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The intensity of polarized-light Raman scattering from a localized vibration of a point defect in a
crystal is a discrete average over all the possible orientations of the defect. Much of the information
contained in the Raman tensor of the vibrational mode is hidden by this discrete averaging. Partial
or complete preferential reorientation or destruction of the defect, achieved by a so-called orientat-
ing operator F, alters this average and permits in principle a determination of the symmetry of the
defect, the nature of the modes, and the relative values of the elements of the Raman tensor. A dis-
cussion based on group theory is given for all of the possible symmetries of a point defect in a cubic
lattice, as well as for all the possible symmetries of the orientating operator F. The concept of
behavior type of the Raman intensity parameters is introduced, which plays a central role in the ap-
plication of the theory because it permits an efficient analysis of the data. The results are summa-
rized in a series of tables. These are also helpful in choosing a suitable symmetry of the preferential
orientating operator F (often from a polarized-light bleaching) and the suitable Raman polarization
geometries. Similar methods can be applied to other host symmetries, and also to the study of the
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influence of an applied external field, e.g., an electric or stress field.

I. INTRODUCTION

Raman scattering has been widely used to study the
properties of dynamical modes of point defects in crystals.
The frequency shift of the scattered light yields the fre-
quency of the dynamical mode. The Raman intensity de-
pends on the polarization of the incident and scattered
light"? and permits, as will be discussed in this paper,
determination to a large extent of the symmetry of the de-
fect and the irreducible representation’® to which the
dynamical mode belongs.

The intensity of the Raman scattering from a localized
dynamical mode of a point defect in a crystal is deter-
mined by the second-rank Raman tensor 7T, the polariza-
tion vectors of the incident and scattered radiation, @ and
B', respectively, and the intensity I, of the exciting light
beam. The measured intensity I is further limited by the
instrumental efficiency k:

I=kIy(Z'Tb)? 0<k<l. (1)

The superscript ¢ means “transpose.” The dynamical
mode is usually a localized vibration of the defect.

The observed intensity of a Raman line is the sum of
the intensities from all the scattering defects. For a mole-
cule which can freely take any orientation, e.g., in the
gaseous state, the observed Raman scattering intensity is a
continuous spatial average over all orientations in space.
Thus only two independent parameters, namely, the mean
polarizability @ and the anisotropy ¥ can be obtained from
Raman spectra. a and ¥ are composed of the elements of
the Raman tensor."? A defect in a crystal can also occu-
py all its equivalent orientations which depend on the
symmetry of both the host crystal and the defect. The re-
sulting discrete space average in the crystal also obscures
much of the information contained in the Raman tensor.
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If the defects are equally distributed over all of their pos-
sible orientations in a crystal with cubic structure, three
independent parameters (Sec. II B) can be obtained instead
of the two parameters a and ¥ for scattering of freely ro-
tating or of randomly orientated molecules.

The Raman scattering intensity of an isolated defect in
a crystal is restricted by the symmetry and orientation of
the defect and the nature of the dynamical mode. In this
paper we will treat defects in crystals with the crystallo-
graphic point group Op. The results are immediately
applicable to the groups O and T, and the treatment can
be extended to other point groups. We will consider the
defects to be initially randomly distributed over their pos-
sible orientations. A treatment is then applied which pre-
ferentially alters the populations of the different orienta-
tions. The most common of such treatments is a polar-
ized optical bleaching in an absorption band of an aniso-
tropic defect, but other methods can be applied. An orien-
tating operator 1?, acting on the populations, is used to
describe this preferential orientation treatment. The sym-
metry of F is given by F, the largest subgroup of the cu-
bic point group O, which leaves the orientating operator
Finvariant.

The consequences of such a preferential orientation of
the defects on the Raman scattering intensities will be
theoretically investigated in Sec. IIB. Every possible sym-
metry of the orientating operator F and of the defect,
compatible with a cubic crystal structure, will be con-
sidered. The application of the theory to actual experi-
ments will be discussed in Sec. III. The results are sum-
marized in a series of tables which are useful in the
analysis of experimental data. Final remarks about and a
possible generalization of the present method will be given
in Sec. IV.

We will adopt the following sets of reference axes in
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this paper. The frame (x,y,z) is fixed to the principal
crystal directions X||[100], ¥||[010], and Z]||[001], while
the frame (x',y’,z') is the local reference system for a de-
fect with a given symmetry.

II. THEORY

A. Raman intensities for a general point defect
in a cubic lattice

Consider a general defect in a crystal with a cubic-
lattice structure. The defect has a certain orientation with
respect to the surrounding crystal lattice. Performing all
of the operations of the point group (Ref. 3) O, on the de-
fect, we find all its 48 possible orientations. We denote
the nth orientation by v,, the corresponding second-order
Raman tensor by T, and the set of orientations by V.
By applying the rotations ﬁ,, €0, with rotation matrices
R, to an arbitrary original orientation v, of the defect, a
homomorphic correspondence from the point group gh to
the set ¥ is built up, in which the identity operator E cor-
responds to the orientation v, with Raman tensor T!) (see
Table I and Fig. 1).

The rotations R, CO are denoted by the symbols CZ
(Table I) for clockwise rotation over 27m/m around an axis
indicated by . This axis is described in the (x,,2) coordi-
nate system, e.g., a=xjy stands for the [110] direction,
while a=xyz describes the [1 IT] crystalline direction.

A transformation operator R, EO,, acting on the crys-
tal is equivalent to the inverse R ! with rotation matrix
R}, acting on the polarization vectors of the exciting and
scattered light, if we consider the Raman scattering inten-
sities:
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FIG. 1. Schematic representation of all possible orientations
of a general point defect with symmetry O, =C in a rocksalt
structure, indicated by a vector. Only 24 of the 48 possible
orientations are given in the figure; the others are at the back
side. The numbers which indicate the orientations correspond to
the numbers in Table I. The bars over the numbers in the figure
mean that the corresponding rotations are improper ones.
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I, =kl [(REZYTV(RED)]?

=kI,(Z'T™b)?, (2a)
in which
I'™=R,TVR} . (2b)

As a trivial result one obtains that the Raman tensor is in-
variant under the inversion operator z/: which is equivalent
to the identity E in calculating the Raman intensities.
Thus from now on we shall reduce the size of the point
groups by this equivalence and treat the orientations as be-
ing the same if they transform into each other under in-
version. The homomorphic correspondence becomes that
between the point group O and the set ¥V which has 24
possible orientations for a general defect. Because the in-
version transformation has no effect on the Raman tensor,
the subgroups of O, reduce to the subgroups of O. For
example, Cs,, D3, and D3, reduce to D;, and we call the
subgroup D3 CO and its modes the representative of the
subgroups Cj3,,D3,D33C O, and their modes. This results
in 11 subgroups of O and 40 modes as being the represen-
tatives of the 33 subgroups of O, and the 124 modes (see
Table II). From a subgroup GCO, but not the cubic
point group itself or the tetrahedral point group
(Gs£0,T), one can obtain equivalent subgroups when the
rotations R €0 are applied. For example, D,[100] can be
rotated to D4[010] and D4[001]. For the defect symme-
try this rotation simply amounts to a different choice of
the initial orientation v; and has no further consequences.
For the representative symmetry F; C O of the orientating
operator F only one of these subgroups will be considered
and listed in the tables. The results are in essence the
same for the rotated subgroups, and when needed the rules
will be given in order to adapt our results (see Sec. II D 2).

The observed Raman intensity / is the sum of the inten-
sities I, of the set of scattering orientations weighed by
their population numbers N,,:

2
I=3Y N,I,, (3)
n=1
with I, given in (2a).
From Egs. (2) and (3) one can write the observed Ra-
man intensity as

24 _
I=kl, 3, N,(3'T™b)?
n=1
3

33
=ho z 2 2 a;bja; b; Py ;o (4)

with
Py = 2 N TTH ®)

There are 81 elements Pyj;j+, but because I is a symme-
trical tensor, only 21 different Py ;. are left. We call
Pyj;:j the Raman intensity parameter which we will
denote from here on by IP. The 21 IP’s contain all the in-
formation concerning the Raman tensor and the popula-
tions N, which can be derived from the Raman scattering
experiments.
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TABLE 1. Twenty-four Raman tensors are given corresponding to the 24 possible orientations of a
defect with a general Raman tensor T'V'=T in an arbitrary original orientation v;. The tensors are clas-
sified according to the elements of the cubic group which is given as a direct product
O =D,[100]® D3[111]. The different orientations are given an identifying number for reference. Ap-
plying the rotation matrix on TV [Eq. (2b)] yields the corresponding tensor 7. The defects are rotat-
ed with respect to the fixed reference system (x,y, z) (see Sec. IL A).

D [111] C5Ds CzDs CED;
1 1 1 1
D2 [100] 1 C = ( ) 2 Ci= -1 3 Ci=| -1 4 Ci= 1
1 -1 -1
Ty Tz Tis Ty Tiz -Tis Ty -Ti2 -Tis Ty -Tiz Tis
Toy T2 Toa Tor  Tao -Tos ~Toy Tae Tos -To1 Toe -Tos
Ta1  Tso Tsa -Ts1 -T2 Tas -Tsy  Tas Tas Tay -T32 Tss
1 -1 1
D, C5¥ 5 5= ( ) 8 C3¥= ( ) 7 o:=(1 ) 8 ci=(-1 )
-1 -1 1 1
Te2 To1 Tos Toz T2 -Tas Tog -To1 -Tas Te2 -To1 Tos
Tie T Tis Tiz T -Tis ~Tig Tix Tis -Ti2 Ty -Tis
Tas Ta1 Tas -Tag -T31 T3 Taz Tai Tas Tsz -T31  Tss
1 -1 1
D C¥* 9 ( 1) ( 1) 11 ¥ = ( 1) 12 G = ( -1)
-1 1
Ty Tis T12 Ty Tz -Tie Ty =Tz -Tie Ty -Tiz Tie
Tay Tss Tae Tar Tas -Tae -T3y Tas Tae -Ts1 Taz -T2
To1 Toz Tae ~Toy -Tos Toe Toy Toz Toe To1 -Toz Too
-1 1 -1
D, C%* 13 c¢=~—~(- ) 4=( ) 15 02-—:(1) 16 cg==(-1)
1
Tas Ts2 Ta Taz Tsz -Ta Tag -T32 -Ta Tsz -Tz2 Tax
Tes T2 Toi Toz Taee -Toi -Tos Tee T2 -Tes Tee -T2
Tis T2 Ty -Tis -T2 Ty -Tis Ti2 Tu Tz -T2 Tu
-1 1
D C5¥* 17 C3¥ = ( ) 18 3% —( ) 19 @“*:(-1 ) 20 c‘?‘:( )
-1
Taz Ta Taz Taz Ta1 -T32 Tas -Ta1 -Ts2 Tas -Ta1 T32
T3 T Tie Tya T -Tie -Tis T Tie -Tizs Tt -Tie
Toz Ta1 Tao -Tog -Toy T22 -Toz  To1  Top Toz -Toy  Top
1
D, C5%* 21 O3 = ( 1) 22 3% —( 1) 23 C3v* =( _1) 24 c;fw=( 1)
-1
T2z Toz To Tz T2z -Tax Toz -T2z -Ta1 Tee -Tez Tox
Ts2 Tsz Tax T3z Tas -Ta1 -Taz Tas Tax -Tse Taz -Tax
T2 Tiz Tu -Tig -Tis Tu -Tiz Tia Tn Ty -Tiz Tu

TABLE II. Subgroups F { C O, which are considered for the orientating operator F are classified into
sets indicated by their 11 representative symmetries F; C O, relevant in Raman scattering. Also listed
are o, the number of independent population numbers N,, and pp, the number of independent Raman

IP’s. .
Fy | O fyp l F’l
C: | 24 21| Cy, S2
Cy[100] | 12 13 | C3[100], Cy4[100], Cop,[100]
Cg[011] | 12 13 | C2[011], Cy4[011], Cay[011]
Dy[100] | 6 9 | D,[100,010,001}, C,,[100](010,001), D2; [100,010,001]
D011 | 6 9 | D»[100,011,011], C2,[100](011,011), C2,[011](100,011), D2[100,011,011]
Cal111] | 8 7 | Cs[111], Sg[111]
Dg[111] | 4 6 | D3[111](110,101,011), C3,[111](110,101,011), D34[111](110,101,011)
C4[100] | 6 7 | C4[100], S4[100], C45[100]
D;[100] | 3 8 | D4[100], Cy4,[100], D4z [100], D24[100,010,001](011,011), D24[100,011,011)(010,001)
T | 2 3| T, Ts
o | 1 3| 0, T4, On
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Every matrix R, €0 has the property that there is one
element equal to 1 or —1 and two elements equal to O in
each row and each column (see Table I), so that for each
corresponding T ™

| T | = [ R TVRDy | = | T15 | (©)

==n=

in which the rotation R,, relates (i,j) to (i', j")
Performing 21 suitable measurements one obtains from
Eq. (5) a set of linear equations-

hoE E 2 E a;1b;1a;01bj 1 Pijivje

i=1j

3
2 a; 2bj 24, 2b] 2Pt]t i’ M

3
2 ;21052107 2107 21 Pyji iy -

One can solve this set of linear equations for the IP if the
polarization vectors & and b are suitably chosen. Howev-
er, in most practical cases this is impossible, because the
choice of the polarization vectors is often limited by the
experimental setup, and because too many measurements
with a high precision would be required. This problem
will be discussed further in Secs. III B and IIIC. In most
circumstances the constant k is unknown and as a result
one can only obtain the relative IP values. For simplicity
of notation, the 21 IP values will be denoted from here on
by

q1=kI P11y, g2=kloPy, q3=kIoPy3;; ,
ri=kIoPy33, ry=kIloP1133, r3=kloPiiz ,

sy =kloPy, sy=kloP1313, s3=kloP1212 ,
t1=kIoPy13, ty=kIoP123, t3=KkIoP13;3 , (8)
uy=kIoP 133, uy=kloPp3, u3=kloPyy ,
vi=klIoPyy3, v3=kIoP333, v3=KkIoP113 ,
ve=kIoP3313, Vs=kIoPy11, v6=kIoPpy; .

These IP values, which are the experimentally determined
parameters, are the solutions of Egs. (7) and, using Eq. (5),
they are related to the population numbers and the
Raman-tensor elements:

q,=kI, 2‘, N,TTY,

n=1

q,=kl, 2 N, 78T, 9)

n=1

24
ve=kIy > N, THTY; .

n=1

The Raman tensors T are related to each other by Eq.
(2b) (explicit expressions are given in Table I) and it is a
long but straightforward calculation to determine the IP
as a function of the population numbers N, and the ele-
ments of only one Raman tensor, T'!), corresponding to
the initial orientation v; of the defect. These explicit ex-
pressions of the IP are given in Table III.
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It is easy to see from Table III(a) that the IP ¢; >0 and
s; >0, but the others can be either positive or negative.
Similar to the IP, only the relative values of the N, and
the T;; can possibly be determined in Raman experiments.

The Raman tensor, being a symmetrical second-rank
tensor, possesses only six independent elements T};. There
are 20 independent equations in (9) but up to 28 unknowns
(5 Ti; and 23 N,), taking into account that only relative
values can be determined. Thus it is, in general, impossi-
ble to solve Egs. (9) given an experimental set of IP’s. In
Sec. II B we shall see that after producing an anisotropy in
the distribution of the orientation of the defects and after
performing a sufficient number of experiments, it is in
principle possible to solve Egs. (9). But even so, because
they are cubic equations, this is rather difficult and a high
precision of the experimental data is required. Fortunate-
ly, a two-step approach to the solution of these equations
is possible, as will be discussed in Sec. II D.

However, in many cases it is already of great value to
identify the symmetry of the defect and the irreducible
representations of its modes. To reach this more modest
aim, it is in most cases not necessary to solve Egs. (9) (see
Sec. IID). As a result the analysis is feasible, since fewer
experimental data with a lower precision are sufficient
and the processing of the data is facilitated. In fact, once
the symmetry of the defect and the irreducible representa-
tion of the mode are identified by the IP analysis, the
number of independent T;; and population numbers N,, as
well as the number of the independent IP’s, are in most
cases reduced by symmetry arguments, and Egs. (9) be-
come easier to solve. In some cases it remains impossible
because not enough independent IP values are left.

B. Effect of the symmetry of the partial
preferential orientation on the Raman intensities

Initially the populations N, are all equal to each other,
i.e., the defects are randomly distributed over all the possi-
ble equivalent orientations. As mentioned above a pre-
ferential orientation treatment, described by a so-called
orientating operator ﬁ', is applied to the defects. The sym-
metry of the orientating operator F is defined by the larg-

est subgroup F; of O which leaves F invariant. The right
cosets of F; will be indicated by [see Table IV(a)]

F\,F,,...,F, .

There exists a homomorphic correspondence from the
point group O to the orientation set ¥. The corresponding
subsets of V are

ViV, Vo .

One can demonstrate (Appendix A) that after the orientat-
ing action of the operator F the populations N,, are equal
if the orientations belong to the same subset V,, i.e., if

UpsUg €V, r=12,...,0 (10a)
then

N,=N,=A4 . (10b)



BEHAVIOR-TYPE METHOD FOR POLARIZED RAMAN SPECTRA . .. 5513

TABLE III. (a) Explicit expressions of the Raman IP’s as defined in Egs. (5) and (8) as a function of
the Raman-tensor components Tj; of the dynamical mode in the original orientation v, and the parame-
ters M. The latter are linear combinations of the population numbers N, and are listed in (b).

(a)

@ = klo[(My + M3)T3 + (Ms + Mg)T3, + (My + M5)T%,]
g = kb [(Mz + Ms)T 1+ (Ml + M4)T 2 + (M3 + Me)T%s]
g = k[o[(M4 + Ms)T 1+ (M3 + M5) 2 + (M1 + Mz)Tgs}
ry = ho [(M1 + Ma)TzzT;;;; + (M2 + M )T11T33 + (M4 + M5)T11T22]
ro = ki [(Mz + M5)T72T33 -+ (M1 + M, )T11T33 + (M3 + Me)TllTQQ]
r3 = lc[o[(M4 —+ Me)ngTgs + (M3 + M5)T11T33 + (M1 + M2)T]1T22]
8 = kly [(Ml + Mg)T 3 + (M2 + Ms)T 3+ (M4 + M5)Tf2]
8 = klo[(Mz + Ms)T3; + (M + My)T5; + (Ms + Me)T,]
83 = kI()[(Mq + MG)T 3 + (Mg + Ms)T13 + (M1 + M2)T%2]
t;, = kI()[(M’l + M&)TI,QTIQ + (M'2 + M%)ngTlg + (MQ + M{;)ngTlal
to = klo[(M" + M5)T13T12 -+ (M" + Mg’)TzaTlg + (M’;{ + Mg)TQ:;T]g]
ts = &kl [(M’" + M"')T13T12 + (M”’ + M”’)T23T12 + (M’” + M"’)T23T13]
u, = IcIo[(M + M, )T11T23+(M +M')T22T13+(M2+M )T33T12]
Uy == ICIo[(M'Q’ + M’5’)T11 Tas + (M" + M' )T22T13 + (M’al + M")T33T12]
us = klj [(MT + Mg')Tung + (M'3” + M%")ngTla + (M'l" + M’z")TaaTm]
vi = kI[M|Ty2T23 + M4 T33Tos + MyT11Tis + MgTasT1s + M, T2 T12 + M§T11Tyz)
va = klo[MTs3T2s + MiTooTos + MyT33T13 + MgTyT1s + M, T11T12 + M§T22T2]
v = kI[MYTTo5 + MITs3T2s + M{T11T13+ MY T33T13 + MYT11T12 + MY T2 Tys]
vy = ho[M’leaaTga + M’5'T22T23 —+ M’{TasT;s + M'{TuT]g + M'éngT]g + Mng T12]
vs = kIo[M}'T33Ts5 + MJ/ TpyTos + M4 Ty1T13 + MY T33T1s + M{'T11 T2 + MY T2 T o]
ve = klg[MY'To2To3 + MY T33T2s + MY T33T13 + MY T11T13 + M{'T22T12 + MY T11Ti2)

(b)
M; = N;+ No+ N3+ N, | M = Ns+ Ng + N7 + Ng | M = Ny + Nyjo + N1 + Ni2
My = Nig+Niy+Nis+Nig|l Ms = Nig+Nig+Nig+Noo| Mg = Nai+ Nop+ Noz+ Noy
M, = — N3+ N3 — N, | My = Ns—Ng+ N;—Ng | My = Ng—Ny+Ny—Np
M| = Nig—Niyy+Nis—Nig| My = Nig—Nig+Nig— Ny | My = Ny — Noy+ Npg— Npg
M! = N;i—N,—N;+N, | MY = Ns;—Ng—N;+Nyg | MY = Ng—Ny—Nu+Npe
M! = Ni3—Niyy—Nis+Nig| M{ = Ny7—Nig—Nyg+No| M{ = Ny — Nog— Nog+ Npy
M’l” = N;+ N;— N3 — Ny | M’Z” = N5+ Ng — N7 — Ng l Mgl = Ng+Nm—-Nu—N12
MY = Niz+Niy—Nis—Nig| M{ = Niz+Nig—Nyg—Naog| My = Ni + Nag— Naz — Ny

From Egs. (5) and (10) one finds

sidered together with its partner fb,,, and the population
number is taken as the sum of the populations of v, and

a
Pyjij= 3N P (11a)  jp,. Therefore, it is still possible to consider only the
r=1 smaller cubic point group O. The subgroup F;CO as de-
where fined in the preceding section is a representative of the cor-
responding subgroups Fi CO, to which the orientating
qu =3 T )Tﬁ-"'}' . (11b)  operator really belongs (see Table II).

v, €V,

For a general Raman tensor TV of the defect and for

Under the influence of the orientating operator F the
number of different N, equals the number of right cosets,
o, of the subgroup F; CO; o must be a divisor of 24. This
simplifies the expressions of the IP and generally reduces
the number of independent IP’s from 21 to a smaller num-
ber.

The effect of F on orientations v, and ﬁ),, may be dif-
ferent and different populations for the two orientations
may result. Thus the inversion i cannot be omitted and
the effect of the orientating operator F should be treated
in the point group O,. Since the Raman tensor is invari-
ant under inversion, an orientation v, can always be con-

given rotation R, € O one finds [see also Eq. (6)]
R (T(l) (l) )__KT(I)T(I)

s't'

(12a)

in which the rotation relates the sets of indices (i, j,i',j’)
and (s,2,5',¢') to each other, and K= + 1 or —1. If Eq.

(12a) is determined for a rotation R,EF;, it can be
demonstrated that

ljl ’1’—KP (12b)

Furthermore, it can be shown that if for a general Ra-
man tensor

Pi(jz”j'=0 ’ (12¢)
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TABLE IV. (a) Right cosets of the 11 representative symmetries F; C O (see Table II) of the orientating operator F, using the iden-
tifying numbers of the elements of the cubic group as given in Table I. The orientations corresponding to group elements in the same
coset possess the same population numbers. The subscripts identify the different right cosets. (b) Same as (a) but for the left cosets of
the defect symmetry group O; CO. The orientations corresponding to group elements in the same coset are in fact identical and as a
trivial result possess the same population numbers. The subscripts identify the different left cosets.

(a)
Fy ] The Right Cosets of Fy
C | 1234567891011121314 1516 17 18 19 20 21 22 23 24
C2(100] | {1,3}1 {242 {5,7}s {6,8}4 {9,11}5 {10,12}¢ {13,15}; {14,16}s {17,19}¢ {18,20}10 {21,23}1; {22,24}12
Cql011] | {1,11}, {2,10}> {3,9}3 {4,12}4 {5,23}5 {6,22}¢ {7,21}; {8,24}s {13,19}¢ {14,18};0 {15,17},, {16,20},>

D,[100] | {1,2,3,4}1 {5,6,7,8}2 {9,10,11,12}5 {13,14,15,16}, {17,18,19,20}5 {21,22,23 24}¢
Dy [011] | {1,3,9,11}; {2,4,10,12}» {5,7,21,23}; {6,8,22,24}, {13,15,17,19}5 {14,16,18,20}
Cs[111] | {1,17,21}, {2,19,24}, {3,20,22}5 {4,18,23}, {5,9,13}5 {6,12,15}¢ {7,10,16}; {8,11,14}¢
Ds[111] | {1,5,9,13,17,21}; {2,6,12,15,19,24}, {3,8,11,14,20,22}5 {4,7,10,16,18,23},
C4[100] | {1,3,10,12}; {2,4,9,11}> {5,7,22,24}5 {6,8,21,23}4 {13,15,18,20}5 {14,16,17,19}¢
D4[100] | {1,2,3,4,9,10,11,12}, {5,6,7,8,21,22,23,24}, {13,14,15,16,17,18,19,20}

T | {1,2,3,4,17,18,19,20,21,22,23,24}, {5,6,7,8,9,10,11,12,13,14,15,16},

o | {1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23 24}

(b)
0; | The Left Cosets of Oy
Cy | 1234567891011 1213 141516 17 18 19 20 21 22 23 24

C2[010] | {1,4}1 {2,3}2 {5,7}5 {6,8}+ {9,10}5 {11,12}s {13,16}; {14,15}s {17,18}¢ {19,20}10 {21,23}1s {22,24}12
Ca[110] | {1,6}1 {2,5}2 {3,8}s {4,7}4 {9,24}5 {10,238} {11,22}; {12,21}5 {13,19}s {14,20},0 {15,17}1; {16,18}12

D2 [100] |

{1,2,3,4}1 {5,6,7,8}> {9,10,11,12}; {13,14,15,16}, {17,18,19,20}; {21,22,23,24}¢

D, [110] | {1,2,5,6}1 {3,4,7,8} {9,12,21,24}5 {10,11,22,23}, {13,15,17,19}5 {14,16,18,20},
Cs[111] | {1,17,21} {2,18,22}, {3,19,23}s {4,20,24}, {5,9,13}5 {6,10,14}¢ {7,11,15}7 {8,12,16}s
Ds[111] | {1,5,9,13,17,21}, {2,6,10,14,18,22}> {3,7,11,15,19,23}5 {4,8,12,16,20,24} 4
C4[001] | {1,2,7,8}1 {3,4,5,8}» {9,12,22,23}; {10,11,21,24}, {13,15,18,20}5 {14,16,17,19}¢
D4 [001] | {1,2,3,4,5,6,7,8}1 {9,10,11,12,21,22,23,24}, {13,14,15,16,17,18,19,20}

T { {1,2,3,4,17,18,19,20,21,22,23,24}, {5,6,7,8,9,10,11,12,13,14,15,16}

o)

{1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24}

then the total IP also equals zero:

Pyjr=0. (12d)

Together with Eq. (6) these rules [Egs. (12)], which are
proven in Appendix B, facilitate the calculation of the IP
expressions. Table I shows all the matrices R, €0 and
the corresponding T ™ tensors expressed in the lattice
coordinates (x,p,z); they are numbered from 1 to 24. TV
is the Raman tensor belonging to an arbitrarily chosen ini-
tial orientation of the defect.

By using Table I and the rules mentioned above one can
readily find the independent nonzero IP under a given
orientating operator F. For example, let us take C,, sym-
metry for F with a main axis [100] and two reflection
planes, (011) and (011). Its representative point group is
D, with the axes [100], [011], and [011] (See Table II).
We denote this by C,,[100](011,011) and D,[100,011,011],
or simply by C,,(011) and D,[011]. We will employ these
simplified symbols from now on. The representative sym-
metry group F;=D,[011] contains the following opera-
tors:

F1={C15 ch’ng’C%Z} .

Consider in Table I the four symmetrical tensors corre-
sponding to the four elements of F;. The transformations
of the Tj; are given by

Ci: Ty Ty, Ty3 T, Tz T

C3: Ty Ty Tyz —Tip —Ty3 T

C¥: Ty T33 Ty Ty3 Typ Ta'

C¥: Ty Ty3 Ty —Ty3 —T1p T3
It is readily verified that

Pi113=Pp1;=P31,=0,

Pi113=Pp13=P3313=0,

P23 =Py33=0,

Py =Py,

Pipn=Pus ,

Pip=P33,

P2223 =P3323 ’

and the remaining five IP’s are independent. Thus, under
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the operator F with F 1=D,[011], only nine independent
nonzero IP’s are left. Similarly one can easily verify the
statement made in Sec. I that there are only three indepen-
dent nonzero IP’s for F,=T, i.e., when the defects are
equally distributed over a" their possible equivalent orien-
tations.

The numbers of independent population numbers, o,
and of independent Raman intensity parameters IP, yp,
are given in Table II. If no additional information about
the Raman tensor is available the number of independent
elements, ur, is equal to 6. Taking into account that only
the relative values of the N,, T;;, and IP are of interest,
Eqgs. (9) reduce to a set of upp—1 equations containing
o—1+4ur—1 unknowns (Table II). As is readily verified
for all cases, too many unknowns occur and the set of
equations cannot be solved. In principle, if up> o, it is
possible to repeat these experiments with different popula-
tion distributions N, to obtain a sufficient number of in-
dependent equations, but this can hardly be performed in
a practical experiment. If y1p < o one can never solve Egs.
9).

In the following sections we will discuss how to deter-
mine the symmetry of the defect and its mode representa-
tions on the basis of an inspection of the behavior of the
IP without solving Egs. (9), and we introduce the concept
of behavior type. Once this is achieved the number of in-
dependent equations and the number of unknowns in Egs.
(9) will be further reduced, and in many cases the relative
values of the population numbers N, and of the Raman-
tensor elements Tj; can be determined.

C. Influence of the symmetry of the defect
on the preferential orientation process

Take a defect in an arbitrary initial orientation v, with
symmetry point group O, CO and denote the left cosets
by [Table IV(b)]:

01,0,,...,0,.
The number o' is a divisor of 24. Using the homomor-
phic correspondence from the point group O to the orien-
tation set ¥, one finds the corresponding sets of orienta-
tions:

’ ’ ’
ViV ...,V,..

It is possible to prove (Appendix C) that if
(13a)

the orientations v, and v, are in fact the same and as a
trivial result possess the same population number:

N,=N, . (13b)

Combining this result with the effect of the orientating
operator Fof a given symmetry F; (see Sec. IIB), the
number of independent population numbers is often re-
duced again. If two directions v, and v, Which turn out
to be identical because of the defect symmetry O, corre-
spond to different right cosets of F; these cosets corre-
spond in fact to the same set of orientations, with the
same population number. This can formally be expressed

U0, €V,, r=12,...,0',
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as follows.
If the sets S, CO,
S1,82 .., Sgn

are constructed by right and left multiplications of each of
the rotation operators R,, as follows:

S,=F,R ,0,, (14)

and the corresponding subsets of orientations are denoted
by

”
VisVie. sV,

all of the orientations belonging to a same set V,’", result-
ing from the action of F on a defect of symmetry O, will
possess the same population number, i.e., if one has

U0, €S, r=12,...,0" (15a)

then

szNqE./r . (15b)

One can easily obtain the S, or ¥, from Tables IV(a) and
IV(b). For example, take F; =D,[011] as the symmetry of
the orientating operator and O;=D,[110] as the symme-
try of the defect. Check Tables IV(a) and IV(b) to obtain
the right cosets of F; and the left cosets of O;. Then
combining the left and right cosets, one obtains the set S, :

S1=(12345678910 1112212223 24),
$,=(13151719), (16)
S3=(14 16 18 20) .

The numbers in expressions (16) correspond to the Raman
tensors in Table I. Only three independent N, are left.
This can simplify the set of Egs. (9) considerably, but can
only be employed after identification of the symmetry of
the defect.

D. Identification of the dynamical mode through
a behavior-type analysis of the Raman IP’s

1. Dynamical modes which can be distinguished
by Raman experiments

The symmetry of a defect and the representation to
which the mode belongs are reflected in the Raman tensor
(see Table V). The symmetry also determines relations be-
tween the populz}\tion numbers which result from an orien-
tating operator F of a given symmetry (see Secs. IIB and
IIC). However, only part of this information can be re-
trieved from the Raman scattering experiments. More-
over, it can be derived from the explicit expressions of the
IP (Table III) tha}} for any possible symmetry of the orien-
tating operator F it is impossible to distinguish a defect
with symmetry O, =T from one with symmetry 0,=0
by means of Raman scattering. One can also demonstrate
that an orientating operator of tetrahedral (T') or cubic (O)
symmetry will yield exactly the same information about
the symmetry of any defect, and about its dynamical
modes. Therefore, we shall not distinguish any more be-
tween these two point groups.
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TABLE V. Symmetric Raman tensors for the dynamical modes which can occur for defects in a cubic crystal structure for each of
the 33 essentially different defect symmetry groups. The tensors have been transformed from the local reference frame (x’,y ’, z’) of
the defect, to the crystal reference frame (x,y, z). The directions of the local axes are given in the Table. The notation of the tensor
elements is mainly taken from Ref. 1, and their explicit expressions are given in the footnote of this table.

Defect symmetry

Raman active modes

The local frame

Raman tensors

Cy l A(z,:y'r‘z’;Rz' ny’ :Rz’)
Sg l Aq(Rz/,Ryr,Rzl)
z' || [100] a; d f'
y' || [010] dag f
2 || [o01] /' [ as
C2[010] | A(y';Ry) B(z',2';R.1,R )
C11(010) [ A'(z',2";Ry) A"(y';R, Ry)
C21[010] | A,(Ry) B,(R./,Ra)
' || [100] a f' d
y' || [010] az d f
2 || [o01] ' a3 f
02[110] | A(y';Ryl) B(Z',Z’;RZI,RZI)
C1x(110) | A'(zlsz,;Ry') A"(y’;Rz’rRz')
Can[110] 1 A,(Ry) B,(R./,R)
gl A1
2 || [110] o - gl d Vil
' || [110] - o —7f —d 5=f
1 1 gt A s 1
D2[100,010,001] | A B1(#;Rz) B2(y':Ryr)  Ba(z';Razr)
C3,[001](100,010) | Ax(2") As(R.) Bi(z';Ry)  Beo(y';Ra)
D24[001,100,010] | A, By, (R.) Bag(Ry) Bs,(Rar)
' || [100] aq d f
A ) () )
2 || [001] as /! f
D2[001,110,110] A Bi(2';R.) B2 (y';Ry) Bs(z';R.r)
Cg,,[O()l](llO,l_lO) Ay (2) As(R.) Bi(z';Ryr) B2 (y';Rz/)
D25[001,110,110] Ay Big(R2) Bzg(RS}I) B3, (Ra)
7' || [110] a —c I f
A1) (%) o)
2 || [001] as \r-r ) s g
Cs,[110](110,001) | Aqy(2) Bi(z';Ry Ba(y';Rzr) As(R,)
7' || [110] a —c' i f d
y' || [001] (—c’ a ) ( —f ) 4_( __f) L( d)
2 || [110] as -1 ) e a
Cs[111] A(zR,) E}z Ra) EE Ry)
Se[111] A, (R.) E(V(R.) 2)(R )
g || [110] a b b11 b1z b1s 11 C12 €13
y' |l [112] (b’ a b’) (512 baa bzs) (012 c22 023)
2 || [111] b bad b1z b2s ba3 €13 €23 €33
D3 [111,110,011,101] A ESz’;Rz:) Esy Ry)
D34[111,110,110,101] A, EM(R.) 2)(R /)
z' || [110] a vy W' —2¢' ¢ -k
y' |l [112] (b' a b') —2¢' K ¢ | VB B —g'
2 || [111] b o o g ¢ 20 g —¢
Cs,[111](110,170,10T) | A7) E(y';R.) E(z';Ry)
z' || [110] a by d —2¢ ¢ d —¢
yl ” [112] (bl a’ bl) (—26’ d' e ) \/g( —-d’ el )
2 || [111] b b a ¢ ¢ —ad —e ¢
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TABLE V. (Continued.)
Defect symmetry Raman active modes
The local frame Raman tensors
C4[001] |  A(z';Ru) B E(z';R./) E(y';Ry)
S4[001] A(R»)  B(<) E(z';R.1) E(y;Ry)
C4r[001] Ag(R) By E{N(R,) E()(Ry)
z' || [100] a cd I =f
y' || [010] a (d—c ) < / L( f')

2 oor] as A\ ) P\
D4[001,100,010,110,110] Ay B; B, § z';Ra1) E(y';Ry)
D4,[001,100,010,110,110] Aig Big Ba, )(R,) E@(Ry)
D24[001,100,010](110,110) Ay B, By(2') E(x' R.) E(y';Ry)

' || [100] a ¢ d =f
y' | [010] a —c d f
2 || [001] a3 , / -f
D24[001,110,110}(100,010) | Ay Ba(2') B, E(z';R./) E(y';Ry)
z' || [100] (a (d ) ( —c ) . ( I , —f
y' Il [010] a —d —c NG Il & !
vz vz

2 liooy] as ‘\ss =11

C4,[001](100,010,110,1T0) |  A,(2") B, B, E(y';R.) E(z';Ry)
z' || [100] a ¢ d I
Al () () (s
2 || [o01] a3 ) ! s
T A EM) E®) T(z';R./) T$ y';Ry) T(2;R.)
Th A, E( E®) T (Ryr) T 2)(R ) T(3)(R )
z' || [100] a g1 b f I
L)) ) ()0
2 || [001] a —9 d ! /
0 A E®) E®) T T T
T4 Ay EY E®) To(z')  To(y')  To(2)
o | Ay Ep B 1 1)
' || [100] a g -9 f f
y' |l [010] a |2v2 g 2\/6( g ) f f )
2' || [001] a —29 / /

The expressions of the symbols of the tensor elements :
In trigonal and tetragonal classes :

a=3(z'z +y'y)
In cubic classes :
a =37 +y'y +2'2)
In all symmetry groups :
b 2%(ylyl —2'2')

h= (w2 — y'y)

a; =z'z

Vi =%(z’z’+z’z')

b = a+ a3

g = lc—Af
b11=‘/_c+‘fd+ff’
b23 _—‘QC-F fd \/éf’

~>Ld+ WerPrily

.=33[d+335 iy

c=L(z'z' — ¢'y) d=L('y +y'z')
¢ =L(2'2' — 2'z") d=L(z'e —¢'y)
9 =5 + o'y —24) I =32 +2y)
g =122 — 'y + 2Y) 92 =9 —
—yy az =22
¢ ——%(zz —z'z2") a =%a+ la,
d=Ld+ 2 ¢ =td— 2y
K =jc+ —‘ggf
5f bao Z%C“‘\/Ts_d—“?‘f"f'% bgz =—by1 — bao
&f bis =%2e— Pd+ B _ Ly big =—bog — b13
co2 =‘/T_2—d—3356—3§f+§f' €33 ==—C11 — C22
iy 13 =3§d—3§C+3§f & c12 =—c13 — ¢23
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Even when this is taken into account one can verify that
different modes corresponding to the same defect symme-
try cannot be distinguished from one another, even when a
full set of 21 IP’s is available. This results partly from an
internal symmetry of Egs. (9) (see Appendix D) and partly
from the explicit expressions of the IP for each of the de-
fect symmetries. The following modes cannot be dis-
tinguished from each other.

(i) The By, B,, and B; modes of a defect with symmetry
0,=D,[100]. The three modes possess, in general, dif-
ferent frequencies.

(ii) The components of a twofold-degenerate mode, an
E mode, yield the same contribution to the Raman IP. In
most circumstances the two modes cannot be measured
separately while possessing the same frequency. However,
the rule can be useful when a perturbation lifts this degen-
eracy, e.g., the perturbation induced by a uniaxial stress on
the crystal. In the same way the three degenerate modes
of a T representation contribute equally to the IP.

Taking into account the above remarks and the neglect
of inversion symmetry, we conclude that of 124 possible
dynamical modes with different symmetry properties only
25 sets can be distinguished from one another on the basis
of Raman experiments on preferentially orientated de-
fects. We have listed these sets in Table VI and will indi-
cate them by 25 so-called representative modes.

When the analysis of the IP is considered for an experi-
ment in which only one mode of a defect is studied, addi-
tional limitations occur. We have checked that the
representative modes within the following sets cannot be
distinguished from each other even by solving Egs. (9):

{D,[100]:B,, C4:E, Dy:B,, E} , (17a)
{D,[110]:B,, D4:B,} , (17b)
{Cy4, Dy:A,}, (17¢)
{(Cy:d, Dyid,} . (17d)

This follows from an inspection of the IP expressions (5)
explicitly taking into account the population numbers and
the Raman-tensor components. Thus only 19 sets of
representative modes can possibly be distinguished in a
single-mode analysis.

In this section we have not considered whether Eqgs. (9)
can actually be solved, i.e., whether a sufficient number of
independent IP’s exists for determination of the unknown
population numbers N, and the elements T;; of the Ra-
man tensor. For some of the representative modes Egs.
(9) cannot be solved for any symmetry F; of the orientat-
ing operator F, and this puts an additional limit to our
analysis, as will be demonstrated now in the following sec-
tion (Sec. IID2).

2. Symmetry-imposed properties of the Raman
IP’s: Behavior type

In order to determine the population number N, and
the elements of the Raman tensor it is necessary to solve
the set of Egs. (9). However, these are cubic equations,
with a high number of unknowns. Furthermore, because
of the insufficient precision of the experimental results it
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is often hard to proceed along this way. Moreover, for
several of the representative modes it is not possible to
find the solutions.

Therefore, we will try to determine the representative
modes on the basis of a direct inspection of relations exist-
ing between the IP’s. As mentioned above in Sec. IID1,
part of the symmetry-imposed information contained in
the Raman tensor of the mode and the population num-
bers N, is reflected in these parameters. In many cases
this information can be expressed by means of relatively
simple relations between the IP’s, which are easy to dis-
cern in the experimental data. We have systematically in-
spected the occurrence of the following types of IP rela-
tions:

x;=0, (18a)
x; <0, (18b)
xX;=cx; , (18¢)
xi=c(x;+xi) , (184)
X; /xj=c(xx/xp) , (18¢)
x; /xj=c(xy /x,)?, (18f)

where x;,x; ,xx,x, represent specific IP’s, and ¢ is a posi-
tive or negative integer or half integer. For a given set of
21 IP’s one can check which of the IP relations of the
types shown above are fulfilled. These IP relations define
a so-called behavior type (BT) of the set of IP’s.

From the explicit expressions of IP’s for all of the pos-
sible representative modes, and after applying a given
orientating operator F, we have determined that 65 dif-
ferent BT’s can occur. Their characteristic IP relations
are listed in Table VII: The IP’s equal to zero [(18a)] and
the relations between two IP’s [(18¢)] can be found direct-
ly in the table; the other relations [(18b)], (18d)—(18f)] are
given in the footnotes of the table and are referred to in
the last column. If two BT’s differ from each other only
by the relations between three or more IP’s, as given in the
last column of Table VII, they are assigned the same num-
ber but with an additional letter, e.g., BT nos. 23a and
23b. Table VIII indicates the BT for each of the modes
and all possible symmetries of the orientating operator F,
using the definition of the BT as given in Table VIL

If one considers a given defect symmetry O,, the BT
which is found for F;=C, (first column of Table VIII) is
the minimum BT for this defect, i.e., all of the IP rela-
tions which are valid in this BT are also obeyed for higher
symmetries F; of the orientating operator F. This BT is
induced purely by the symmetry of the defect. In a simi-
lar way the BT for a given F; and for the defect symme-
try O;=C, (first row in Table VIII) is characteristic for
the symmetry of the orientating operator, and the IP of a
defect with a higher symmetry O; will obey the IP rela-
tions of this BT. The latter IP relations can be used in an
experiment to test the symmetry F; of the orientating
operator. In addition to the sets considered above [Egs.
(17)] the following sets of modes possess the same BT for
any symmetry F; (see Table VIII):
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TABLE VI. Classification of the dynamical modes which can occur for defects in a cubic crystal according to the 25 representa-
tive modes which can be distinguished by Raman scattering experiments. The representative modes are given an identifying number

for reference in Tables VIII, IX, and XIII(b).

Representative Number |

Mode of modes | Dynamical modes

1 Ci:A 2 | Ci:A  Sy:A,

2 Cy[010]:A 3 | C2[010]:A  C,4(010):A’ C24[010]:A,

3 C;[010]:B 3 | C2[010]:B  C14(010):A” C2,[010]:B,

4 C2[110]:A 3 | Ca[110]:A  Cy4(110):A’  C2x[110]:A,

5 C2[110]:B 3 | C2[110]:B  Cy4(110):A” Cgx[110]:B,

6 D2[100]:A 3 | D2[100]:A  C3,(100):A;  D2x[100]:A,

7 D2[100]:B, 9 | D2[100]:B;,B2,B; Co,(100):A5,B;,B, D2 [100]:By4,B2,4,Bs,
8 D;[110]:A 4 | D [110]:A  C2,(110):A; Do, [110]:A, Co,[110]:A4

9 D2[110]:B, 14 | D2[110]:B;  C24(110):A2  D24[110]:B;, C3,[110]:B,
10 D2[110]:B. 4 | D2[110]:B2  C2,(110):B; D24[110]:B2, C2,[110]:B;
11 D2[110]:B; 4 | D2[110]:B3  C2,(110):B; Dy, [110]:Bg, Cg,[110]:A2
12 Cj[111]:A 2 | C3:A Sg:A,

13 C3[111]:E 4 | C3:E  Sg:E,

14 Ds[111]:A, 3 | D3:A; Dsa:Ayy, Csp:Ag

15 D3[111]:E 6 | D3:E D3s:E; Csz,:E

16 C4[001]:A 3 | Cy:A S4i:A CupiAy

17 C4[001]:B 3 | CyB S4B Cyn:By

18 C4[001]:E 6 | C4E SgE  Cyuply

19 D4[001]:A, 5 ! D4:Ay Dyn:Ayy D2y[001]:A;  Dyoy[110]:A;  Cyy:Ay
20 D4[001]:B, 5 | D4:By Dyn:Biy D24[001]:B; Doy[110]:By  Cy4y:By
21 D4[001]:Be 5 | D4:Bs Dyq:Bgy, D2g[001]:By  Doy[110]:B;  Cy,:Bs
22 Dy4[001]:E 10 | Dy:E Dyn:Eg  Dog[001):E  Doy[110):E  Cyu:E

23 T:A 5 | T:A Tp:A;, O:A; TgAy OpiAyy

24 T:E 10 | T:E TpE, OE TgE OpE,

25 T:T 15 | T:T Tp:T, O:Ty TgTe Op:To,

(Cud, Cl110]:4) 198) e nieal modes This retaces the mamber of Gistnguion.
{C,[010]:B D,[110]: By, B3} , (19b)  able sets of representative modes from 19 to 17. This

number should be compared with 15 for the BT analysis.

{D,[100]: 4, C4:A} . (19¢)

As a result only 15 sets of modes can be distinguished
from one another by the single-mode BT analysis. In sets
(19a) and (19¢) it is possible to solve Egs. (9) and to decide
between the representative modes on the basis of the popu-
lation numbers N, and the elements T}; of the Raman ten-
sor. Solving Egs. (9) is not possible for the modes in set
(19b) and as a result it is impossible to decide between

As mentioned in Sec. II A only part of the subgroups of
the cubic point group O were considered in our analysis,
e.g., D4[100] for F; but not D4[001] and D,[010]. It is
relatively easy to derive the BT for such rotated subgroups
from the BT listed in Table VII. A rotation from one
subgroup to another by 1?,, €0 is equivalent to an inverse

rotation by R -1 of the defects and their reference axes.
The rotation of the defects need not be taken into account
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TABLE VII. Sixty-five different BT ’s identified by a BT number in the first column are defined by relations of the type given in
Egs. (18) between the 21 IP’s. The IP’s which are zero and the relations between two IP’s are given as the main BT. The relations be-
tween more than two IP’s (the additional BT relations) are given in the footnotes of this table and are indicated in the last column.
The equalities among the IP’s existing for a given BT can be substituted into these additional relations. This often permits one to ap-
ply these relations even if the IP’s which explicitly appear in them are not directly available from the experiment.

BT

Additional

no Main BT relations BT relations®
1 | 919295 1 ro r3| 81 8383t ty 3| uguy uz v v U3 vy U5 Vg | -

2 | q192935 ri. ro r3| 8 8 8 | ugup uz vy ve vz vy vs v | -
3| | 8y 89 83 11 ta i3 | | -

4 | qug2q93s r1i ro ral 818283t 8 3] uyu uz vy ve vy vy wvs wvg | 12345861013

5 | qugaqs r1 re r3| | |

6 | | 81 32 83 | \ -
7T | g19293 ri re r3| 81 82 83 | upup us vy vi vy w3 v5s  v5 | 12

8 | q19293 r1 ro ra| | | 12313
9 leage @i ¢ 1| 81818 bty t3| uwpup us uy w1 Uy up  uz  uz | 8

10 | gaq q1_2ql'—2q1"'2q1 | 818181 t1t2 ta| wyup usg vi we w3 vy w5 ve | 456

11 | g a—3ai—3q—3aqi | 8181 80 t1 ta t3| u up uws—fui—tui—Sus—Ltus—Jus—Lus | 9

12 | qiq2gs ri ro rz| 8 8 83 | v —v; vz —v3 vs —vs | 1231113

B | et @1t @1 q | | -

4 | qaa-fa—ia-ia| l | -

15 | | 81 81 81 | | -

16 | qiqaqgs r1 rg r3| 8 8 83t | u v Vg | -

17 | qugq ri re rz| 8 8 83 | uy vy v | -

18 | | 81 82 83 1 | | -

19 | qi92qs r4 ro rz| 8 83 83 1) |y vy v | 12341013

20 | 19293 ri ro rz| 85 8 83 | uy vy v | -

21 | @i @1 @1 q1 | 818181 | u Uy Y | 8

22 | qaq (I1—2¢h—2q1— qi| 818 8 | uy vy v | 4

282 | @ @ —3a—Lai—3qi | 881 81 by | w ~Lu;—Lu | -

28b | @ q—fa—fa—fa| &8 ty | u —Lui—Luy [ 9

24 | q1 92 q3 ri re r3 | 81 82 83 | vy —U | 1231113

25 | gq19eq2 ri ra ro| 818283 bty —ty| uy up —us vy vy vz vy —v3 —vy | -

26 | gq1g292 ri ro ro| 85 8 8 | ug up —up vy v vz vy —vz —vg | -

27 | | 81 83 83t tp —t5 | | -

28 I q1 g2 q2 7‘1—§q1~§q1 | 81 82 82 1 to —to l Uy Yo ——ug-—%ul—%ul U3 v4 —V3 —VU4 ! 2571013

20 | q1qq 1 ry ro| \ | -

30 | | 81 82 82 | | -

31 | q1929 ri ro ro| 8 8 8 | uy up —ug vy vy vz vz —vz —vg | 12

32 | @199 rn—ia-—iq| | | 2713

3B | oy @ ¢ qu| 818 81t b —ty | u up —us w1 Uy Uz uz —Up —up | 8

34 | @ qi—ya—Laqi—4ai | 818 81ty by —ta | u up —up—lus—lus vz vy —vz —vg | 5

35 I QG qQ ql—%ql—gql % 1 81 81 81 t) Lo —tg | Up Uy —Us— lul—1U1~lU2—lu2 luy Llu, I 9

because it is equivalent to a different choice of the original
orientation v;. A rotation R ;! yields a permutation of
the x, y, and z axes, and as a result a permutation of the

3. Combined analysis of several modes
of the same point defect

IP occurs [see Egs. (5) and (9)]. The permutation is such
that in the short IP notation g;,7;,s;, . .., introduced in
Egs. (8), only the lower indices are permuted, i.e., the per-
mutation occurs between the g;, between the r;, and so on.
It is evident that the representative modes can be dis-
tinguished from each other in the same way by a rotated
F; as by the original one listed in the tables.

Sometimes it is possible to detect several modes of the
same defect and to analyze the IP of these modes simul-
taneously. If, for a given symmetry F,, several modes of
the same defect are found to possess a different BT, the
symmetry O; of this defect can be determined more effi-
ciently. For example, one can decide between the modes
C;:A4 and C,[110]:A4 [see Eq. (19a)] if a second mode of



29 BEHAVIOR-TYPE METHOD FOR POLARIZED RAMAN SPECTRA. ... 5521
TABLE VII. (Continued.)
BT Additional
no. Main BT relations BT relations®
36 | qq@qe ri—iqa-iqa| s s s | v3 —v3 —vg vz | 271113
37 | q1gagq3s ri ro r3| 85 83 83 [ | -
38a | qi1qqs ry ro r3| 8 8 83 | | 1231013
38b ! q1 92 q3 ri ro rs | 81 82 83 | I 1231113
39 | e @1 @1 q1| 8 8 8 I | -
0 | ¢ ¢ a—3a—Sa—3q | 8 8 & | | -
41 | q1 99 ri ro ro| 8 88 ¢t | v1 9 l -
42 | q1 9292 ri rp ro| 85 83 8 | v 9 f -
43 | | 85 82 82 & | | -
44 | q1 92 g2 rl—%ql_—%ql I 81 82 82 41 I 173} —%u;—-%ul , 271013
452 | q @ g ri—iq—Liq| & 8 s I | 271013
45b 1 q1 G2 92 rl—%ql—%ql I 81 82 82 . I l 271113
46 | e i o ri| s st b wpu ow ov; ve vy v v, vy | -
47 | qo @i ri v ri] 8 8 8 | % wp u vy v2 vy vy v vy | -
48 | | 81 8y 81 t1 8 # | ! -
49 ' qQ Q1 ql—%ql—%ql—%ql l 8 81 81 41t 1y I u; u; U v vo vo vy vy vo l 413
50 | eigiqn ri ri org| | | -
51 | quqiqn ri ri ri| 8 8 8 | % w1 uwy v v v vy vy v | -
2 | @ ¢t ¢ gl s s bt b | wpw w u u w4 4 4y | 8
53a | q @ ql—%ql—%ql—%ql | s 818ty b | owow ul—%ul—%ul—%ul—%ul—%ul—%ul | -
53b | e a—da—dqi-ta | s s ity b | u oy =y —Ju—Luy—Luy—Ju -y | 9
5 | qaq fh—%m—%ql—%ql | &1 81 81 | vp —v; —v1  v1 vy —up | 13
% | es@a@n o ori ri| sis sttt b | wiw w o vi v v vy v, v | -
%8 | q192q rn r2 r2| 8 8 8 l vy —v | -
572 | @1 a ri-la-iq| s s s | vy ~vp | 271013
57b | qi @2 ri—iq—1lqi| 81 8 s | v —u | 271113
58 | @1929 r rp ro| s 8 s [ [ -
5 | siqa-ia—Sa—ia| & & & | vy —v; . | -
80 | @agqiqn ri ry ri| 8 8 8 | | -
“The numbers in this column indicate the following additional IP relations :
1: g =—-r;—r3 2: gg=—r;—r3 3: a=—-r1—rp
4: Uy = —v, — vy 5: s = —v3 —uy, 6: ug = —v5 —uvg
7: q =2¢+2r, 8: uy/ty =upfty = ug [ty = K,(q;/85)% 9: Uy [t = ug [ty = us [ty = —2K,(qi/8:)}
10: q1/81 =gqof82 =qsfss 11: ri /sy =ry/80 =r3/ss = q1/(82 + 83) = q2 /(81 + 83) = q3 /(81 + 82)
12: uy /oy = uzfvs =u3fvs 13: r;<0

The factors K,, in the above relations No. 8 and 9, are equal to +1 or —1, and are determined by the sign of the
product of the Raman tensor elements : a't’ in the representative modes Cs:A or Ds:A;, and h'g’' or d'¢ in the

representative mode Dj:E.

this defect is available with a different BT. In this simple
example the second mode can only be a C,[110]:B mode,
and correspondingly the defect must possess the represen-
tative symmetry C,[110].

In addition to the set of IP relations of one mode, which
determine the BT, for some defect symmetries O; rela-
tions are available between the IP’s of different modes of
the same defect. These IP relations, which are given in
Table IX, are based on the population numbers, which are
common for the different modes. They make it possible,

e.g., to distinguish the modes of D,[110] from the other
modes in the set given by (19b) and (19¢) provided that
several modes belonging to the same defect are measured.
In favorable circumstances all 25 representative modes
can be distinguished by a multimode analysis except for
the C;:4 mode. '

E. Observed versus the actual behavior type

The BT which we have been discussing so far is what
we will call the actual BT: Its characteristic IP relations
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TABLE VIIL. BT of the Raman IP’s are given for each symmetry F; of the orientating operator F and for each representative
dynamical mode. The relations which determine these BT ’s are given in Table VII. The maximum number N; of the representative

modes which can be distinguished is also given for each of the F;. The modes are numbered as in Table VL.

01 Mode | F1= Cl 02[100] 02[011] Dz[lOO] D2[011] 03[111] Dg[lll] 04[100] D4[100] T
C 1 A | 1 16 25 37 41 46 55 56 58 60
Cy[010] 2 A | 2 17 26 37 42 47 51 56 58 80
3 B | 3 18 27 6 43 48 48 30 30 15
Cy[110) 4 A | 1 16 25 37 41 46 55 56 58 60
5 B | 4 19 28 38a 44 49 53a 57a 45a 40
D,[100] 6 A | 5 5 29 5 29 50 50 29 29 50
7 B; | 6 6 30 6 30 15 15 30 30 15
Dg[110] 8 A | 7 20 31 37 42 51 51 58 58 60
9 B; | 8 8 32 8 32 14 14 32 32 14
10 Bg | 3 18 27 6 43 48 48 30 30 15
11 Bz | 3 18 27 6 43 48 48 30 30 15
Cs111] 12 A | 9 21 33 39 21 52 52 39 39 39
13 E | 10 22 34 40 23a 49 53a 59 40 40
Dg[111] 14 A; | 9 21 33 39 21 52 52 39 39 39
15 E | 11 23b 35 40 23b 53b 53b 40 40 40
C4f001] 18 A | 5 5 29 5 29 50 50 29 29 50
17 B | 12 24 36 38b 45b 54 40 57b 45b 40
18 E | 6 6 30 6 30 15 15 30 30 15
D4[001] 19 A, | 5 5 29 5 29 50 50 29 29 50
20 By | 8 8 32 8 32 14 14 32 32 14
21 B, | 6 6 30 6 30 15 15 30 30 15
22 E | 6 6 30 6 30 15 15 30 30 15
T 23 A | 13 13 13 13 13 13 13 13 13 13
24 E | 14 14 14 14 14 14 14 14 14 14
25 T | 15 15 15 15 15 15 15 15 15 15
Nais | 15 15 15 11 14 12 11 13 11 7

are the ones required by the actual symmetry of the defect

and the orientating operator F. The BT which is distilled
from the experimental data is called the observed BT: It
can accidentally possess IP relations which are not im-
plied by the symmetry of the defect. For instance, a
C3,: 41 mode with F; =T does not require g=0 or g=s
(Tables VII and VIII), but if the diagonal elements of the
Raman tensor would happen to be near zero or to be near
the value of the off-diagonal elements, one would observe
one of the above IP relations if the experimental intensi-
ties could not be measured with sufficient precision.
However, the symmetry-required IP relations can never be
broken: For instance, if an actual BT possesses a IP rela-
tion such as x =0 or x;=x, it is impossible to observe
x+#0 or x;x, given an adequate statistical data process-
ing.

The accidental additional IP relations can make the ob-
served BT different from the actual BT for a given center.
This complication should be kept in mind when perform-
ing a BT analysis. Therefore, we have listed in Table X
all the possible actual BT’s corresponding to a given ob-
served BT. This hierarchy can be expressed by saying that

the observed BT may possess a higher symmetry than the
actual BT.

F. Other possible analysis methods

Independent information about the model of the defect
or about the relative values of the population numbers N,
is very helpful in the BT analysis. The population num-
bers can sometimes be estimated from other experiments,
e.g., from polarized optical absorption or electron spin res-
onance. A hypothetical model may permit one in elim-
inating some of the possible defect symmetries and in
predicting the effect of the preferential orientation pro-
cess. From such data additional constraints on the IP can
often be derived, such as their sign or their relative magni-
tudes, and eventually some of the possible representative
modes can be eliminated narrowing down the choice.

The combination of Raman measurements with external
data permits one in some cases to distinguish between
dynamical modes which were classified in the same
representative mode (Table VI): The B;, B,, and B,
modes in D,[ 100] defect symmetry can be distinguished if
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TABLE IX. Relations which exist between the Raman IP’s of the representative dynamical modes (identified by the numbers
given in Table VI) belonging to the same defect, and which can be measured in the same Raman experiment. If equalities among the
IP’s exist, as given by the BT (Tables VII and VIII), they can be substituted into these relations. This often permits one to apply the
relations even when only part of the IP are available from the experiments.

Defect | |
symmetry | Representative |
0, | modes | The IP relations between different modes of the same defect
ﬁ 2,3 | (u1/u2)a = (t1/t2)p = (N5 — Ng + Nay — Nao)/(Ny — Ny + Ny3 — Ny4)
Cq[010] | 2,3 | (u1/us)a = (t1/ta)s = (N5 — Ng + N2y — Na3)/(Ng — N11 + Ny7 — Nig)
| 2,3 ' (“2/“3)A = (t2/ta)p = (N1 — No + Nyz — N14)/(Ng — Nyy + Ny7 — Nyo)
| 8,9 | (s1/82)a = (r1/r2)B, = (N13 + N14)/(No + Nyo)
| 8,9 | (s1/83)a = (r1/r3)B, = (N13 + N14)/(N1 + N3)
| 8,9 | (s2/83)a = (r2/r3)p, = (Ng + N1o)/(N1 + N3s)
| 8,10,11 | (#1/ue)a = (v1/vs)a = (t1/t2)B, = (t1/t2)B, = (N13 — N14)/(No — N1o)
D[110] | 8,10,11 | (u1/us)a = (v1/v5)a = (t1/t3)B, = (t1/t3)Bs = (N1s — Ny4)/(Ny — N3)
| 8,10,11 | (u2/us)a = (v3/v5)a = (t2/t3)B, = (t2/t3)Bs = (No — Nlo)/(f\? = N;) )
N; + N3 + Ng + Nyo
8)9110711 == == 3 =
[(s2 + 83)/(81 + 83)]a = (91/92)B, = (81/82)B, = (51/82)8, (N: 3 Ns + Nis + Nia)
Ny + N3+ Ny + N,
8,9,10,11 [(s2 + 83)/(81 + 82)la = (¢1/43)B, = (81/83)B, = (81/83), = (§V91+ Nt Nt I,‘,‘l”)
4
N1 + N3 + N1z + Ny4)
8,9,10,11 - — — — (V1 3 13 14
(81 + 83)/(81 + 82)]a = (92/93)B, = (32/83)B, = (82/33)m, (No + Nio + Nis + Ni)
10,11 (ti)Bz(ti)Ba < 0
— — _ _ Ny —No+ N3 — Ny + Ns — Ng + N7 — N,
12,13 (u1/u2)a = (t1/t2)a = (w1 /u2)Ep = (t1/t2)E = %1 — %2 = %2 y %: T %z — %g — %; T %Z
12,13 (u1/us)a = (t:/ts)a = (u1/us)E = (t1/ts)E = %W
03[111] 12,13 (u2/u3)A (tg/ta)A (u21<;43)EN fg]\/fh)EN _ﬁv}lv*" NIQV_—*{V;V_ N;v'f' Ng +N§ — N; _N:
12,13 (tl/sl)A = "2(t1/81)E = %‘:_F%:_‘_%z +JNV: +x§ +%: +%_7[ +%§
_—— = A1 — WNg — N3 + [Ny + N5 — Ng — N7 +
12,13 (tg/Bx)A— 2(t2/81)E—- %1+%2+%3+%:+%5+%2+%; +%:
—_ — V1 + Ng — N3 — INg + N5 + - =
12,13 (t3/31)A 2(t3/al)E N, + N, +N3 + Ny +N5 +N2 +N:+NJ;
12,13 t)altd)e < O
! 14,15 | (u1/u2)a, = (t1/t2)a, = (u1/u2)e = (t1/t2)e = (N1 — N2 + N3 — N1)/(Ny — N2 — N3 + Ny)
| 14,15 | (ul/ug)A, =(t1/t3)A1 =(u1/U3)E =(t1/t3)E =(N1 —N2+N3—-N4)/(N1 +N2-—N3—N4)
Dj[111] | 14,15 | (u2/us)a, = (t2/ts)a, = (uz/us)p = (t2/ts)g = (N1 — N2 — N3 + Ny4)/(Ny + No — N3 — Ny)
| 14,15 l (tl/el)Al ='—2(t1/81)E=(Nl—~N2+N3-—N4)/(N1+N2+N3+N4)
| 14,15 ! (tg/Bl)Al =—2(t2/81)E =(N1 —Ng—N3+N4)/(N1 + Ny +N3+N¢)
! 14,15 I (t3/51)A1 =—2(t3/81)E =(N1 +N2—N3—N4)/(N1+N2+N3+N4)
| 14,15 | (t)a,t)e < O
| 17,18 | (q1/92)B = (81/82)E = (N1 + N3 + Ng + N1o)/(N1 + N3 + Ny3 + Nig)
C4100] | 17,18 | (q1/93)B = (81/83)E = (N1 + N3 + Ny + N1g)/(Ng + Nyig + Nis + Ni4)
| 17,18 | (g2/93)B = (82/83)e = (N1 + N3 + Nyg + Ni4)/(Ng + Nyg + Niz + Nig)
i 20,21 | (r1/r2)B, = (81/82)B, = Ni3/Ny
| 20,21 | (ri/ra)B, = (81/83)B, = N13/N;
D4[100] | 20,21 ! ("2/7'3)31 = (-82/83)315 = Ng/Nl
‘ 20,21,22 | (91/92)B, = (82 + 83)/(81 + 83)]B, = (81/82)E = (Ny + Ng)/(Ny + Ny3)
| 20,21,22 I (91/q3)B, = [(s2 + 83)/(s1 + 82)]B, = (81/83) = (N1 + Ny)/(Np + Ni3)
| 20.21,22 | (g92/93)B, = [(81 + 83)/(81 + 82)]B, = (82/83)E = (N1 + Ni3)/(Ny + Ni3)

independent information about the population numbers  defects by an orientating operator F, acting on the popula-

N, is available. tion numbers N, (see Secs. II B and IIC). In principle this
operator could represent any physical process which alters

III. APPLICATION OF BEHAVIOR-TYPE the population numbers. Polarized optical excitation in an
THEORY TO PRACTICAL EXPERIMENTS absorption band of the defect is often a convenient
method. The excitation may destroy the point defect pre-

A. Nature and symmetry properties ferentially in specific orientations, or it may reorient the

of the orientating operator £ defects preferentially. In the following we mainly concen-

trate on this optical method of preferential bleaching and
In the foregoing treatment we have described the pro-  reorientation.

cess of preferential reorientation or destruction of point For virtually all defects the optical transition employed
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TABLE X. Observed BT ’s are given together with the corresponding actual BT (see Sec. IIE). Only
those actual BT ’s must be considered which can occur for the symmetry F; employed in the experiment
(Table VIII). The BT No. 15 can reduce to nearly any other BT, and only the actual BT ’s which can
never correspond to this observed BT are listed between parentheses.

Observed | Possible I Observed | Possible
BT | actual BT I BT | actual BT
1 | 1 I 2 | 12
3 | 134 Il 4 | 14
5 | 12571617 2037 I 6 | 123467121617 18 19 20 24 37 38a 38b
7 | 127 Il 8 | 124578121617 19 20 24 37 38a 38b
9 | 19 I 10 | 110
11 | 111 I 12 | 1212
| 12579131617 2021 I | 125710111416 17 20 22 23a
13 | 252629313337394142 | 14 | 23b 25 26 29 31 34 35 37 40 41 42 48
| 46 47 50 51 52 55 56 58 60 |l | 47 49 50 51 53a 53b 54 55 56 58 59 60
15 [ (5 8 13 14 29 32 50) I 18 [ 18
17 | 16 17 Il 18 | 16 18
19 | 16 19 Il 20 | 18 17 20
21 | 16 21 41 Il 22 | 16 22
23a | 16 23a 41 Il 23b | 16 23a 23b 41
24 | 16 17 24 It 25 | 25
26 | 25 26 I 27 | 25 27 28
28 | 25 28 I 29 | 25 26 29 31 41 42 56 58
30 I 2526 27 28 30 31 36 41 42 Il 32 | 25 26 28 29 31 32 36 41
| 43 44 452 45b 56 57a 57b 58 |l | 42 44 45a 45b 56 57a 57b 58
31 | 25 26 31 Il 33 | 25 33
34 | 25 34 Il 35 | 25 35
36 | 25 26 36 I 37 | 37
38a | 37 38a It 38b | 37 38b
39 | 37 39 56 58 60 il 40 | 37 40 51 53a 55 56 58 59 60
41 | 41 Il 42 | 41 42
43 | 41 43 44 I 44 | 41 44
452 | 41 42 44 45a 58 Il 45b | 41 42 44 45b 58
46 | 46 Il 47 | 46 47
48 | 46 48 49 52 53a 53b 55 Il 49 | 46 49
50 | 46 47 50 51 55 60 Il 51 | 46 47 51 55
52 | 46 52 55 Il 53a | 46 53a 55
53b | 46 53a 53b 55 Il 54 | 46 47 49 54
55 | 55 It 56 | 56
57a | 56 57a Il 57b | 56 57b
__ 58 | 56 58 Il 59 | 56 59
60 | 60 Il |

for the preferential orientation possesses pure electric di-
pole character. As a result the direction of the polariza-
tion vector determines the symmetry F; of the orientating
operator F 1tis relatively easy to realize experimentally
the following symmetries of optical excitation: Unpolar-
ized light incident along [100] or light polarized along this
direction yields F; =D,[100]. An analogous optical exci-
tation obtained by replacing the propagation or polariza-
tion direction by [110] and [111] yields F; =D,[110] and
F,=Dj3[111], respectively. Light with a polarization vec-
tor in the (100) plane, but not along (100) or (110)
directions, results in a symmetry F;=C,[100]. Finally,
F,=C,[011] is obtained when the polarization vector is
lying in the (011) plane, but not along (110}, (100), or
(110) directions.

In actual experiments it is necessary to consider wheth-
er the concentration and the population distribution of the
defect over its orientations are both uniform over the
whole crystal. The effect of an optical excitation is
stronger near the surface of the crystal which has received
the irradiation, and is diminishing with increasing dis-
tance from this surface. In such a case it is very difficult
to rotate the crystal without changing the population
numbers N, which are measured in the Raman experi-
ment.

B. Practical sets of optical polarization geometries

For any given orientating operator Fitis in principle
possible to determine 21 IP’s (see Sec. II A) of a dynamical
“mode from a set of 21 measurements using well-chosen
polarization directions of the incident and scattered light.
However, in a practical experiment such an extended set
of accurate measurements is often hard to perform.
Moreover, the experimental setup often limits the choice
of the polarization vectors @ and b: We will only consider
the perpendicular scattering geometry which is the one
commonly applied in Raman experiments. A pair (3,b)
will further be called an optical geometry pair (OGP). It
is useful to choose the OGP in such a way that the expres-
sions of the scattered intensities as a function of the IP
[Egs. (7)] are as simple as possible, and still permit one in
the determination of the highest number of IP’s in as few
measurements as possible. Finally, the different intensity
measurements must be performed in the same experimen-
tal conditions in order to obtain the same experimental ef-
ficiency factor k [Eq. (1)]. This factor is influenced by the
orientation of the sample, the condition of the crystal sur-
faces, the position of the laser beam, and so on. Three
OGP sets were selected on the basis of the criteria given
above (Table XI and Fig. 2). The OGP sets are further di-
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TABLE XI. Explicit expressions of the Raman intensities I, g as a function of the Raman IP’s for each of the practical OGP’s
discussed in Sec. IIIB. The right part of the table lists the error orders of the angular dependence of these intensities (see Sec. III E)
for each symmetry F; of the orientating operator F. Bach set of OGP is divided in several subsets which are often measured together
in the experiments.

Angular error order

_oGp | Raman intensity expression | C1 C2[100] C2[011] D2[100] D2[011] C3 D3 C4 D4 T
[ 12,y = 83 |1 1 1 2 1 1 1 2 2 2
set 1.1 |1, . =& |1 1 1 2 1 11 2 2 2
| Iy = 8 | 1 1 1 2 2 1 1 1 2 2
| Iyy = q2 |1 1 1 2 1 1 11 22
| Iy.yz = 5(81 + g2 + 201) 1 1 1 1 1 11111
set 1.2 | Jyyz = L(s1 +q2 — 2vy) 1 1 1 1 1 111 11
| Iz.yz = §(82 + 83 — 2t;) 11 1 1 2 11 2 22
) | Loys = 3(s2 + 85 + 2t;) 11 1 1 2 11 2 22
| Iny,y = (g2 + 83 + 2vg) 1 1 1 1 1 1 1 1 11
set 1.3 | Lgy = L(gs + 835 — 2v) 1 1 1 1 1 111 11
| Iry: = L(s1 + 82 + 2t3) 11 1 1 1 111 12
| Izg,= = (81 + 82 — 2t3) 1 1 1 1 1 1 1112
|Izy,yz:i(fI2+81+82+83)+%(t1+t2+t3+u2+v1+vs) 1 1 1 1 1 1 11 11
sct 1.4 | Lyys = 5(qe+ 81 + 82 +83)+ L(—ti —ta +t3 —uy — vy +vg) | 1 1 1 1 1 111 11
|[zil,yz'_‘%(‘h‘*“«?l+32+33)+12‘(t1—32‘t3—u2+v1—ve) 1 1 1 1 1 1 11 11
| Lyg,yz = i(g2 + & +82+83)+ H(—ti+ta —t3 +ug —v; —vg) | 1 1 1 1 1 1 11 11
[ e =aq | 1 2 1 2 2 11 2 2 2
set 2.1 | I, =s, |1 1 1 2 1 11 2 2 2
| Iy,z = 8 |1 1 1 2 2 111 2 2
| Iy,z = 83 | 1 1 1 2 1 11 2 2 2
Iy 2z = 5(81 + 83 + 2t2) 1 1 1 1 1 1 1 1 12
set 2.2 | Iy .z = L(8y + 85 — 2t,) 1 1 1 1 1 1 1112
Iz,zi = ~(q1 + 82 — 203) 1 1 1 1 1 1 1 1 11
) | Loze = L(q1 + 82 + 203) 11 1 1 1 111 11
| Loy,e = §(q1 + 85 + 205) 1 1 1 1 1 1 1 1 11
set 2.3 | Ly = L(g; + 85 — 2v5) 1 1 1 1 1 1 11 11
lzy,z = ."(81 + 82 + 2t3) 1 1 1 1 1 1 1 1 1 2
Ipy,: = 5(81 + 82 — 2t3) 1 1 1 1 1 1 11 12
Iiyze = 5(q1 + 81 + 82 + 83) + 3(t1 + to + t3 + uy + v3 + v5) 1 1 1 1 1 1 11 11
set 2.4 Izy,zz = %(ql + 81 + 82 + 83) + %(—tl —to +1i3 —u; — vz + 05) 1 1 1 1 1 1 1 1 11
Izgyzz':' Ilf(ql + 81 +82+83)+%(—t1+t2~'t3“u1 +‘U3-—1)5) 1 1 1 1 1 1 1 1 11
Lya.s = (g + 81 + 82+ 83) + L(ty —to — 3 + uy — v3 — v5) 1 1 1 1 1 111 11
| Iy = 83 |1 1 1 2 1 11 2 2 2
set 3.1 | I, =8 1 1 1 2 1 11 2 2 2
Iyz,. = Ygs + 81 — 202) 11 1 1 1 111 11
Iyz,y = Lge + 81 — 20;) 1 1 1 1 1 111 11
Loy = L(s2 + 83 + 2t;) 1 1 1 1 2 11 2 2 2
set 3.2 | I 4z = (82 + 83 — 2t4) 1 1 1 1 2 112 22
Iyzyz = §(g2 +g3) + ri + 81 — 01 —vp 1 2 1 2 2 1 2 2 2 2
) Iyzy= = §(g2 +¢3) — 311 11 1 2 2 1.1 1 22
| Lyz),. = L(as + 81) + L(82 + Vs — v2 — V20y) 11 1 1 1 111 11
set 3.3 | Lzys),s = L(gs + 81) + L(s2 — V23 — vz + V204) 11 1 1 1 11111
| Liys)y = a2 + 81) + L(s3 — V22 — v1 + V/2v5) 11 1 1 1 111 11
| Taya = §(g2 + 81) + 5(85 + V2t — v1 — v/20g) 1 1 1 1 1 11111
| Leyz),ye = §(g2 + qs) + §(92 + 83 — 1) + §(t1 + ve)
| +¥2 (ug — ug — vg) 1 1 1 1 1 111 11
set 34 | a(yz),ye = §(a2 +qs) + §(s2 + 85 — r1) + §(t1 — ve)
| +YE (g + ug + vy) 11 1 1 1 11111
| Liiyz),9: = };‘_(_112 +q3) + %(82 +83+7r)+ %(81 —t; — vy — vg)
g[ +‘€g(—u2+u3—u.;+ve)+ 4(—t2+t3) 1 1 1 1 1 1 1 1 11
i Tz(yz)yz = %»_92 +qs)+ f(e2 + 83+ 1)+ L1 —t1 —v1 —v2)
‘ + Y2 (ug — ug + ug — vg) + Y (ts — t3) 11 1 1 1 111 11
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z z
Z z
y Y X
X
Laser ;ﬁser
beam beam
X X

(a) OGP set 1 (b) OGP set 2

FIG. 2. Schematic representation of the optical geometries
for OGP sets 1, 2, and 3. The laboratory and crystal reference
frames are denoted by (X, Y, Z) and (x,y, z), respectively. The
scattered light is in each case collected along X. The crystal
faces are {100} planes except in OGP set 3 where there is an ad-
ditional face along a {110} plane.

(c) OGP set3

vided into subsets which are often measured together in
the experiments. The pairs (5',-,3,-) within a set can be
realized without rotating the sample. For this reason the
same factor k will occur in experiments belonging to the
same set, if all other experimental conditions are kept con-
stant.

In Table XI the experimentally measured intensities
I, g are given as a function of the IP. The notation intro-
duced for the rotation axes (Sec. II A) is also employed for
the polarization directions o and B, which are expressed in
the x, y, and z axes fixed to the principal {(100) crystal
directions. For example, a=xj means «f|[110], while
a=x(yz) stands for a polarization vector a in the (011)
plane at 45° between [100] and [011].

From the Raman intensities measured in one or even
several OGP sets it is not possible to determine all of the
IP’s of a dynamical mode. Only part of the IP’s occurs in
each set of intensity equations (Table XI). Moreover,
some of the IP’s cannot be solved from these equations.
In Table XII the inverse expressions are given for the IP’s

TABLE XII. Raman IP’s which can be solved from the expressions in Table XI for each set of
OGP’s separately, and without taking into account the relations between the IP’s which result from the

symmetry F; of the orientating operator F. Also included are some simple IP combinations which are
useful in a BT analysis using several OGP sets (Sec. III B).

lsg —vg = %(Ix(yz),z - I:'i'.(y?),z)
ve — 1tz = @Uz(y%),y = Ia(y2),9)

Optical |
geometry | IP expression
l q2 = Iy,y
’ 8 =1, VZ
] 8 = Iz,z
83 = Iz,y
set 1 tl == %(Iz,yz - Iz,y?z)
ts = §(Lay,z — Loy,2)
v1 = 3(ly,yz — Iyyz)
ve = 5(lay,y — L2g,y)
t2 +up = %(Iz?l,yz — Lag,yz — Iz’.‘];yz + szl,y?)
| q1 = Iz,z
| 81 = 1y,-
| 82 = Iz,z
| 83 = Iz,y
set 2 | te = L(lyzz— Iy z2)
I l3 = %(Izy,z - Izy,z)
I v3 = %(Iz,zz - Iz,zi)
| vs = §(Lay,e — Lay,a)
| up +i = %(Izy,zz - Izy,z! - Izy,zz + Izﬁ,z!)
| 82 = Iz,z
l 83 = Iz,y
set 3 } t1 = 3(Iz,yz — In,yz)
|
|

Ug — Uz — vy + \/ﬁve = \/ﬁ(lz(yi),yz - Ia‘:(yz),yz)
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and for relatively simple linear combinations of the IP’s,
which can be calculated from experiments in each OGP
set separately. These inverse expressions were solved from
the equations in Table XI for a general symmetry F;. For
a specific symmetry F; the IP’s must follow at least the
minimum BT for the defect symmetry O;=C, (see Sec.
IIB). The equations of the Raman intensities I, g (Table
XI) can be simplified using the relations included in this
minimum BT (Sec. II D 2) for the symmetry F;. As a re-
sult a higher percentage of the often less numerous in-
dependent IP’s can be determined. For example, for
F; =T and OGP set 3 the three independent parameters g,
r, and s can all be determined (BT no. 60 and equations in
Table XI). The number of available independent IP’s is
listed in Table XIII(a) and compared with the maximum
number of independent IP’s for each of the symmetries
F,.

In favorable experimental circumstances it is possible to
combine the measurements in different OGP sets in order
to determine an even large number of IP’s. Even if the
symmetry of F is not taken into account in order to sim-
plify the expressions for I, g, the combination of the
three OGP sets yields 16 IP’s out of the full set of 21 IP’s.
Such a combined determination is possible if one can ob-
tain identical experimental conditions for different orien-
tations of the crystal, and as a result the same k factor
occurs. In other cases, it is possible to determine the ratio
between the k factors because the same polarization OGP
occurs in the different sets. For example, I, , can be mea-
sured in each of the three sets. All of the measurements
must, however, relate to the same population distribution
of the defect over its possible orientations.

C. Behavior-type analysis with a limited number
of IP’s

When only part of the IP can be determined from the
experiment, either from measurements in a single OGP set
or by combined measurements in several sets, it is possible
to check only part of the relations which define the BT
[Egs. (18), Table VII]. As a result it will sometimes not be
possible to distinguish between different BT ’s for a given
Fy, and in general fewer representative modes can be dis-
tinguished. For each symmetry F; we have determined
the representative modes which cannot be distinguished on
the basis of this limited BT analysis: They are given be-
tween parentheses in Table XIII(b). Each of the OGP sets
is considered, as well as useful combinations of several
sets. In general the number of modes which can be dis-
tinguished, N [see Table XIII(b)], is lower than 15, the
maximum value for a BT analysis, except for an analysis
of measurements in the three OGP sets, taking
F;=C,[011]. The latter, however, is a quite difficult ex-
periment.

As mentioned before in Sec. IID2 only one of the dif-
ferent symmetry groups, F;, which can be transformed
into each other by a rotation ﬁ,, €0, has been considered
in our calculations. The BT resulting from a rotated sym-
metry F; of the orientating operator F can be obtained
from the BT before rotation by a permutation of the IP.
If a full set of 21 IP’s is available the representative modes
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which can or cannot be distinguished from one another
are the same for different rotated groups F;. However,
this is not true when only part of the IP can be deter-
mined, as is often the case in experiments employing one
or several of the OGP sets. In this case the equations in
Table XI must be considered together with the suitable
permutations of the IP in the BT (Table VII) in order to
obtain the modified Table XIII(b). The orientations of the
groups F; which were discussed throughout this paper
and which are listed in Table XIII were chosen because
they offer the best opportunities for applying the BT
analysis in combination with the chosen OGP.

It is often very fruitful to combine two or more experi-
ments in which different symmetries F; of the orientating

operator F and, eventually, different OGP sets, are em-
ployed. In this case the population numbers N, are dif-
ferent, and different sets of IP’s result. However, for each
of the symmetries F, the possible BT and the correspond-
ing possible representative modes can be determined
(Tables VIII and VII). Only those modes are selected
which are compatible with the results of all of the experi-
ments with different F;. For example, from the BT
analysis on the basis of an experiment with F; =D,[011]
and an OGP set 1 only ten sets of representative modes
can be distinguished, i.e., N4,=10 [Table XIII(b)]. For
Fi=T and set 3, one finds Ng,=7. If one combines the
results of the two experiments, up to 13 sets of modes can
be distinguished, compared to the maximum of 15 sets for
a BT analysis with a full set of 21 IP values. Moreover,
this combined experiment is relatively easy to perform.
One can easily derive the effect of similar combinations
on the basis of Table XIII(b).

A suitable F; and a suitable OGP set can be chosen on
the basis of the results in Table XIII(b). For example, if
one wants to decide between the modes C5:E, D3:E, C,:B,
and T':T, which possess the mode numbers 13, 15, 17, and
25 (see Table VIII), respectively, an experiment with
F,=D,[011] in OGP set 1 is sufficient. However, to dis-
tinguish C; from C,[110]:B and C;[111]:E with numbers
1, 5, and 13, respectively, is not possible with a single F,
and a single OGP set: The combination of the BT
analysis for F,=D,[011] with set 1 and F; =T with set 3,
as described in the last paragraph, happens to be a favor-
able choice.

D. Calculation of the Raman-tensor elements

If for a given defect the representative modes have been
determined or if the choice has been narrowed down it
may be worthwhile to attempt to solve Eqgs. (9) in order to
calculate the relative values of the Raman tensors and of
the population numbers. The number of independent IP’s
can be derived from Table VII, and the number of in-
dependent population numbers are found from the sets
S,=FR,0; (see Sec. IIC) and can be obtained from
Tables IV(a) and IV(b). The Raman tensors for the modes
corresponding to a given representative mode are explicit-
ly given in Table V. Equations (9) or the explicit equa-
tions in Table III are simplified by these expressions of the
population numbers and the Raman tensors. If the num-
ber of independent IP’s determined in the experiment is
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TABLE XIII. (a) Number of independent Raman IP’s yp which can be determined from measurements in one set of OGP’s or
from a combined experiment in several OGP sets, for each symmetry F; of the orientating operator F. When only one or two IP’s are
not available these are given between parentheses. The cases where the full set of IP’s is available are denoted in italic. (b) The sets of
representative modes (Table VI) which cannot be distinguished from each other on the basis of the Raman measurements of a single
dynamical mode are given for any set of OGP’s or a combination of several of them, and for any symmetry F; of the orientating

operator F. The maximum number of modes which can be distinguished, N g, is also listed.

(a) Optical geometry

Fy | e | setl set2 set3 | set 1+2 set 1+3 set 1+2+3
Cy | 21 | 8 8 3 | 14 12 16
Cqp[100] | 13 | 6 4 3 | 8 8 8
Cofo1t] | 13| 8 5 2 | lry,r) 9 12(rs)
Dj100] | 9] 4 4 2 | 5 B 7(r2, 7s)
D2[011 | 9 | 5 3 2 I 7(1‘1,1'2) 8 8(7‘2)
Go[l11] | 7 | 6(r) 6() 6() |  6(r) 7 7
Dg{111] | 8 | 5(r) 5(r) 5(u) | 5(r) 6 6
Ce100) | 7 | 4 3 1 | 5(ri,re) 5(gi,re) 6(r2)
Dyf100] | 6 | 3 3 1| 4ri,r2) 4q,re) 5(rz)
T 31 2(n) 200 38 | 201 3 3
(b)
| Fy | |
OGP | symimetry | Nggo | Distinguishable sets of representative modes
| C,Cz[100) | 9] (145)(2817) (310 11) (69 16 19 20 23 24) (7 18 21 22) (12 14) (13) (15) (25)
| Cal011],Dof011] | 10|  (145)(28) (31011) (69 16 19 20 23 24) (7 18 21 22) (12 14) (13) (15) (17) (25)
set1 | D2 [100],D4 | 5] (1245817) (37101118 2122) (69 1619 20 23 24) (12 13 14 15) (25)
| . | 7] (124517) (3710 11 18 21 22) (6 9 16 19 20 23 24) (8) (12 14 15) (13) (25)
set 1or | Cs | 10| (14)(2) (310 11) (5 13) (6 9 16 19 20 23 24) (7 18 21 22 25) (8) (12 14) (15) (17)
set 2 or | D3 | 9 | (14)(28)(31011) (513) (6916 19 20 23 24) (7 18 21 22 25) (12 14) (15) (17)
set 142 | T | 3| (1234581213141517)(37101118212225)(691619202324)
set2 | Cy,Cof011] | 9| (145)(2817) (310 11) (89 16 19 20 23 24) (7 18 21 22) (12 14) (13) (15) (25)
| C2[100],D2%,C4,Ds | 5 | (1245817) (37101118 21 22) (6 9 16 19 20 23 24) (12 13 14 15) (25)
| Cy,Ce[100] | 5| (13451011) (27 8 17 18 21 22) (6 9 16 19 20 23 24) (12 13 14 15) (25)
set 3 | Cp[011],Dg011] | 3| (134510111213 14 15) (27 8 17 18 21 22 25) (8 9 16 19 20 23 24)
| D [100] | 3] (1234578101117 18 21 22) (6 9 16 19 20 23 24) (12 13 14 15 25)
| Cy4,Dy | 2 | (1234578101112 13 14 15 17 18 21 22 25) (8 9 16 19 20 23 24)
set 3or | Cs | 12| (14)(2)(31011) (5 13) (8 16 19) (7 18 21 22 25) (8) (9 20 24) (12 14) (15) (17) (23)
set 1+3 or | D, | 11| (14)(28)(31011) (513) (6 16 19) (7 18 21 22 25) (9 20 24) (12 14) (15) (17) (23)
set 14243 | T |7 (1248) (37101118 21 22 25) (5 13 15 17) (6 16 19) (9 20 24) (12 14) (23)
| C1,C2[011] | 13| (14)(2) (31011) (5) (89 16 19 20) (7 18 21 22) (8) (12 14) (13) (15) (17) (23 24) (25)
set 142 | C2[100],D,[011] | 12| (14) (28) (310 11) (5) (8 9 16 19 20) (7 18 21 22) (12 14) (13) (15) (17) (23 24) (25)
| Dg[100lDs | 8] (1248) (37101118 21 22) (5) (6 9 16 19 20) (12 13 14 15) (17) (23 24) (25)
| Cy | 10| (124) (3710111821 22) (5) (6 9 16 19 20) (8) (12 14 15) (17) (13) (23 24) (25)
| Cy | 11| (145)(2) (31011) (69 16 19 20 23 24) (7 18 21 22) (8) (12 14) (13) (15) (17) (25)
| C2[100] | 9] (145) (2817) (310 11) (6 9 16 19 20 23 24) (7 18 21 22) (12 14) (13) (15) (25)
set 143 | Cg[011],D5[011] | 12| (145) (28)(31011) (89 18 19 20) (7 18 21 22) (12 14) (13) (15) (17) (23) (24) (25)
| Dg[100,Dy | 9] (12458) (37101118 2122) (69 1619 20) (12 14) (13 15) (17) (23) (24) (25)
| Cy | 11| (1245) (3710111821 22) (69 16 19 29) (8) (12 14) (13) (15) (17) (23)-(24) (25)
| C, | 13| (14)(2) (31011)(5) (691619 20) (7 18 21 22) (8) (12 14) (13) (15) (17) (23 24) (25)
| C.[100] | 12| (14)(28)(31011)(5) (8916 19 20) (7 18 21 22) (12 14) (13) (15) (17) (23 24) (25)
{ C,[011] | 15| (14) (2) (310 11) (5) (8 16 19) (7 18 21 22) (8) (9 20) (12 14) (13) (15) (17) (23) (24) (25)
set 1+2+3 | D2 [100] | 10| (1248) (3710111821 22) (5) (6916 19 20) (12 14) (13 15) (17) (23) (24) (25)
1 D,[011] | 14| (14)(28) (31011) (5) (6 16 19) (7 18 21 22) (9 20) (12 14) (13) (15) (17) (23) (24) (25)
| Cqy | 13| (124) (37101118 2122) (5) (6 16 19) (8) (9 20) (12 14) (13) (15) (17) (23) (24) (25)
| D4 | 11| (1248) (3710111821 22) (5) (616 19) (9 20) (12 14) (13 15) (17) (23) (24) (25)

%The representative modes D2[100] and D2 [011] are both included.

higher than the number of unknowns occurring in the E. Experimental errors related to the orientation
equations it is possible to determine part or all of them. of the crystal
Several of the 25 representative modes [Egs. (19a) and The main systematic errors which occur in the Raman

(19¢)] which could not be distinguished on the basis of a  intensity measurements result from deviation of the crys-
BT analysis can eventually be identified by this procedure. tal orientation with respect to the polarization directions.
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In most experimental setups it is, given sufficient care, rel-
atively easy to obtain accurate polarization directions. We
have inspected the errors in the Raman measurements Al
which result from rotations of the sample around the x, y,
and z axes, over small angles f3;, B,, and 33, respectively.
For many of the polarization geometries and symmetries
F, the angle-dependent intensity errors are of first order,
ie.,, AI~p;, but in more favorable cases they are of
second order, Al ~B,? or B3; B;; this is indicated in Table
XI.

In Table XIV we have listed the leading terms of those
Raman intensities which yield first-order angular errors
for the symmetry F;=T of the orientating operator F.
When the defects are equally distributed over the possible
orientations, the relations in Table XIV permit one to test
and eventually to correct the orientation of the crystal (see
Fig. 2).

IV. RAMAN SCATTERING UNDER THE
INFLUENCE OF A SUSTAINED EXTERNAL FIELD

When a sustained external field, e.g., an electric or uni-
axial stress field is applied to a crystal in which an aniso-
tropic defect is continually reorientating either through
thermal activation or by a tunneling process, changes in
the population numbers N, may be induced. For such
cases the present theory is directly applicable. However, if
the center is static one may envisage the possibility that
the frequency of the dynamical mode under consideration
is changed with a different amount for different orienta-
tions of the defect. If so, the Raman scattering intensity
can be separately measured in different peaks in the Ra-
man spectrum. With minor changes the method presented
in this paper can be applied to analyze these types of ex-

TABLE XIV. Explicit expressions of the Raman intensities I, g, which possess a first-order angular
dependence (Sec. IIIE and Table XI), without preferential orientation of the defect, F;=T. These ex-
pressions can be applied to monitor and correct the orientation of the crystal.

set 1.2 lyyz = %(3‘*“1)“(23‘*‘"“‘1)!91
Iyyz = 5(8+q)+ (28 +r — q)Bs
set 1.3 Ipyy = %(8 +q)+ (28 +r—gq)Bs
Lgy =35(6+9)— (28 +r—q)Bs
Liyy: = (38 +q) — 128+ —q)(B1 — Ba)
set 1.4 Izy,y& = %(38 + Q) + %(28 +r— Q)(ﬂl + ﬂa)
Loy e = §(88 +q) — 2(28 + r — q)(B1 + Ps)
Iogyz = §(38+q) + 5(28 +r — q)(B1 — Bs)
set 2.2 L= L(s8+q)— (286 +r—q)Be
Iz, = %(a +q)+(28+r—q)B2
set 2.3 Iy, = %(8 +q)—(28+r—q)Bs
Izg,z = %(3 + q) -+ (28 +r— q)ﬂa
Izy,zz = %(38 -+ Q) + %(28 +r— Q)(ﬂg — ﬂa)
set 2.4 Ipy2z = 5(38+q) — 1(28 +r —q)(B2 + B3)
Lyz: = 1(3s+q) + 128+ 1 —q)(B2 + Bs)
Loyas = (88 +q) — (28 +r — q)(B2 — B3)
set 3.1 Iz = 3(s+q)— (28 +1 —q)B
Iyzy =L(8+q)+ (28 +r—q)h1
Lyyz),y = 338+ )+ 3(r — )1 — a2 + Y2(s+ 1 — q)Bs
set 3.3 Liys),y = $(38 + ) + 3(r — 981 + Y apo — (s +r — q)Bs
| Iy(ys),: = §(88 +q) — §(r — q)B1 + %‘2—‘(3 +r—q)B2 — —Vg&ﬂa
| Bigs),s = 138 +q) — 3(r — @)1 — (s + 1 — )82 + L2 8
| Lya)ge = 328 —r+q) + 881 + YZ(r — q)(B2 + pa)
set 3.4 = Iz(yz),ye = §(28 — 1+ q) + 881 — %‘E(" —q)(B2 + B3)

Lys)yz = (48 + r + q) — Y2(28 + 7 + q)(B2 + fs)
Liys)ys = Y48 + 1 +q) + Y2 (28 + r + q)(B2 + B3)
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periments. We will assume that even when the external
field is applied on the crystal the population numbers N,
of the defect in its possible orientations are equal, N, =N.
Furthermore, we will assume that the Raman tensor of
the dynamical mode is not perceptibly influenced by the
external field. The Raman tensors T® for the different
orientations related by inversion symmetry, v, and ﬁ),,, al-
ways yield the same Raman scattering intensities. An
external field lacking inversion symmetry can possibly
yield different frequencies for these two orientations and
result in two peaks of equal intensity in the Raman spec-
trum. Otherwise a double intensity is found in a single
Raman peak for these two orientations. By taking this
into account, the symmetry properties of the dynamical
mode and of the external field can be considered in the cu-
bic point group O instead of Oy, in a similar way as dis-
cussed for the preferential orientation experiments (see
Sec. IT A). ,

If we now consider the subgroup F; C O as the represen-
tative symmetry group of the external field, the orienta-
tions of the set V, corresponding to the right coset F, of
the subgroup F; [see Sec. II B, Egs. (10)] are found to pos-
sess the same frequency of the dynamical mode. The Ra-
man scattering intensity is given for each set V, separately
by

IN= 2 I,
v, EV,
in which I, is given by Eq. (2). The intensity expressions
[Egs. (4) and (7)] split up in analogous equations for the
intensities I'”, in terms of the partial Raman intensity pa-
rameters P,-(j?:j: given by Eq. (11). One can define short
notations for these partial IP’s analogous to those given in
Egs. 8): ¢\", r{", s, ¢!”, u/", and v{". Explicit expres-
sions for these partial IP’s can be derived from Table III
by setting
1, v, EV,
"o, vV, .
It is possible to apply all of the results given in Secs. II
and III for the IP’s of each Raman peak separately. The
BT defined in Table VIII can be strongly simplified by
Egs. (20). For each of the sets V, a set of equations analo-
gous to Egs. (9) must be considered, but they all depend
on at most five unknowns: the relative values of the Ra-
man tensor elements 7))’ common to all the possible
directions of the defect. As a result solving these equa-
tions is much easier for these types of experiments than
for the experiments with preferential orientation discussed
in Secs. II and III.
V. CONCLUDING REMARKS

(20)

In this paper we have systematically investigated the in-
tensities of polarized Raman scattering from point defects
in a crystal with a cubic lattice. The partial or complete
preferential orientation of the defects allows one to deter-
mine to a large extent the symmetry properties of the de-
fect, the nature of the dynamical modes, and sometimes
the elements of the Raman tensors. The accompanying
tables are helpful in the practical application of this
method. It is relatively easy to extend the method to crys-
tals with a different lattice symmetry. It is also possible
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to extend the method to resonant scattering by taking into
account the antisymmetric nature of the Raman tensor.

We have applied the theory to the study of interstitial
hydrogen atom centers in the cubic alkali-halide crystals.
The interstitial hydrogen atoms are perturbed by one or
two substitutional halogen-ion impurities, heavier than the
host halogen ions. Polarized optical bleaching was em-
ployed for a partial preferential orientation of the defects.
The results are presented in an accompanying paper.*
They provide a particularly comprehensive example of the
practical application of the behavior-type analysis dis-
cussed in this paper.
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APPENDIX A: PROOF OF EQ. (10b) IN SEC. IIB

By definition two rotations fi\p and ﬁq belong to the
same right coset F, (r=1, ..., 0) of F; CO, the symmetry

group of the orientating operator F, only if there exists an
operator R; € F; such that

RR =R, .
Applying both sides of this equation to the arbitrary ini-
tial orientation v, one finds

AN A A
Rival =RqU1 .

Taking into account the correspondence between the
orientations v, and the rotations R,,:

va=R,v; , (A1)

one obtains
A
Riv,=v, .

The rotation of v, by R ; is equivalent to a rotation of F by
R, 'E€F,. Because this is a symmetry operation of the
orientating operator, F is left invariant. Therefore, the
population numbers in the two orientations are equal, as
stated in Eq. (10b):

N,=N, .
APPENDIX B: PROOFS OF THE RULES GIVEN
IN EQS. (12) IN SEC. IIB

In the following the transformation of a function f( T;)
of the Raman-tensor elements T}; is defined by

R f(Tj)=f(R,TR.);) .
If for a general Raman tensor T and for ﬁp EF;:
R(TPTH)=KTPT)., (B1)

then this relation also applied to each of the rotated Ra-
man tensors T ":

R(TPTM)=KT T, (B2)
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because they are also covered by the general tensor TV,

P(r) . KP(’)' ,
From the definition in Eq. 11(b) one derives gy’ sts't’ o
and for the total IP:
Py= 3 TPT= 3 RATPTH). .
R EF1 R\qEFl ul = E'/’/ Px]: ' —Kz'/’/‘rP;t;)’t’zKPsts’t’ ’ (BS)
r
. A _ A _1 AN A
Taking R, =R ;"' R,, then R, €F; and as was quoted in (12b).
P,(J })J > R T(I)T(l ) Fina}lly the proof leading f%'om Eqgs. (12¢) to Eq. (12d) is
Rer a special case of the proof given above. Taking Eq. (B4)
! with K=0 as the original condition, Egs. (12¢) and (12d)
=3 R (TPTH) . (B3)  can be proven with the same procedure which leads to
v, EV, ! conclusion Eq. (BS).
Combining Egs. (B2) and (B3) APPENDIX C: PROOF OF EQS. (13) INSEC.IIC
PGy =K 3 TPTH =KPy) . (B4) Two rotations f and I/Z\ belong to the same left coset
o EVy O, (r=1,...,0" of the defect symmetry group O, if and
The above equation is equivalent with only if there ex1sts an operator R; €0, such that

R,R;=R, .

S RrPTd)=k 3 R(TVTY) . e . .
If both sides of this equation are applied to the arbitrary

R eF, R,€F, L . .
? initial orientation v, one finds

If this is valid for an arbitrary symmetrical tensor T ‘!

also applies to each of the rotated tensors T *': RyRiv1=Ryv; . (C1)
R (7 (n) (n) (m) g (m) The initial orientation v, is, however, invariant under the
3 =K T5 , 115 ’
ﬁép Ry(TijTi%})= REF Ry(TST ) operators of the symmetry group O; of the defect
1 1
Rivy=v, .
> Rp (T(l)Tm, > Rp (TOTW,) . V=0 (€2
R eF R,eF, Combining Egs. (C1) and (C2) yields
If R,EF,, then the summation over R turns into a sum- R, =Ry,
mation over R R R with R EF: and by the correspondence between the rotations ﬁ,, and
s R (T(I)T(l) )=K S R (Tg,”Tm ), the orientations v, [Egs. (A1)] it is found that
R,€F, R,€F, Vg =Up »
or equivalently, for each coset F,: as was stated in Eq. (13b).

APPENDIX D: INTERNAL SYMMETRY OF THE EQS. (9) (SEE SEC.IID 1)

The set of variables in Egs. (9) (Sec. IT A) is given by
X=(T,T2,T3,T2,T13,T15,My, ... . MM, ... MgM{,... M{(M{", ... M{), (D1)

in which we employ the linear combinations M,,, M ,,, M ,,, and M ,, of the populatlon numbers N, [see Table III(b)].

Equatlons (9) are explicitly given in Table III(a). The following three permutations P;; of the set of variables (D1) leave
Egs. (9) [Table III(a)] invariant:

Py X=(T2,T11,T33,T13,Ty3,T12,M,M | ,M¢,Ms,M4,M3,M), ... ,M3"),
Py X =(T33,T,T11,T13, Ty3, To3, MuMg,Ms,M | ,M,,M3,M %, ..., M},
Py X=(T1,T33, T, To3, Tip, Ty, M, Ms, My , Mg, My, M, M5, ..., M }") ,

in which the sets of M ,,,, M ,,, M ./ permute in the same way as the set of M,,. The indices of the permutations P,-j in-
dicate the permutations of the indices of the Raman-tensor elements T;.

Taking into account, on the one hand, the relations between the population numbers M which result from the defect
symmetry O; (Sec. IIC), and, on the other hand, the specific expressions of the Raman tensors (Table V), it is found
that, as a result of this permutation symmetry, the modes D,[100]:B;, B,, and B; cannot be distinguished from each
other: One cannot make a distinction between them on the basis of Raman measurements only.
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