ul ul

ul —j ul —&ul2 2

ul —&ul —&ul2 2

ul ul ul

ul —ul —ul2 2 2
—~ut —Jut —~ut

SS
S6

S7s

S7b
S8

!ql q2 q2 rl —2« —2« I

—3 tP3 tP3

qt qs qs «1 r2 rs I 81 82 as !

ql q2 'qs rl r2 rs I 81 82 as

« q2 qs rl r2 rs I 81 82 as

ql ql 'ql 'ql ql ql I 81 81 81 !

ql qt «kqt —k« —k« I !

« q2 q2 rl r2 r2 I 81 82 82 4
ql q2 q2 rl r2 r2 I 81 82 82 tP1 tP1

81 82 82 gi I

2qt. 2« I
—2ul —2ul

«q2 q2 rl —2« —2« I !

qt q2 q2 « —2ql —2iqt
I

qt qt qt "1 rl rt I 81 81 81 4 4 tl ! ul ul t41 ot tts tt2 ut t44 tt2

« « « rl rl rl I 81 81 81 ul ul t41 ul o2 tP2 ul Qt o2
8l 8l 8l &l &l .2 tll Vl tp2«««rl rl !

rl rl ! al 81 81 et ot vt tpt

qt qt « ql ql ql I al al al 4 4 tt ! ul t41 ul
t41 t41 -'ul

qt qt «2qt 2qt 2qt I
el al al tl tl

qt 'ql qt 2ql 2«2« I

I l

tPl —el
rl rl I 81 81 81 tt tl tt ! tll ul ul ot ot ut ut ttt ttt

r2 ! al a2 a2 l —&l

tP l ~tPl

«q2 q2 rl-'« —kqt I » 82 82

r2 r2 ! al a2 a2

«ql «2«kqt
l gl gl ~l ~1 &l ~ 8l 8l 8l

e numbers in this column indicate the following additional IP relations:
gl = ~2 —~3 2: g2 = —t'l —t'3 3: Q3 = —t'l —t'2

4: ul = —tPl —F2 S: u2 ———tp3 —tp4 6: u3 = —tP82 —tP67: gl = 2tg& + 2t'l 8: ul/tl ——us/t2 ——us/ts —K (q /a )'* 9: ul/tl ——u. 2/ts ——us/ts —— 2IC (q /8. )I—
10 qt /81 q2/8' qs/83 ll: rl/81 ——r2/82 ——rs/as = «/(82 + as) = q2/(81 + as) = qs/(al + e2)12: ut/ot ——u2/vs = us/os 13: r;~0
The factors E„in the above relations No. 8 snd 9, are equal to +I or —1, snd sre determined by the sign of the
product of the Raman tensor elements: 44'i4' in the representative modes Cs.'A or Ds.A1, and it'g' or d'8' in the
representative Hlode 03.E.

this defect is available with a different BT. In this simple
example the second mode can only be a C2[110]:+mode,
and correspondingly the defect must possess the represen-
tative symmetry C2[ 110].

In addition to the set of IP relations of one mode, which
determine the BT, for some defect symmetries 0, rela-
tions are available between the IP's of different modes of
the same defect. These IP relations, which are given in
Table IX, are based on the population numbers, which are
common for the different modes. They make it possible,

e.g., to distinguish the modes of D2[110] from the other
modes in the set given by (19b) and (19c) provided that
several modes belonging to the same defect are measured.
In favorable circumstances all 25 representative modes
can be distinguished by a multimode analysis except for
the C&A mode.

E. Observed versus the actual behavior type

The BT which we have been discussing so far is what
we will call the ttctttQ/ BT: Its chalacterlstlc IP reiat1ons
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TABLE VIII. BT of the Raman IP's are given for each symmetry F& of the orientating operator F and for each representative
dynamical mode. The relations which determine these BT s are given in Table VII. The maximum number Nd;, of the representative
modes which can be distinguished is also given for each of the Fl. The modes are numbered as in Table VI.

Ct
C2 [010]

C2 [110]

D, [loO]

D2 [110]

Cs [111]

Ds [111]

C4 [001]

D, [ool]

Mode ! Ft ——

1 A

A
3 B
4 A
5 B
6 A
7 Bi
8 A
9 Bt
10 Bs
11 Bs

A
13 E
14 At
15 E
16 A
17 B
18 E
19 At
20
21 B2
22 E
23 A
24 E
25 T

Ct C2[100]
1 16
2 17
3 18
1 16
4 19
5 5
6 6

7 20
8 8
3 18
3 18
9 21
10 22
9 21
ll 23b
5 5
12 24
6 6
5 5
8 8
6 6
6 6
13 13
14 14
15 15
15 15

C, [Oll]
25

26
27
25
28
29
30
31
32
27
27
33
34
33
35
29
36
30
29
32
30
30
13
14
15
15

D2 [100]
37
37
6

37
38a

5
6

37
8
6
6

39
40
39
40
5

38b
6
5
8
6
6
13
14
15
11

D& [Ol1] C, [111]
41 46
42 47
43 48
41 46
44 49
29 50
30 15
42 51
32 14
43 48
43 48
21 52

23a 49
21 52

23b 53b
29 50

45b 54
30 15
29 50
32 14
30 15
30 15
13 13
14 14
15 15
14 12

Ds [1ll]
55
51
48
55

533,
50
15
51
14
48
48
52

53a
52

53b
50
40
15
50

15
15
13
14
15
11

C4 [100]
56

56
30
56

57a
29
30
58
32
30
30
39
59
39
40
29

57b
30
29

30
30
13
14
15
13

D4 [100] T
58 60
58 60
30 15
58 60

45a 40
29 50
30 15
58 60
32 14
30 15
30 15
39 39
40 40
39 39
40 40
29 50

45b 40
30 15
29 50
32 14
30 15
30 15
13 13
14 14
15 15
ll 7

are the ones required by the actual symmetry of the defect
and the orientating operator I'. The BT which is distilled
from the experimental data is called the obserued BT: It
can accidentally possess IP relations which are not im-
plied by the symmetry of the defect. For instance, a
C3„A~ mode with F& ——T does not require q=O or q=s
(Tables VII and VIII), but if the diagonal elements of the
Raman tensor would happen to be near zero or to be near
the value of the off-diagonal elements, one would observe
one of the above IP relations if the experimental intensi-
ties could not be measured with sufficient precision.
However, the symmetry-required IP relations can never be
broken: For instance, if an actual BT possesses a IP rela-
tion such as x =0 or x&

——x2 it is impossible to observe
x&0 or x,&x2 given an adequate statistical data process-
ing.

The accidental additional IP relations can make the ob-
served BT different from the actual BT for a given center.
This complication should be kept in mind when perform-
ing a BT analysis. Therefore, we have listed in Table X
all the possible actual BT's corresponding to a given ob-
served BT. This hierarchy can be expressed by saying that

the observed BT may possess a higher symmetry than the
actual BT.

F. Other possible analysis methods

Independent information about the model of the defect
or about the relative values of the population numbers N„
is very helpful in the BT analysis. The population num-
bers can sometimes be estimated from other experiments,
e.g., from polarized optical absorption or electron spin res-
onance. A hypothetical model may permit one in elim-
inating some of the possible defect symmetries and in
predicting the effect of the preferential orientation pro-
cess. From such data additional constraints on the IP can
often be derived, such as their sign or their relative magni-
tudes, and eventually some of the possible representative
modes can be eliminated narrowing down the choice.

The combination of Raman measurements with external
data permits one in some cases to distinguish between
dynamical modes which were classified in the same
representative mode (Table VI): The B&, 82, and 83
modes in D2 [100]defect symmetry can be distinguished if
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TABLE IX. Relations which exist between the Raman IP's of the representative dynamical modes (identified by the numbers
given in Table VI) belonging to the same defect, and which can be measured in the same Raman experiment. If equahties among the
IP s exist, as given by the BT (Tables VII and VIII), they can be substituted into these relations. This often permits one to apply the
relations even when only part of the IP are available from the experiments.

Co [010]

Do [110]

23
23
2p3

8,9
8,9
89

8,10,11
8,10,11
8,10,11

8,9,10,11

8,9,10,11

8,9,10,11

10,11

12 13

Cg [111]

!

!

!

D, [111]
!

!

!

!

!

C4 [M0]
!

!

!

D, [100)
!

!

!

12,13

12,13
12 13
14,1S
14,'1S

14,15
14,16
14,16
14,15
14,15

17,18
17,18
17,18

20,21
20,21
20,21

20,21,22
20,21,22
20.21,22

Defect
symmetry ~ Representative

Oi j modes
I

The IP relations between diferent modes of the same defect

(ui/uo)~ = {ti/to)a = (Ng —Ns + Ngi —Ngg)/(Ni —Ns + Nig —Ni4)
(ui/ug)x = (4/tg)a = (Ns —Ns + Nsx —Ngg)/{No —%i + WT —Wo)

I (u. /ug)~ = (t./tg)a = (Ni N, +-Nig N~4-)/(No Wi-+ NiT- N»)
(ag/ao)~ = (ri/rs)a, = (Ngg + Ni4)/(No + Ngp)
(ax/ag)~ = (r, /rg)a, = (N, g + Ni4)/(N~ + Ng)
(ao/ag)~ = (ro/rg)a, = (No + Wo)/(W + Ng)
(ut/us)x = (&&/&g)w = (ti/to)a, = (4/to)a, = (Nig —Ni~)/(No —Nio)
(«/ug)~ = (&il&g)~ = (ti/tg)a. = (4/tg)a (Nlg N14)/(Nl Ng)

I (u. /ug)~ = ("/")~ = (t./t. )a. = (t./t. )a. = (N. —Nio)/(N~ —N. )

[(as + as)/(ai + ag)4 = (qi/qs)a, = (ai/so)a. = (ai/ag)a. =—(Ni + Ng + No + Nio)
(Ng + Ng + Ngg + Ng4)

[(»+»)/(» +»)l~ = (qi/qg)a, = (ai/ag)a. = (»/sg)a. = (Ni + Ng+ No + Ngo)

(No+ Wig+ Nig + Ni4)

[(si+ sg)/(a~+ ao)l~ = (qo/qg)a, = (ss/sg)a, = (ss/sg)a. = (Ng + Ãg + Nig + Ng4)

(No + Ngo+ Nig + Ng4)
I (t;)a.(t')a. ~ o

=
N, —N, N,'+ N, + N—, —N. —N,'+ N,

( / ) (t /t ) ( / ) (t /t )
Ni ¹+Ng——¹+Ng—Ns+Ã7 —N~
Ni + Ng —N3 —N4 + N5 + No —N7 —Ns

(uo/"g» = {"/") = (uo/ug)z = {"/")z= N'+ N'- O'+-N'+ N'"+ N" -N'- N
(t / ) 2(t / )

Ni —No + Ng —N4+ Ng —Ns+ N7 —Ng
Ni + Ng + N3 + A'4 + N5 + 176 + A'7 + N8

(t / ) 2(t / )
Ng —No —Ng+N4+Ng —Ns —N7+N~
Ni + Ng + N3+ Nq + Ng + N6+ N7+ N8

(t / ) 2(t / ) Ng+ No —Ng —N4+ Ng + No —N7 —Ng
Ni + Ng + Ng + N4 + Ng + N6 + N7 + N8

! (t') (t').
(u&/uo)~, = (4/tg)z, = (u~/ug)z —(tg/to)z —(Ng Ns + Ng N4)/(Ng Ng Ng + N4)
(ui/ug)~, ——(4/tg)~, = (u, /u, )z = (t, /tg)z = (N, —N, + N, —N, )/(N, + N, —N, —N, )
(uo/ug)~, = (to/tg)~, = (ug/us)z = (ts/tg)z = (Ng —Ng —Ng + N4)/(Ng + Ns —Ng —N4)
(ti /si)g, = —2(ti/ai)z = (N, —No + Ng —Ng)/(Ni + No + Ng + N4)
(to/ai)~, = —2(to/ag)z = (Ng —Ng —Ng + N4)/(Ng + Ns + Ng + Ng)
{tg/ai)~, = —2(tg/ag)z = (Ng + Ng —Ng —N4)/(Ng + Ns + Ng + Ng)
(t;)&,(t;)z
(qi /qo)a = (ay /ss)z = (Ni + Ng + No + Nyo)/{Ny + Ng + N) g + N)4)
(qg/qg)a = (ag/ag)z = (Ni + Ng + No + Ngo)/(No + Ngo + Ngg + Ng4)
(qo/qg)a = (ag/sg)z = (Ni + Ng + Nig + Ni4)/(No+ Nio+ Wg + Ni4)

! ( /")., =( /o)a. =N. /N.
{ra/rg)a, = (si/as)a, = Wg/%
(rs/rg)a, = (sg/ag)a, = No/Ni
(qi/qo)a, = [(so+ ss)/(ai + ag)]a. = {ai/ao)z = (W + No)/(W +Kg)
(m/qg) a. = [(ao + sg)/(» +») a, = (a~/sg)z = (Ni + No)/(No + N»)
(qo/qg)a, = [(» + sg)/(» + ag) a, = (s./as)z = (W +Kg)/(No+Kg)

independent information about the population numbers
X„ is available.

III. APPLICATION OP BEHAVIOR-TYPE
THEORY TO PRACTICAL EXPERIMENTS

A. Nature and symmetry properties

of the orientating operator I
In the foregoing treatment we have described the pro-

cess of preferential reorientation or destruction of point

defects by an orientating operator F, acting on the popula-
tion numbers N„(see Secs. IIB and II C). In principle this
operator could represent any physical process which alters
the population numbers. Polarized optical excitation in an
absorption band of the defect is often a convenient
method. The excitation may destroy the point defect pre-
ferentially in specific orientations, or it may reorient the
defects preferentially. In the following we mainly concen-
trate on this optical method of preferential bleaching and
reorientation.

For virtually all defects the optical transition employed
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TABLE X. Observed BT 's are given together with the correspondi. ng actuaI BT (see Sec. IIE). Only
those actual BT's must be considered which can occur for the symmetry I'~ employed in the experiment
(Table VIII). The BT No. 15 can reduce to nearly any other BT, and only the actual BT's which can
never correspond to this observed BT are listed between parentheses.

Observed
BT

31
34
36
38a
39
41
43

45a
46
48
50
52

S3b
55
57a
58
50

Possible II

I actual BT
1 il

I II

1 2 5 7 15 17 2O 37
I 127 II

I 19 II

1 11 II

1 2 5 7 9 13 15 17 20 21
25 26 29 31 33 37 39 41 42
46 47 SO 51 52 55 56 58 BO

(s s ls14 29 s2 so)
I 16 17
I 15 19
I 16 21 41
I 16 23a 41 II

I 16 17 24
25 26

I 25 28
25 26 27 28 30 31 36 41 42

43 44 45a 45b 56 57a 57b 58 II

25 26 31
25 34

25 25 36
I 37 38a

37 39 56 58 60

I 41 43 44
41 42 44 45a 58

46
46 48 49 52 53a 53b 55

I 46 47 50 Sl 55 60
I 46 52 55 II

46 53a 53b 55
II

55 57a II

I 56 58 II

60

Observed
BT
2 !

4 I

8 I

10 I

12 I

I

14
I

16
18 I

20 I

22 I

28b
25
27
29
32 I

33
35
37

38b I

40
42
44

45b
47
49 I

Sl I

53a I

54
56 I

57b I

59

Possible
actual BT

12
14

1 2 3 4 6 7 12 16 17 18 19 20 24 37 38a 88b
1 2 4 5 7 8 12 16 17 19 20 24 37 88a, 88b

1 10
1 2 12

1 2 5 7 10 ll 14 16 17 20 22 23a
23b 25 25 29 31 34 35 37 40 41 42 46

47 49 50 51 53a 531 54 55 56 58 59 60
15

15 18
15 17 20

16 22
15 23a 23b 41

25
25 27 28

25 26 29 31 41 42 56 58
25 26 28 29 31 32 36 41

42 44 45a 45b 56 57a 57b 58
25 33
25 35

37
37 38b

37 40 51 53a 55 56 S8 59 60
41 42
41 44

41 42 44 45b 58
46 47
46 49

45 47 51 55
46 53a 55

46 47 49 54
56

56 57b
56 59

for the preferential orientation possesses pure electric di-
pole character. As a result the direction of the polariza-
tion vector determines the symmetry EI of the orientating

operator I'. It is relatively easy to realize experimentally
the following symmetries of optical excitation: Unpolar-
ized light incident along [100]or light polarized along this
dll'cc'tloll ylclds El =D4, [100]. All Rllalogolls optlcR1 cxcl-
tation obtained by replacing the propagation or polariza-
tion direction by [110] and [111]yields El =D2[110] and
El ——Dq[111], respectively. Light with a polarization vec-
tor in the (100) plane, but not along (100) or (110)
directions, results in a symmetry El ——C2[100]. Finally,
El ——Cz[011] is obtained when the polarization vector is
lying ln the (011) plane, but not along (110), (100), or
( 110}directions.

In actual experiments it is necessary to consider wheth-
er the concentration and the population distribution of the
defect over its orientations are both uniform over the
whole crystal. The effect of an optical excitation is
stronger near the surface of the crystal which has received
the irradiation, and is diminishing with increasing dis-

tance from this surface. In such a case it is very difficult
to rotate the crystal without changing the population
numbers X„which are measured in the Raman experi-
ment.

8. Practical sets of optical polarization geometries

For any given orientating operator E it is in principle
possible to determine 21 IP's (see Sec. II A) of a dynamical
mode from a set of 21 measurements using well-chosen
polarization directions of the incident and scattered light.
However, ln a pr'Q, ctlcal experiment such an extended sct
of accurate measurements is often hard to perform.
Moreover, the experimental setup often limits the choice
of the polarization vectors a and b: We will only consider
the perpendicular scattering geometry which is the one
commonly applied in Raman experiments. A pair (a, b )
will further be called an optical geometry pair (OGP). It
is useful to choose the OGP in such a way that the expres-
sions of the scattered intensities as a function of the IP
[Eqs. (7)] Rrc Rs S1111plc Rs posslblc, Rlld still permit ollc lll
the determination of the highest number of IP's in as few
measurements as possible. Finally, the different intensity
measurements must be performed in the same experimen-
tal conditions in order to obtain the same experimental ef-
ficiency factor k [Eq. (1)]. This factor is influenced by the
orientation of the sample, the condition of the crystal sur-
faces, the position of the laser beam, and so on. Three
OGP sets were selected on the basis of the criteria given
above (Table XI and Fig. 2). The OGP sets are further di-
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TABI.E XI. Exphcit expressions of the Raman intensities I ~ as a function of the Raman IP s for each of the practical OGP s
discussed in Sec. III8. The right part of the taMe lists the error orders of the angular dependence of these intensities (see Sec. IIIE)
for each symmetry Ii1 of the orientating operator P. Each set of OCrP is divided in several subsets which are often measured together. .
in the experiments.

a@man intensity expression
Angular error order

I Cl C2[100] C2[011] D2[100] Dn [011] C3 D3 C4 D4 T

set 1.2

set 1.3

set 1.4

I „=83
I, =ay
Iy ——ag

J3, 3
= v~

Iy y8 = 2(81 + 02+ 2ttt)
Iy, yy —

2 (81 + q2 2ttt)
I~,yy 2(82 + 83 2tl)
l~, y~ —

2 (82 + 83 + 2tl )
Icy, y

=
g (i&2 + 83 + 2t/3)

Ivy, y
= nl(V2 + 83 —2tts)

Imy, z =
2 (81 + Bn + 2t3)

Ivy, z =
2 (81 + 82 —2t3)

I*v,y~ =
4 (tl2 + 81 + 82 + 83) +

Ivy, yy = —,
'

(tI2 + 81 + 82 + 83) +
I*y,y~ = 4(t12 + 81 + 82+ 83) +
~*y,yy = 4(q"-+ Bt + 82+ 83) +1

2 (tt + t2 + ts + tt2 + ttt + VS)

2( tl t2 + t3 tt2 &1 + tts)
2~(tt t2 t3 —t(2 + &1 —&8)

2(—tl + t2 —t3 + u2 —yt —ys)

2
2
2
2

1
1
2
2

set 2.3

set 3.3

set 3.4

! I„, =83
Iy, ex =

2 {81+ 83 + 2t2)
I„, — = —,'(81+ 83 —2t2)
I, —.= 21(qt+ 82 —2tts)
I*,&~ =

2 (Vl + 82 + 2tt3)

Ivy, x = 2(gt + 83 + 2&3)—1

I y,
=

2 (tlt + 83 —2ll3)
I~y ~ = g(81 + 82 + 2t3)
Ivy, 8 =

2 (81 + 82 2t3)

Ivy, xx 4 (gl + 81 + 82 + 83) + 2 (tl + t2 + t3 + ttt + tl3"+ tts)
Ivy, xy =

4 (tII + Bt + 82 + 83) + 2( tt t2 + t3 ttt tt3 + tt3)
I~y ~~ =

4 {gl + 81 + 82 + 83) + 2 {—tl + t2 't3 —ttl—+ 53 —tt3)
I*2,*- = —,(tlt + 81 + 82 + 83) + 2 (t1 —t2 —t3 + ttt —tt3 —tt3)

I~,y
= &3

I =82
Iyy ~: 2(q3 + 81 2tt2)

Iyy, y: 2(i/2 + 81 2ttt)

Ig, y~ 2 (82 + 83 +, 2tl )
I, yy n2(82 + 83 2tl)
Iyz, yy = 4(q2 + $3) + 2&1 + 81 &1 y2

Iyy, y~ =
4 (q2 + V3) —

2 rt

I*(yy), ~ = 4(g3 + 81) + 2(82+ V2t3 —tt2 —V 2tt4)

Iy(yy) ~ =
4 (((3 + 81) + 2 (82 —v 2t3 —tt2 + 48tt4)

Ix(yy), y 4 (g2 + 81) + 2 (83 V 2t2 vt + V 288)

I;(„-,),„=4(&&+ 81)+ 2(»+ ~~t2 —vt —~»3)
l I*(,-)y = 3(q2+V3)+ -4'(82+83 —rt)+ 2{tt+ys)

+ 4 (t42 —tt3 —Q4)

I I2(yy)yn = 3(92 + V3)+ 4{82+83 rt)+ 2(tt —&3)

+ —4'-(—tt2 + tt3 + y4)

! I*(yy).yy =
3 (&2 + &3) + 4 (82 + 83 + "1)+ 2 (81 —tt —tt1 —tt2)

+ "4' (—tl2 + tl3 —V4 + yB) + 2 (—'t2 + t3)W2

' I*(yy) yy s (&2 + t13) + 4 (82 +» + r t) + 2 (81 —t 1 —&1 —tt2)

+ 1" (tt2 —tt3+ tt4 —tts)+ 2 (t2 —t3)
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FIG. 2. Schematic representation of the optical geometries
for OGP sets 1, 2, and 3. The laboratory and crystal reference
frames are denoted by (X, F, Z) and (x,y, z), respectively. The
scattered light is in each case collected along X. The crystal
faces are {100) planes except in OGP set 3 where there is an ad-
ditional face along a {110)plane.

vided into subsets which are often measured together in

the experiments. The pairs (a;,b;) within a set can be
realized without rotating the sample. For this reason the
same factor k will occur in experiments belonging to the
same set, if all other experimental conditions are kept con-
stant.

In Table XI the experimentally measured intensities
I p are given as a function of the IP. The notation intro-
duced for the rotation axes (Sec. II A) is also employed for
the polarization directions a and P, which are expressed in
the x, y, and z axes fixed to the principal (100) crystal
directions. For example, a=xy means a~~[110], while
a=x(yz) stands for a polarization vector a in the (011)
plane at 45' between [100) and [011].

From the Raman intensities measured in one or even
several OGP sets it is not possible to determine all of the
IP's of a dynamical mode. Only part of the IP's occurs in
each set of intensity equations (Table XI). Moreover,
some of the IP's cannot be solved from these equations.
In Table XII the inverse expressions are given for the IP's

TABLE XII. Raman IP's which can be solved from the expressions in Table XI for each set of
OGP's separately, and without taking into account the relations between the IP's which result from the

symmetry I ~ of the orientating operator F. Also included are some simple IP combinations which are
useful in a BT analysis using several OGP sets (Sec. III 8).

optical
geometry IP expression

set 1

a1 =I„
a2 = I
as ——I y

&& = g~(I«y» —I», y»)
's = 2(I*y,- - I*y,«)

1

SB ——
2 xy, y

—xy, y

'2+ &s =
2 (I*y,y

—I y, yy
—I s, y + I*~,y-)

set 2
as ——I y

'(I„, —I„)-
53 2 ~ ~g g Iig

+5 aQ Q + Q
+51 —2(I y I y y I»y, zz+I y y)

a2 = Iz, »
as ——I „
51 2 (I» y» Iz y«)

84 =
2 (Iz(y»)» Iz(yy) «)

z (I(y)y I(y)y)
&s t'4 + V 2'Us = ~2(I«(y»), y» I«(y«), y«)



and for relatively simple linear combinations of the IP*s,
which can be calculated from experiments in each OGP
set separately. These inverse expressions were solved from
the equations in Table XI for a general symmetry Ei. For
a specific symmetry Ei the IP's must follow at least the
minimum BT for t e defec~ symmet~ O, =C, (see Sec.
IIB). The equations of the Raman intensities I~ ~ (Table
XI) can be simplified using the relations included in this
minimum BT (Sec. IID 2) for the symmetry E&. As a re-
sult a higher percentage of the often less numerous in-
dependent IP's can be determined. For example, for
Ei ——T and OGP set 3 the three independent parameters q,
r, and s can all be determined (BT no. 60 and equations in
Table XI). The number of available independent IP's is
listed in Table XIII(a) and compared with the maximum
number of independent IP's for each of the symmetries

In favorable experimental circumstances it is possible to
combine the measurements in different OGP sets in order
to determine an even large number of IP's. Even if the
symmetry of E is not. taken into account in order to sim-
plify the expressions for I~ p, the combination of the
three OGP sets yields 16 IP's out of the full set of 21 IP's.
Such a combined determination is possible if one can ob-
tain identical experimental conditions for different orien-
tations of the crystal, and as a result the same k factor
occurs. In other cases, it is possible to determine the ratio
between the k factors because the same polarization OGP
occurs in the different sets. For example, I„,can be mea-
sured in each of the three sets. All of the measurements
must, however, relate to the same population distribution
of the defect over its possible orientations.

C. Behavior-type analysis auth a limited number
of Ips

When only part of the IP can be determined from the
experiment, either from measurements in a single OGP set
or by combined measurements in several sets, it is possible
to check only part of the relations which define the BT
[Eqs. (18), Table VII]. As a result it will sometimes not be
possible to distinguish between different BT's for a given
E, , and in general fewer representative modes can be dis-
tinguished. For each symmetry I'l me have determined
the representative modes %'hich cannot be distinguished on
the basis of this limited BT analysis: They are given be-
tween parentheses in Table XIII(b). Each of the OGP sets
is considered, as well as useful combinations of several
sets. In general the number of modes which can be dis-
tinguished, N~;, [see Table XIII(b)], is lower than 15, the
maximum value fol a BT ailalysis, except foi ail alialysls
of measurements in the three OGP sets, taking
Ei ——C2[011]. The latter, however, is a quite difficult ex-
periment.

As mentioned before in Sec. II D2 only one of the dif-
ferent symmetry groups, Ei, which can be transformed
into each other by a rotation R„CO, has been considered
in our calculations. The BT resulting from a rotated sym-

metry Ei of the orientating operator E can be obtained
from the BT before rotation by a permutation of the IP.
If a full set of 21 IP*s is available the representative modes

which can or cannot be distinguished from one another
are the same for different rotated groups Ei. However,
this is not true when only part of the IP can be deter-
mined, as is often the case in experiments employing one
or several of the OGP sets. In this case the equations in
Tab1c XI must bc consldclcd togcthcr %1th the sultablc
permutations of the IP in the BT (Table VII) in order to
obtain the modified Table XIII(b). The orientations of the
gl oups EI Which %vere dlscusscd throughout this paper
and which are listed in Table XIII were chosen because
they offer the best opportunities for applying the BT
analysis in combination with the chosen OGP.

It is often very fruitful to combine two or more experi-
ments in which different symmetries Ei of the orientating
operator E and, eventually, different OGP sets, are em-
ployed. In this case the population numbers N„raedif-
ferent, and different sets of IP's result. However, for each
of the symmetries Ei the possible BT and the correspond-
ing posslblc rcpl cscntatlvc modes can bc determined
(Tables VIII and VII). Only those modes are selected
which are compatible with the results of all of the experi-
ments with different Ei. For example, from the BT
analysis on the basis of an experiment with Ei ——D2[011]
and an OGP set 1 only ten sets of representative modes
can be distinguished, i.e., Xd;, ——10 [Table XIII(b)]. For
E~ ——T and set 3, one finds Nd;, ——7. If one combines the
results of the two experiments, up to 13 sets of modes can
be distinguished, compared to the maximum of 15 sets for
a BT analysis with a full set of 21 IP values. Moreover,
this combined experiment is relatively easy to perform.
One can easily derive the effect of similar combinations
on the basis of Table XIII(b).

A sultablc EI and a sultablc OGP sct CRQ bc chosen on
the basis of the results in Table XIII(b). For example, if
one wants to decide bet@veen the modes C3,E, D3.E, C4..8,
and T:T, which possess the mode numbers 13, 15, 17, and
25 (see Table VIII), respectively, an experiment with
Ei ——D2[011] in OGP set 1 is sufficient. However, to dis-
tinguish Ci from C2[110]:8and C3[111]:Ewith numbers
1, 5, and 13, respectively, is not possible with a single I'I
and a single OGP set: The combination of the BT
analysis for Ei ——Dz[011] with set 1 and Ei Twith set 3, ——
as described in the last paragraph, happens to be a favor-
able choice.

D. Calculation of the Raman-tensor elements

If for a given defect the representative modes have been
determined or if the choice has been narrowed down it
may be worthwhile to attempt to solve Eqs. (9) in order to
calculate the relative values of the Raman tensors and of
the population numbers. The number of independent IP's
can be derived from Table VII, and the number of in-
dependent population numbers are found from the sets
S„=EiR„Oi (see Sec. IIC) and can be obtained from
Tables IV(a) and IV(b). The Raman tensors for the modes
corresponding to R glvcn I'cpfcscntRtlvc mode alc explicit-
ly given in Table V. Equations (9) or the explicit equa-
tions in Table III are simplified by these expressions of the
population numbers and the Raman tensors. If the num-
ber of independent IP's determined in the experiment is



TABLE XIII. (a) Number of independent Raman IP's pIp which can be determined from measurements in one set of OGP'8 or

from a combined experiment in severa1 OGP sets, for each symmetry I'
~ of the orientating operator F. ~en only one oI' two IP's are

not available these are given between parentheses. The cases where the full set of IP s is available are denoted in italic. (b) The sets of
representative Inodcs (Table VI) %'hich cannot bc distinguished fronl cac1l other on tllc basis of thc Raman mcasUremcnts of a single
dynamical IDodc RI'c given foI' any sct of OGP 8 or a conlbination of several of thcID, Rnd fox' Rny symmetry E~ Gf thc Orientating

operator P. The maximum number of modes which can be distinguished, Nd;„ is also listed.
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(1 4) (2) (3 10 ll) (6) (6 9 16 19 20) (7 18 21 22) (8) (12 14) (13) (16) (17) (23 24) (26)
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] and D2 [oil] are both included.

higher than the number of unknowns occurring in the
CqURtiOQS lt 18 POSS1MC tO dCtCITIQC Pmt OX' RH Of tI1CXD.

Several of the 25 representative modes ]'Kqs. (19a} and
(19c}t which could not be distinguished on the basis of a
BT analysis call eventually bc ldcntlfllcd bp tllls procedure.

E. Experimental errors related to the orientation
of the crystal

Thc main systematic clmrs whicll occllt' in tile Raman
Intensity measurements result from deviation of the crys-
tR1 Or1CQtRt1OQ %1th 1CSPCCt tO thC P01RflZRt1OQ dlrCCt1OQS.



In most experimental setups it is, given sufficient care, rel-
atively easy to obtain accurate polarization directions. We
have inspected the errors in the Raman measurements M
which result from rotations of the sample around the x, y,
and z axes, over small angles pi, pz, and pI, respectively.
For IIlaily of tllc polarlzatloll gcoIIictr1cs aIld syIDIIlct11cs
Iii the angle-dependent intensity errors are of first order,
i.e., M-P;, but in more favorable cases they are of
second order, M-P; or P; PJ', this is indicated in Table
XI.

In Table XIV we have listed the leading terms of those
Raman intensities which yield first-order angular errors

for the symmetry FI Tof——the orientating operator I'.
When the defects are equally distributed over the possible
orientations, the relations in Table XIV permit one to test
and eventually to correct the orientation of the crystal (see
Fig. 2).

When a sustained external field, e.g., an electric or uni-
axial stress field is applied to a crystal in which an aniso-
tropic defect is continually reorientating either through
thermal activation or by a tunneling process, changes in
the population numbers N„may be induced. For such
cases the present theory is directly applicable. However, if
the center is static one may envisage the possibihty that
the frequency of the dynamical mode under consideration
is changed with a different amount for different orienta-
tions of the defmt. If so, the Raman scattering intensity
can be separately measured in different peaks in the Ra-
man spectrum. With minor changes the method presented
in this paper can be applied to analyze these types of ex-

TABLE XIV. Explicit expressions of the Raman intensities I I3, vrhich possess a first-order angular
dependence (Sec. III E and Table XI), without preferential orientation of the defect, F~ ——T. These ex-
pressions can be applied to monitor and correct the orientation of the crystal.

set 1.2

set 1.4

set 2.2

set 2.4

Iy, a~ = 2(a+ q) (2a + I' q)pi
Iy, ys = ~2(a + q) + (2a + P q)pi

Ivy, il =
2 (a + q) + (2a + Iq)'ps

I~@ y 2 (a + q) (2a + I q}ps
= -'(3 +q}--'(2 +

I*.a- = 4(3a+q)+ 2(2a+& —q)(»+»)
I~y y~ (3a + q) 2 (2a + I q)(pi + ps)I.-„,„.— = -', (3.+q)+ -', (2. + -q)(pi- p.)
I =2(a+ q)

——(2a+ I —q)P2
I...= ,'(.+ q)+ (2—a+. q)P, —
I „=2 (a + q} —(2a + I —q) ps
I~y ~ 2 (a + q) + (2a + r' q)ps

I „.= -', (3a+ q) + -I, (2a+ I —q)(p2 —ps)
I~y ~s = —,

' (3a + q) ——,
' {2a+ I —q)(p2 + ps)

I~@~~ (3a + q) + s (2a + I q)(p2 + ps)I „, = —,'(3a-+ —q) —si(2a+ I —q)(p2 —ps)

IIIa ~ = ~2(a + q) —(2a + I' —q)pi
Iya a 2(a + q) + (28+ I' q)pi

Ix(IIa), y
= 4(3a+ q) + 2(I' q)PI

I („-)„=~I(3a+ -q)+ 21(I —q)pi+
I*(a=), = 4(»+q) —2(& —q)»+
I=(a.),- = 4(»+ q) —-2(~ —q)pi—

2 ap2+ 2 (a+ I' —q)ps

2 ap2 —,{a+I—q)ps

2 (a+ ~ q)p2 —,'aps—
2 (a+ I' —q)p2+ 2 aps

set 3.4
I („;)„=4 (2a —I + q) + api + 4 (r —q)(p2 + ps)

I;(,-.),„.= —,'(» —I + q) + api —4'(r —q)(ps + ps)
I („),„- = 4(4a+ I +-q) —

4 {2a+r + q)(p2+ ps)

Ia(„)„-= —,'(4a+ I. + q-) +,'(»+ I + q)(ps + ps)
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periments. We will assume that even when the external
field is applied on the crystal the population numbers X„
of the defect in its possible orientations are equal, Xn =—N.
Furthermore, we will assume that the Raman tensor of
the dynamical mode is not perceptibly influenced by the
external field. The Raman tensors T'"' for the different
orientations related by inversion symmetry, un and iu„, al-
ways yield the same Raman scattering intensities. An
external field lacking inversion symmetry can possibly
yield different frequencies for these two orientations and
result in two peaks of equal intensity in the Raman spec-
trum. Otherwise a double intensity is found in a single
Raman peak for these two orientations. By taking this
into account, the symmetry properties of the dynamical
mode and of the external field can be considered in the cu-
bic point group 0 instead of O~ in a similar way as dis-
cussed for the preferential orientation experiments (see
Sec. II A).

If we now consider the subgroup Fi C 0 as the represen-
tative symmetry group of the external field, the orienta-
tions of the set V„corresponding to the right coset F, of
the subgroup F, [see Sec. II B, Eqs. (10)] are found to pos-
sess the same frequency of the dynamical mode. The Ra-
man scattering intensity is given for each set V„separately
by

I(r)
u„EV

in which I„ is given by Eq. (2). The intensity expressions
[Eqs. (4) and (7)] split up in analogous equations for the
intensities I",in terms of the partial Raman intensity pa-
rameters Pz", 'z ~ given by Eq. (11). One can define short
notations for these partial IP's analogous to those given in
Eqs. (8): q "', r "', s ', r "', u "', and u "'. Explicit expres-
sions for these partial IP's can be derived from Table III
by setting

1~ Un&Vs
(20)0, u„ g V„ .

It is possible to apply all of the results given in Secs. II
and III for the IP's of each Raman peak separately. The
BT defined in Table VIII can be strongly simplified by
Eqs. (20). For each of the sets V„a set of equations analo-
gous to Eqs. (9) must be considered, but they all depend
on at most five unknowns: the relative values of the Ra-
man tensor elements T~" common to all the possible
directions of the defect. As a result solving these equa-
tions is much easier for these types of experiments than
for the experiments with preferential orientation discussed
in Secs. II and III.

V. CONCLUDING REMARKS

In this paper we have systematically investigated the in-
tensities of polarized Raman scattering from point defects
in a crystal with a cubic lattice. The partial or complete
preferential orientation of the defects allows one to deter-
mine to a large extent the symmetry properties of the de-
fect, the nature of the dynamical modes, and sometimes
the elements of the Raman tensors. The accompanying
tables are helpful in the practical application of this
method. It is relatively easy to extend the method to crys-
tals with a different lattice symmetry. It is also possible

to extend the method to resonant scattering by taking into
account the antisymmetric nature of the Raman tensor.

We have applied the theory to the study of interstitial
hydrogen atom centers in the cubic alkali-halide crystals.
The interstitial hydrogen atoms are perturbed by one or
two substitutional halogen-ion impurities, heavier than the
host halogen ions. Polarized optical bleaching was em-
ployed for a partial preferential orientation of the defects.
The results are presented in an accompanying paper.
They provide a particularly comprehensive example of the
practical application of the behavior-type analysis dis-
cussed in this paper.
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APPENDIX A: PROOF OF EQ. (10b) IN SEC. II B

By definition two rotations R& and Rq belong to the
same right coset F„(r=1, . . . , cr) of F& C 0, the symmetry
group of the orientating operator F, only if there exists an
operator R; EFi such that

R;R~vz ——Rqv] .

Taking into account the correspondence between the
orientations v„and the rotations R„:

Un=Rnu] ~

one obtains

(Al)

RIvp =Uq

The rotation of u~ by R; is equivalent to a rotation of F by
R; CFi. Because this is a symmetry operation of the
orientating operator, F is left invariant. Therefore, the
population numbers in the two orientations are equal, as
stated in Eq. (10b):

Xp ——1Vq .

APPENDIX 8: PROOFS OF THE RULES GIVEN
IN EQS. (12) IN SEC. II B

In the following the transformation of a function f( Ti )
of the Raman-tensor elements TJ is defined by

Rpf(Ti)=f((RpTRp)J) .

If for a general Raman tensor T"' and for R~ EF, :

(81)

then this relation also applied to each of the rotated Ra-
man tensors T(n):

(B2)

R;R~ ——Rq .

Applying both sides of this equation to the arbitrary ini-
tial orientation u i, one finds
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because they are also covered by the general tensor T"'.
From the definition in Eq. 11(b) one derives

D(r) ~D(r)

and for the total IP:

R EFI R GFI

Taking R„=R~ 'R», then R„GF, and

(&) (1) (&)
P)j) j g Rj)R)) ( T )j T) j )

u„6 v&

(83)

as was quoted in (12b).
Finally the proof leading from Eqs. (12c) to Eq. (12d) is

a special case of the proof given above. Taking Eq. (84)
with I(."=0 as the original condition, Eqs. (12c) and (12d)
can be proven with the same procedure which leads to
conclusion Eq. (85).

Combining Eqs. (82) and (83)

P; =E(1) Tst Ts't' +Psts't'(n) (n) (&)

u„E v&

The above equation is equivalent with

(84)

APPENDIX C: PROOF OF EQS. (13) IN SEC. II C

Two rotations Rz and R» belong to the same left coset
0„(r=1, . . . , 0. ') of the defect symmetry group 0, if and
only if there exists an operator R; E0] such that

RpR;=Rq .

RP EF1 Rp CFl

If this is valid for an arbitrary symmetrical tensor T'", it
also applies to each of the rotated tensors T'"':

If both sides of this equation are applied to the arbitrary
initial orientation v 1 one finds

RpR) U) RqU] (Cl)

The initial orientation U& is, however, invariant under the
operators of the symmetry group 01 of the defect

R 6F)P
R FFI

R eF
P

R EFI

RgU) =U]

Combining Eqs. (Cl) and (C2) yields

(C2)

If R„FF„, then the summation over Rz turns into a sum-

mation over Rq ——R~R„with Rq EFr:

6F Rq 6F„

or equivalently, for each coset +,:

RpU] =RqU)

and by the correspondence between the rotations R„and
the orientations v„[Eqs. (Al)] it is found that

Uq =Up

as was stated in Eq. (13b).

APPENDIX D: INTERNAL SYMMETRY OF THE EQS. (9) (SEE SEC. II D 1)

The set of variables in Eqs. (9) (Sec. II A) is given by

X=(T11,T22) T33) T23)T13)T12)Mlp ~ ~ ~ p M6)M lp p M 6)M 1) p M 6)M 1 ) p M6 ), (Dl)

in which we employ the linear combinations M, M ', M ", and M '" of the population numbers N„[see Table III(b)].
Equations (9) are explicitly given in Table III(a). The following three permutations Pj of the set of variables (Dl) leave
Eqs. (9) [Table III(a)] invariant:

12X ( T22) Tl1) T33) T13)T23) T12)M2)M1 M6 )M5 )M4 )M3 )M2))p M3 )

P13X=(T33)T22) Tll ) T12) T13)T23)M4M6)M$)M1)M2)M3)M 4p p M 3 ),
P23X=(T11)T33)T22)T23)T12)T13)M3)MS)M1)M6)M2)M4)M 3, . . . p M 4 )

in which the sets of M ', M ",M "'
permute in the same way as the set of M . The indices of the permutations P j in-

dicate the permutations of the indices of the Raman-tensor elements T~.
Taking into account, on the one hand, the relations between the population numbers M which result from the defect

symmetry 01 (Sec. II C), and, on the other hand, the specific expressions of the Raman tensors (Table V), it is found
that, as a result of this permutation symmetry, the modes D2[100]:Bl,B2, and B3 cannot be distinguished from each
other: One cannot make a distinction between them on the basis of Raman measurements only.
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