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Some properties of the spectrum of the Sierpinski gasket in a magnetic field
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The spectrum of the Sierpinski gasket in a magnetic field is discussed using a synthetic Green s-
fUnctlon technique. This directly relates the spectrum of an (Pl + l)-stage gasket to that of its Po-

stage components and allows effective use of the implicit symmetry. It is found that the (n+1)-
stage spectrum is nested with three eigenvalues belonging to the three different representations be-
tween any two consecutive stage-n eigenvalues. For the special points where the eigenvalues for
stage n and n+ 1 coincide we provide proofs for the two Rammal-Toulouse [Phys. Rev. Lett. 49,
1194 (1982)] nesting properties, derive explicit expressions for the evolution of the degeneracies, and
construct the eigenfunctions. Some of the implications and remaining problems are also discussed.

tion technique on a large gasket, these authors use the re-
verse procedure and consider the formation of a large gas-
ket by combining smaller ones. This allows one to use the
properties of the smaller gaskets explicitly. In this paper
we apply the same technique to a study of the spectrum of
the Schrodinger equation in a magnetic field. We use the
Green's functions and eigenfunctions of the n-stage prob-
lem to construct solutions on the larger (n +1)-stage gas-
ket. Since this only requires matching at three common
boundary points, the resulting algorithm is relatively sim-
ple. It also allows one to utilize the implicit symmetries.
The gasket (in a field) only has an explicit threefold rota-
tional symmetry. It has additional symmetry properties
because each of its component gaskets had the same sym-
metry originally.

Our main result is a new general nesting property. %e
sllow tllat, between RIly two collscclltlvc clgcllvalllcs of tllc
n-stage gasket there are three eigenvalues on the (n+ 1)-
stage gasket belonging to the three irreducible representa-
tIons.

We also obtain simple proofs for the two nesting prop-
erties of Rammal and Toulouse concerning eigenvalues of
an n-stage gasket which remain in the spectrum for all
larger gaskets. We construct the eigenfunctions and, when
the eigenvalues are degenerate, determine the evolution of
the degenel acy.

I; INTRODUCTION

II. ITERATION PROCEDURE

A. Formulation of the probleIll

As shown in Ref. 3, the solutions of the free-particle
Schrodinger equation

(i 7 A/40) p=q p—
on a net composed of thin wires of equal length a lead to
the difference equations

A considerable number of recent investigations deal
with the solutions and spectrum of linear difference equa-
'tlolls oil fhc Slcrplllskl gasket. Tllc Illo'tlvRtloll fol this
interest is largely the belief that it will lead to insight into
the properties of random fractals such as percolation clus-
ters. ' There is also, however, an intrinsic interest in
studying a problem which has no translational symmetry
and is nevertheless exactly solvable, at least in principle,
because of its dilation symmetry. In Ref. 3 we derived re-
cursion relations for the linearized Landau-Ginzburg
equations in a magnetic field, which are also applicable to
the free-particle Schrodinger equations, by using an exact
decimation technique. When there is no external field the
equations simplify considerably. The spectrum and eigen-
functions were studied in detail by Domany et al Rnd, .
using somewhat different decimation techniques, by Ram-
mal" and by Tremblay and Southern. The spectrum is
only defined on a Cantor set with very high degeneracies
(of the order of volume). The eigenfunctions are also lo-
calized as can be seen explicitly6 or from the fact that a
finite fraction of the eigenstates (-—,

'
) disappears at each

stage of the scale transformation and cannot be associated
with eigenstates on the dilated gasket.

Rammal and Toulouse have studied the spectrum in a
magnetic field using the recursion relations derived in Ref.
3. They found some remarkable symmetries and nesting
properties of the spectrum. The decimation technique is
extremely cumbersome, however, in this case, because
both the eigenvalues and the distribution of magnetic
fluxes are renormalized. One does not obtain any simple
relationship between the spectra of gaskets of different
size. As a result, Rammal and Toulouse" were not even
able to prove all the properties they observed and missed
others.

The hierarchical structure of the gasket was used in a
different way in determining the scaling behavior of the
conductance and in solving the London equations for su-
perconductivity. ' Instead of using a successive decima-
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for the amplitudes of P at the vertices of the net (P;,PJ).
The summation in Eq. (2) is over the connected neighbors
of vertex i, and the eigenvalue of the difference equations
(2) is 1'elated to 'tllat of tile Sclll'odlilgel eqllatloil thlough

t =cosqa (3)

ri =exp{ iy—-) y"=g) J.'A d 1, (4)

where 40——(iric/e) is the flux quantum. The y;» must
obey the {gauge-invariant) loop condition

around 1oops I
0ij =2ir@1/~ 0=)'I (5a)

where 4» is the flux through the loop i encircled by the
segments ij. It will be convenient to supplement this by
the network analog of a London gauge:

gy, j=0. (5b)

This is formally equivalent to a Kirchoff law. ' Equa-
tions (5) determine the y;» uniquely.

We want to solve Eqs. {2) on a (two-dimensional) Sier-
pinski gasket in constant external magnetic field such that

rr~za'a
70

for an elementary triangle.
Assume we know the solutions of Eqs. (2) and (5) on an

n-stage gasket, i.e., the solution of:

(tZ"—A ")
i a)„=0,

where Z„ is a diagonal matrix whose elements Z;" are the
numbers of connected neighbors of site i [see Eq. (1)]. 2 "
is a Hermitian matrix with elements g,~ [Eq. (4)] deter-
mined by solving Eqs. (5) on the n-stage gasket. Equa-
tions (7) have

P 3
3 + I

2

independent solutions
~
a)„with eigenvalues t =a„. Be-

cause of the somewhat unusual form of Eqs. (7) (the Z;"
are not all equal) we replace the standard orthonormality
conditions by

(a i
Z"

i p) =5(ap) .

The gasket as a whole only has a point symmetry (Ci ).
Thus the eigenfunctions can be classified according to the
irreducible representations of this group. We write

gv e 2+vi/3 & 0

FIG. 1. The (n =3) Sierpinski gasket. The notation for the
matching vertices (1,2,3) and the external vertices (I, II, III) is
shown.

(n +1)-stage gasket and use the known (n-stage) solutions
to construct the (n+1)-stage solutions. There are three
effects.

(a) The phase factors (y;») are modified. Equations (5)
for each of the three separate (n-stage) gaskets must be
supplemented by the loop condition [Eq. (5a)] for the new
central hole for which (Fig. 1)

(b) Equations (2) for the three common vertices (1,2,3;
see Fig. 1) are modified because each of these vertices now
has connected neighbors on two adjacent n-stage gaskets.

(c) The amplitudes at these vertices (
~
al),

~

a2)) are
unique and each shows up in the equations originating in
two separate (n-stage) gaskets.

8+1 8
~ 5ll+i

Plj EJ ~ Sj (13)

where the y,"» are the solutions of Eqs. (5) on the separated
n-stage gasket. Thus the 5,»+' obey

(14a)
around loop

for all loops belonging to the separate n-stage gaskets.
Also

B. The phase factors

Consider first the modification of the phase factors.
We write

and use v as an index for the representations. For special
values of the field 5,"»+ ' =2y„=2.4"yo

around loop

(14b)

(m being an integer), two of the representations always be-
come degenerate.

We want to combine three n-stage gaskets to form an

for paths enclosing the new central loop generated by the
iteration. Finally one has the Kirchoff equations (Sb) for
all vertices. Qne notes that, because of Eqs. (14a) the 5,»
are irrotational on each of the n-stage gaskets. They are
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ill fRct cqlllvalcllt to 'tllc currents induced by llllposlIlg R

vol'tRgc
4i GMMXi (~ } GMM+1Xi+I

= —GMMX~+A, (GMM+I)+Xi I, i =1,2, 3 (24)

between the two connected external vertices (e.g., 2 and 3
for gasket I). Thus on each separate (n-stage} gasket (M)
one can define site voltages so that

U; UJ
=—5,"J+, M =I,II,III .

Clearly

III III I I II II
Ug

—U2 =U2 —U3 =U3 —U] =U

~ n VO
A, =exp i—4"

3

Finally, eliminating the P; from Eqs. (24), one finds

I iX)=0,
where

(26)

but in general U; &U; —~'GMM+ I
—(A, +) GMM+I

C. POrmal 801Qt10n

We can now write Eqs. (2) for the (n+1)-stage gasket
as three equations:

(tZ n e ivy —neivM)
~

&M)
~

XM)

This has two types of solutions: (a),

i =1,2,3.

(27)

where V is a diagonal matrix with elements U; [Eq. (16)]
and Z" and A" are defined in Eq. (7). The inhomogene-
ous term

~

X ) on the right-hand side of (18) results from
the fact that [matching condition (b) above] the equations
for the common vertices (m =1,2, 3) are modified. We
write

Tllc clgcIlvalllcs, Rlld clgcnfunctlons, 011 tllc (II + 1)-stage
gasket are then automatically also solutions on the n-stage
gaskets separately [Eq. (18)]. The second type of solution
is (b),

sin p„(v+iM)%„"=0, v=0, +1
p, =0+1

III IIX] ———Xi ——X),
I IIIX2 ———X2 ——X2, (19)

where

P„(1)=(4"yo—el )/3,
X3 ———X3 ——X3 .II I

All other XP vanish. The explicit expression for the X, in
terms of the site amplitudes (

~
ai ) is obvious from Eq.

(2). Solution of Eqs. (18) with the subsidiary condition (c)
that the amplitudes at the common vertices, each of which
shows up twice, must be unique —is equivalent to a solu-
tion on the (n + 1)-stage gasket.

%e thus want to invert the matrice on the right-hand
side of Eq. (18). Consider first the inversion of the n-stage
matrix [Eq. (7)j,

m)„(aj „
G;~ =(tZ"—3 "),J '=g. (20)

ia,M,p)n i

t —a„ (23)

is the part of GMM associated with eigenfunctions a be-
longing to the representation p. Solving Eqs. (18) for the
common vertices (i =1,2, 3) gives

and, including the 5;i phase factor [Eqs. (16) and (18)]:

(G"-)M=(tZ"—e-" ~ "e" )-'=G"e '
'1 (21)lj SJ

To solve Eqs. (18) we only need the elements of G for
the external vertices

and v is the representation to which the solution belongs.
One notes that the three equations (29) only differ in a
permutation of the (non-negative) coefficients of the 4„.

For completeness we also give the recursion relations
fol t,llc 0 ~,

+sin p„(v+p, )%„"

The derivation of this expression is straightforward. For
special values of the field, when solutions of Eq. (28) ap-
pear, Eq. (31) does not describe 'Ii"„+' completely.

III. PROPERTIES OP THE SPECTRUM

A. The general case

For most values of the external field (i.e., yz) there are
P„distinct eigenvalues on the n-stage gasket and, more-
over, none of the three coefficients sin p(l) vanishes.
Thus each of the three Eqs. (29} has poles at all the n-
stage eigenvalues (un ), and therefore one solution an+ I be-
tween any two consecutive m„. This leads to an interest-
ing new nesting property for the spectrum.

Nesting property IIL' There are three eigenvalues a„+I
on the (n + 1)-stage gasket, one for each irreducible repre-
sentation v, between any two consecutive eigenvalues of
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the n-stage gasket.
We have retained the notation of Ramrnal and

Toulouse for the nesting properties. We note that nesting
property I of this reference (not proven there) is in fact a
corollary and follows from continuity (see Sec. IIID
below).

Rammal and Toulouse also found that all eigenvalues
changed sign under the transformation

Pp~w —fp~an ~—An ~ (32)

B. Special values of the field

Consider fields such that

y„=4"yp——mm . (33)

One of the three coefficients sin P„(l) in Eqs. (29) will
then vanish. Thus one misses P„solutions. They can be
constructed from the solutions on the n-stage gasket.

Let o.'„be a nondegenerate eigenvalue belonging to rep-
resentation p. On the (n + 1)-stage gasket one thus has

l
a, i & =P(X+)'

I
a i + I }, i =1,2, 3 (34a)

[from Eq. (18)], for the amplitudes at the common ver-
tices. To form a consistent solution at stage n+1, one
also requires

~a,i)=g '~a, i+I} . (34b)

When yo obeys Eq. (33) this will determine the new repre-
sentation v. We have thus constructed an eigenfunction
for the (n+I)-stage gasket belonging to the eigenvalue
Gn

It is also straightforward to see that

a„+,(y) =a„(y)+(y y, )'S'[(y —y, )'], — (35)

It is easy to see that this holds on the zero-stage gasket
(a triangle). The coefficients sin P„(l) in Eq. (29) are in-
variant under this transformation except for a permuta-
tion of indices. Thus this symmetry follows trivially.

In this general case each of Eqs. (29) has P„—1 distinct
solutions, all different from the a„. Thus one obtains all
(P„+i 3P„—3)——solutions on the n+1 stage from Eqs.
(29).

One also notes that the only degeneracies which can
occur in the spectrum are accidental. Two a„belonging to
different representations (v) can coincide. [A threefold
degeneracy can only occur if 0'"„(t;y)—=0.]

Exceptions to this general situation occur when, for
some reason, Eqs. (29) have less than 3(P„—1) solutions.
This can only happen if there are less than 3P„distinct
poles in these equations because of degeneracies (in the n-

stage spectrum) or because the relevant residues vanish.
It follows from our analysis in Sec. II that all eigen-

values obey Eq. (26). Thus if one misses solutions in Eqs.
(29) they must show up as solutions of Eq. (28). There are
then eigenvalues on the (n + 1)-stage gasket which also be-
long to the n-stage spectrum for the same field
[a„+i(y)=a„(y)]. The two nesting properties of Ref. 4
describe situations of this type. We consider the different
possibilities separately.

where y, is a special value obeying Eq. (32). One way of
seeing this is to expand the 5,'z"+", but not the y,j, in

y —y, and then consider the resulting perturbation expan-
sion for the (n +1)-stage gasket. To zero order in y —y,
one obtains a„+i(y)=a„(y). Since all odd powers of
y —y, in the perturbation are pure imaginary, the form
(35) follows. Alternatively one could note that the residue
at a„(y) in Eq. (29) is proportional to (y —y, ), which
leads to the same result.

We have thus proven nesting property II: the lines a„(y)
and a„+i(y) are tangential at y, .

This property of the spectrum was discovered by Ram-
mal and Toulouse. They state that they were able to
prove it by using the decimation technique but the proof is
complicated. The present derivation seems straightfor-
ward. We have also constructed the eigenfunctions.

C. Vanishing residues

D. Degenerate eigenvalues

Let a„(y) be a p-fold degenerate eigenvalue (p )2) on
the n-stage gasket. This means that p distinct lines a„(y)
in the a, y plane intersect (or meet) at the point (a,y).
From nesting property III (Sec. III A above) one therefore
has 3p —3 lines a„+i(y) nested between the a„(y) which
must go through (a,y). In most cases this will determine
the new degeneracy

pn+1= 3pn —3 ~ (37)

We note, however, that when (36) holds for all degenerate
eigenfunctions one can have additional solutions [of Eqs.
(29)] with the same eigenvalue.

It is also straightforward to construct the new eigen-
functions. For the given eigenvalue one has 3p linearly in-
dependent (but riot orthogonal) eigenfunctions on the n-

Consider situations where, for some eigenvalue a„ the
amplitude at the external vertices (

~

a,M }„)vanishes:

~
a(y),M}„=0.

The solutions on the three n-stage gaskets are then in-
dependent. If one had a p-fold degeneracy at stage n the
(n + 1)-stage degeneracy for the same a is 3P.

One also notes that the residue at the pole near y is
W((y —y) ) so that a„+i(y) and a„(y) are tangential for
the solutions we have considered. Since Eqs. (29) have no
pole at a„(y) one may, however, accidentally have addi-
tional solutions (of those equations) for which
a„+i(y) =a„(y).

An example for this type of behavior is evident in the
spectra calculated by Rammal and Toulouse. One of the
three eigenvalues for yo ——3~/4 on the n =1 gasket (Fig. 3
of Ref. 4) has the property (36). As a result it becomes
threefold degenerate in the n =2 spectrum (Fig. 4 of Ref.
4). Eigenfunctions of this type also show up in zero
field, ' ' where they can be related to the 8 representation
of the symmetry group (D3). An example is the eigen-
function for y=m; t =+1 in the same spectrum. We
know of no reason why the field condition (33) and Eq.
(36) should be connected in general.
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stage gaskets. One has three matching conditions for the
amplitudes at the vertices 1,2,3 which must be obeyed by
linear combinations of these functions. In general, this
will lead to 3p —3 independent solutions.

One notes that for p Q 3 one can always choose the basis
functions on the n-stage gasket so that only two of them
have nonvanishing amphtudes at the external vertices of
the n-stage gasket. One can therefore choose an essential-

ly localized basis set for these functions similar to the sit-
uation for zero field.

This property of the spectrum was noticed by Rammal.
and Toulouse (nesting property I) without proof. Our
derivation provides a proof and also allows us to deter-
mine the evolution of the degeneracy.

An interesting case occurs when there are degeneracies
for fields which obey Eq. (33). This certainly happens for
yu ——O, m (e.g., the point Q2 in Fig. 3 of Ref. 4). Each of
the p intersecting branches (at stage n) then generates a
tangential branch at stage n+I by the construction of
Sec. IIIB. In addition there are 2p —3 branches which
can not be related to a unique representation (p) a stage n.

IV. DISCUSSION

The synthetic technique we have developed seems to
have advantages. The role of symmetry and the relation-
ship between the spectra of gaskets of different size, in the
same field, come out much more clearly this way. Our
main new result is nesting property III (Sec. III A). When
combined with the results of Sec. III 8 and III0 (nesting
properties II and I of Ref. 4), this amounts to a no-
crossing property. Three lines a„+i(y) belonging to the
three irreducible representations v are trapped between
any two consecutive lines a„(y) and can only cross them
when they intersect.

We were also able to assign representations to the lines

and to relate the representations at stages n and n+1
through Eqs. (34). This amounts to serious constraints on
the spectrum and has interesting implications. %'e only
discuss the bounds of the spectrum.

The ground-state eigenvalue of the spectrum at stage n
is described by a series of intersecting arcs each belonging
to some representation p. They are also a lower bound on
the spectrum at stage n +1. The successive ground states
(of stages n and n +1) coincide at the cusps (of stage n)
and when yk =km/4n. In most cases there will be more
than one yk on a given (n-stage) arc. The a„+i(y) touch-
ing at successive k must belong to different representa-
tions [v; Eq. (34)]. This generates new cusps. One also
notes that old cusps develop rapidly increasing degenera-
cies. This is closely related to the decoupling of loops,
which dominates the magnetic susceptibility. One also
Ilotes that the low-field expailsloll of tile glolllld-state eil-
ergy is only relevant at very low fields (y &m/4").

As emphasized in Ref. 4 a proper understanding of the
spectrum in a field would be of considerable interest. One
would like to understand the evolution of the gaps in the
spectrum and the density of states for large n This s.eems
surprisingly elusive. We note that Eqs. (29) and (31) have
a form which does not easily lend itself to numerical itera-
tion to large n In thi.s respect they are not superior to
Eqs. (6.16) and (6.20) of Ref. 3 [Eqs. (5) and (6) of Ref. 4]
which are also very inconvenient numerically. It would
certainly be of considerable interest to develop a suitable
algorithm possibly along the lines of Refs. 7 and 8.
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