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We analyze the behavior of discrete-time equations of motion for two-component diffusive sys-

tems under renormalization transformations, near a fixed point. We calculate the largest eigen-

values and their eigenfunctions exactly, thus determining the universal large-scale behavior of such a
system. The special case in which the diffusivity of one component (the "scatterers") vanishes is

equivalent to the problem of diffusion of the other component (the "electrons" ) in the presence of
static disorder. Specific models of this type have been previously studied and are known to have
anomalous long-time behavior: In one dimension, the mean-square displacement has a nonanalytic
term proportional to t' . We verify the universality of this behavior, and determine the universal

nonanalytic behavior in two dimensions (a logarithmic term) and in three dimensions (t ' ). The
amplitudes of the terms are obtained exactly for the most common model.

I. INTRODUCTION

Considerable interest has recently been focused on the
problem of diffusion in disordered systems. ' It appears
that theoretical understanding of such systems is useful in
explaining certain experimental phenomena, such as im-
purity conduction in semiconductors, ' hopping conduc-
tion in amorphous semiconductors, ' and low-frequency
conductivity in superionic conductors. Theoretical study
of disordered systems has been most successful in one di-
mension, in which the long-time (low-frequency) behavior
is known to be nonanalytic: the mean-square displace-
ment (r (t) ) has a t '~ term as well as the usual diffusion
term proportional to t.

The purpose of the present paper is to apply techniques
developed for renormalization-group analysis of discrete
equations of motion to this problem. ' A system in which
electrons diffuse through static disorder can be regarded
as the D'~0 limit of a two-component diffusive system
in which electrons and scatterers both diffuse, with dif-
fusivities D' and D'. We will analyze this system for ar-
bitrary D'. We will show that not only can the known
one-dimensional behavior be straightforwardly obtained
by our discrete method, but the method applies equally
well to higher dimensionality, in which only approximate
calculations have previously been done.

In Sec. II we will briefly review the method of discrete
hydrodynamics and the precise definitions of time- and
space-coarsening transformations introduced in the
preceding paper it is intended that the present paper be
self-contained. In Sec. III we construct an invariant man-
ifold of equations of motion for two-component systems
containing the fixed points as well as the scattering per-
turbations of interest. These are used in Sec. IV to com-
pute exactly the largest eigenvalues and their eigenfunc-
tions for the coarsening transformation linearized around
the fixed point. From these we obtain, in Sec. V, the
universal long-time behavior of such interacting systems,
and then display the universal behavior of the mean-

square displacement in Sec. VI (d =1) and Sec. VII (d=2
and 3). It is emphasized that this approach is not limited
to the calculation of asymptotic power laws whose ampli-
tudes must be fit to the properties of specific systems; we
compute some exact amplitudes for specific models. For
any microscopic model, amplitudes can be calculated by
carrying out the coarsening transformations numerical-
ly." This determines the behavior on any larger scale
than the microscopic one, in a way which is guaranteed to
give the correct universal long-time limit.

II. DISCRETE EQUATIONS OF MOTION
AND COARSENING TRANSFORMATIONS

c (r, t) =c~ (r hr, t b t) laic (2.1)

where r is the dimensionless position vector of the center
of a cell of size 1, the integer t is a dimensionless time,
and hc' and b,c' are conveniently chosen mass units for
electrons and scatterers, respectively. The system can be
described by equilibrium time correlation functions of the
c's, or alternatively by a set of "equation-of-motion coeffi-
cients. " These describe the probability distribution of the
contents c (r, l) at time At in an ensemble having fixed
contents c(r,O) at time t=O. A moment in this ensemble
is distinguished by square brackets [ ], and expanded as a
power series in the c (r, O)'s,

We will use the discrete equations of motion described
for a one-component system in Ref. 10. Briefly, these
describe a system on a length scale b,r and a time scale b, t,
through cell contents c~; the subscript p indicates that
this is a physical (not dimensionless) content. We general-
ize to a two-component system by adding a superscript
a=e (electron) or s (scatterer). Thus c~(r~, t~ ) is the mass
of electrons in a cubical cell (hr on a side) centered at po-
sition r~, at time t~ (a multiple of At), and c~(r~, t~ ) is the
mass of scatterers. For purposes of scale coarsening, we
construct an equation of motion (EOM) in terms of di-
mensionless contents
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[c (r, l)]= g [c (r, l)], ~c (r', 0)+ g g [c (r, l)]. . . „,c (r', 0)c (r",0)+
r', a'

(2.2)

The square brackets with c 's as subscripts are just con-
stants, the coefficients in the power series. There is no
constant term in Eq. (2.2) because we have redefined c
by subtracting the equilibrium average (c ); it follows
that [c (r, 1)]=0when c (r, O) =0.

The corresponding equation for the second moment
does have a constant term, for which we use a subscript 1

(formally, the product of zero c 's),

[c~(r, 1)c~(r', l)]=[c (r, l)c (r', 1)]i+ (2.3)

We will also consider the FT of the corresponding equili-
brium average, which we will denote by 6 q .

We will also deal with the nonlinear propagator

(2m') 52 (k —k' —k")6 ~ -(k, 1;k',O, k",0)
eikr ik'r' ik"r"[ca(r—1)]-

r, r', r"

(2.6)

The term [cc], describes the conditional fluctuations of
the contents. We can also define moments in ensembles in
which m & 1 earlier contents are constrained: In the mth
ensemble, c (. . .,0), c (. . ., —1), and c (. . ., 1 —m) are
constrained. The power-series coefficients in these vari-
ables (describing non-Markovian behavior) are necessary
in order to describe the system completely. ' ' In the
present paper, however, we will deal mostly with the
continuous-space limit' in which the non-Markovian ef-
fects are negligible, and the coefficients in Eqs. (2.2) and
(2.3) (having m= 1) uniquely specify the system. In par-
ticular, we will show later that they determine the equili-
brium equal-time correlations among the contents, which
we denote by angular brackets: (c (r, t)c (r', t') ).

The coefficients in Eq. (2.2) will be sometimes referred
to as "propagators. " A general propagator may be denot-
ed [c (r, l)c (r', 1) ~ ] — . It is a function only of
the differences between the r's, and can be most con-
veniently treated in terms of its Fourier transform, '0

denoted 6--,'. .'. . For example,

(2m)~52 (k —k')G (k, 1;k',0)

y e ikr+ik'r'[ a(„1)] (2 4)
P, P

defines 6 . This is a special case of a general formula
given in Ref. 10 [Eq. (4.1)]. Here 52 is a Dirac 5 function
with period 2m in each of the d spatial dimensions which
is factored out to make 6 nonsingular; G itself need not
be defined except at k =k'. This propagator describes the
effect of the cell content of component a' at t=O on the
content of component a at t= l.

The Fourier transform (FT) of the conditional fluctua-
tion coefficient [cc]i in Eq. (2.3) is a "fluctuation propa-
gator" 6
(2~)"5, (k+k')G (k, l,k', 1)

= ge '"" ' "[c (r, l)c (r', 1)] . (2.5)

I

which describes the effect of components a' and a" on

component a; the special case 6,', will be used in Sec. V
to describe the effects of scatterers (component label a=s)
on electrons (a=e).

Note that the time arguments in Eqs. (2.4)—(2.6) are
redundant, as is one of the wave vectors (because of
translational invariance. ) We will usually omit the redun-
dant arguments, writing, for example, 6 (k) in Eq. (2.4).

We will regard an equation of motion E as being speci-
fied by the totality of these propagator s 6 [Eqs.
(2.4)—(2.6)]. (This differs from the viewpoint of Ref. 10,
in which the equilibrium fluctuation G,q was used in-
stead of the fluctuation propagator 6 .)

We will want to perform space- and time-coarsening
transformations S and T, and mass-rescaling transforma-
tions R, on an equation of motion E which describes a
system on the scale b, r, b t, hc', and hc'. We define S, T,
and R by requiring that SE describe the same system on
the scale 2 b,r, ht, hc', and hc', that TE describe it on the
scale in which 2ht replaces ht, and that R~E describe it
when 2b,c replaces b.c . The action of the R 's on the
propagators is straightforward, and was described for the
one-component case in Ref. 10. In general, R divides G
by a factor of 2 for each predicted c factor, and multi-
plies G by a factor of 2 for each such constrained content.
Thus if E is described by 6,', 6,',6", . . . , the rescaled
E'=R,E is described by

[6,'(k)]'= G,'(k), (2.7a)

[G,'(k)]' =26,'(k), (2.7b)

[6"(k)]'=2 G"(k) . (2.7c)

(The square bracket no longer denotes an average in a spe-
cial ensemble: the 6's are just functions. )

Space coarsening was also considered in detail in Ref.
10, and the results can be generalized to the two-
component case. In the continuous-space limit, S involves
just rescaling the distance variables. In terms of the
Fourier transform, each equilibrium average has' a factor
of 2 and each k is replaced by k/2. For example,

[G,q (k)]'=2"G,
q (k/2) . (2.8)

One can show from the equations (Appendix C) relating
these equilibrium averages to the propagators defined in
smaller ensembles that there is one fewer factor of 2 for
each constrained variable. That is,

[6--,'. '. '. (k, . . .)]'=2 ' 6=, '. '. '. (k/2, . . .), (2.9)

where n, is the number of constrained-variable indices
a,a ', . . . . In particular,

[G (k)]'=G (k/2) . (2.10)

The case of time coarsening is less simple. Basically it
involves combining the propagators that go from t=0 to
1 with those that go from t= 1 to 2 to obtain a propagator
describing evolution from t =0 to 2. General methods for
calculating these time-coarsened propagators in real space
are described in Appendix A and in k space in Appendix
D. These involve associating an "EOM graph" with each
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(a) k ~

of fixed EOM s 1s parametrized by the dlffus1vlty 3 and
the mean-square content fluctuation A. It is easiest to
describe in the continuous-space hmit (hr~O for fixed
physical diffusivity so the dimensionless D becomes
large), and this limit is sufficient because the general case
can be calculated from it [see Eq. (3.20)]. In this limit,
the fixed point has the one-particle propagator

6 (k)=exp( —Dk ),
and the equilibrium equal-time fluctuations

(3.1)

(c) qk-q
8 (k,q)

FIG. 1. Graphical representation of pIopagators. The verti-
cal coordinate is time; the top of each graph is t=1. There is
one external vertex for each predicted or constrained content
[the internal intersection in (c) is not considered a vertex]; those
corresponding to predicted variables are decorated with circles.
Each is labeled by the corresponding component label o; (equal
to e or s). The corresponding k vector is written by the line

leading to the vertex. Because of k-vector conservation (transla-
tional invariance) there are one fewer independent k's than ver-
tices. When it is unclear [e.g., in {a) and (b)] which vertex k
refers to, an arrow is drawn (toward it if predicted, away if not);
the other vertex has —k.

[6;(k)]'=6,'(k)6,'(k), (2.11)

is represented graphically (using the rules at the end of
Appendix D) by the first term in Fig. 2: An electron
"propagates" from t=O to 1 to 2 (t=2 means t'=1 in
terms of the coarse time scale). The second term allows
for the possibility (if physically allowed) that it will turn
into an s between t=0 and 1, and then turn back into an
8.

EOM coefficient 6, as indicated in Fig. 1. Here we will
describe the time-coarsening of the electron propagator
6,' from a graphical point of view. The time-coarsened
G," has the two terms shown in Fig. 2. Our previous
one-component result,

G,q(k)=A . (3.2)

In Ref. 10 we generalized these propagators to a broader
family of EOM's parametrized by additional parameters
such as the Burnett coefficients, within which we could
carry out an eigenvalue analysis of the coarsening
transformation which determined the universal large-scale
behavior. Here, we will describe a less straightforward
but more elegant method of defining such a family of
EOM's, which we will call an "invariant manifold" be-
cause it is closed under the coarsening transformations.
Unlike the previous formulation, this method is generaliz-
able to nonlinear and multicomponent systems.

First note that we can view the propagator in Eq. (3.1)
as the exponential of a "generating propagator"

Gs(k) = Dk—
It turns out that the entire EOM (including fluctuations)
may be viewed similarly as the exponential of a "generat-
111g EOM, w111ch 111clljdes a fluctllatlon pl'opagatol' suc11
as Eq. (2.5) (and wEll, 111 a 'two-comporlerlt sys'ten1, also 111-

volve nonlinear interaction propagators). To make sense
of this, we must first define what is meant by the ex-
ponential of an EOM containing these various propaga-
tors. We define in Appendix 8 precisely what it means to
multiply two EOM's, E, and Eb, basically EbE, is the
EOM which evolves a system forward in time by applying
E, and then Eb. If E, =Eb, this amounts to time coar-
sening: E,E, =TE, . For the simplest propagator 6 (k)
in a one-component system [which we may refer to as
6(k), since a takes on only one value], multiplication of
EOM s simply involves multiplication of the propagators,

III. INVARIANT MANIFOLD F{OR
A TWO-COMPONENT SYSTEM

6 (k) =6, (k)Gb(k) ~ (3.4)

In Ref. 10 we were able to analyze the universal large-
scale behavior of one-component diffusive systems by
identifying a family of EOM's which are fixed points of a
combination ST2R"~ of the transformations S, T, and
R. %e will obtain these fixed points here as a special case
of a much more general manifold of EOM's. The family

The multiplicative identity is an EOM denoted 1E
whose only nonzero propagators are

Evidently, lz can be thought of as evolution through a
time interval of zero length; the propagators leave the
electrons and scatterers exactly where they were. %e also
need a notion of addition: I.et us define each of the prop-
agators of E=E, +Eb to be the sum of the corresponding
propagators of E, and Eb. Omitting the a sub- and su-
perscripts, we can write this schematically as

(3.6)

FKy. 2. Diagrams for time-coarsening the electron propaga-
tor in a two-component system [Eq, {2.11)].

G'iven RIl idcIltity RIld QotioIls of IDUltlp11catioll RIld Rddi-
tion, we can, of course, define exponentiation by
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exp(Es) = lim (1E+Esln)" . (3.7)

It is then clear that for a one-component system this gives
the correct fixed-point one-particle propagato~ [Eq. (3.1)]
from the generator in Eq. (3.3): Exponentiation of the
propagators reduces to exponentiation of real numbers be-
cause of the simple relation (3.4)

We would like to obtain the entire fixed-point EOM (in-
cluding fluctuations) this way, that is, by including a fluc-
tuation propagator in the generator. Let us consider the
most general generator for the fluctuation propagator
6 (k) [Eq. (2.5)]. In a conservative system, it must van-
ish when k=0 (the total content cannot fluctuate), and
symmetry requires it to be even in k. We will later write
the general form [Eq. {3.13)], but the simplest such func-
tion clearly is a constant multiplied by k2,

6 (k) =ak (3.8)

&(exp[ D( —k) (1——u)]ak (3.9a)

I.et us examine the fluctuations produced by exponentiat-
ing a generating EOM consisting of the fluctuation propa-
gator [Eq (3.8)] and the diffusion propagator [Eq. (3.3)].
We will do this by a general perturbative procedure which
can be used to expand any exponential e + in powers of
F, where E is an "unperturbed" generator (here it con-
tains only the one-particle propagator [Eq. (3.3)]) and E ts
the perturbation [here Eq. (3.8), the fluctuation propaga-
tor]. The procedure is described in detail in Appendix E,
and gives for the conditional fluctuation

6~~(k)= J du exp[ Dk (1—u—)]

FIG. 4. Graphs for computing the equilibrium average G~
(left-hand side) from the fluctuation propagator 6 (first term
on the right, an average in the ensemble in which contents at
t=O are constrained), according to the rules of Appendixes C
and D. Those subgraphs on the right-hand side having no
decorated vertices (circles) at t=0 refer to the constrained en-
semble; the one with such decorations refers to the equilibrium
ensemble.

We can check that the equilibrium fluctuations created
by the fluctuation generator [Eq. (3.8)]»a the fluctuation
propagator [Eqs. (3.9)] are the ones [Eq. (3.2)] we expect
at the fixed point for a one-component system. This can
bc done by a graphical pI'occdurc described 1Q dctall 1Q

Appendix C; it is a general method for computing EOM
coefficients in a large ensemble from those in a smaller
ensemble. The present problem is a special case in which
the large ensemble is the equilibrium ensemble (in which
the "EOM coefficients" are just equilibrium averages such
as G,q ), and the small ensemble is the ensemble in which
all variables at times r (0 are constrained and the corre-
sponding EOM coefficient is 6 . The graphical equa-
tion involved 1Q this case 1S sho%'Q 1Q F1g. 4. Using thc
rules in Appendix D to turn it into an equation for the
Fourier transforms, we obtain

2a [1—exp( —2Dk )] . (3.9b) G,q (k) =6~~(k)+ 6~(k)6~( —k)G, q (k) . (3.10)

Equation (3.9a) is obtained from the graph in Fig. 3, and
can be understood heuristically as follows: At time u the
fluctuation generator F=ak acts, creating two fluctua-
tions with momenta k and —k. Each of these evolves
from time u to time 1 according to the propagator
exp[ —D(+k) (1—u)] from the EOM e " "'. This ac-
counts for all of the factors in Eq. (3.9a), which must be
integrated with respect to the time u at which the pertur-
bation Facts.

l')du
/fk

-.0
FIG. 3. Graphs for the perturbative calculation of one of the

propagators [6 (k), the left-hand graph] of the exponential
eE+, where E has only the propagator 6 (k)= —Dk and I'
has 6 (k) =ak~. Details are described in Appendix E. In the
middle ("rosary" ) graph [which represents the right-hand side of
Eq. (E2)] the short vertical lines are propagators from 1~+Edu
(i.e., are I —Dk du) and the horizontal line is ak2du from Fdu.
In the right-hand ("topological" ) graph (which represents the
sum of all rosary graphs with this topology, having F's at dif-
ferent times u) the vertical propagators are
6 (k) =exp( —lN hu) from the EOM e8~", where hu = 1 —u.

6 (k)=DO D2k Dgk— — (3.12)

where Do is a decay rate {zero in the present application,
where we assume conservation of particles), D2 is the dif-
fusivity D, and D4 is a Burnett coefficient. ' The general-
ization of the fluctuation propagator [Eq. (3.8)] can be
written

6 (k) =akzexp( (2k Agk . . ) —. ——(3.13)

We use this form rather than a simple power series so that

The product term represents the aInount of ihe t=O
equilibrium fluctuation which remains after propagating
to t=1 via 6; adding the newly generated fluctuation
6 must recreate, at t=l, the equihbrium fluctuation.
With use of Eq. (3.1) for 6, the solution is Eq. (3.2), as
promised. The mean-square fluctuation is given by

(3.11)

as one might have guessed by thinking of A as resulting
from a dynamic equilibrium between the creation of fluc-
tuations (at the rate a) and their decay (at the rate 2D).

We have now shown that we can express the fixed-paint
EOM's in a simple exponential form [Eq. (3.7)], with gen-
erators given by Eqs. (3.3) and (3.8). These are now very
easy to generalize, by replacing each propagator by a gen-
eral power series in k. Equation (3.3) becomes
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g will be interpretable as a correlation length; the k term
again vanishes in a conservative system. We now have a
manifold of EOM's

E(DO,D2, . . . , a,g, . . . ) =exp(Gg), (3.14)

T(exp(Es ) ) =exp(Eg )exp(Eg ) =exp(2Eg ) . (3.15)

The action of T on a generator is therefore [using Eq.
(3.6)]

T: Gg~26g . (3.16)

Our collection of generators is obviously closed under this
transformation. The necessary transformation of the D's
is evidently [from Eq. (3.12)]

where Gs is the generator defined by Eqs. (3.12) and
(3.13). (This manifold turns out to be the same one we de-
fined in Ref. 10.) The important property of this mani-
fold which allows us to use it to analyze the large-scale
behavior is that it is closed under the space- and time-
coarsening transformations S and T and the rescaling
transformation R. A great virtue of the present (exponen-
tial) approach is that it makes this obvious, and makes it
easy to determine the action of S, T, and R on the param-
eters D,a, g, . . . . The action of T is particularly simple.
Time-coarsening an exponential EOM [Eq. (3.7)] gives the
product

Let us now try to generate an invariant manifold for
our two-component system. Construct a generating EOM
by simply combining the generators [Eqs. (3.12) and
(3.13)] for the respective one-component systems,

6,'(k) = D—o D2—k D4—k

6 (k) = Do——D2k —' ' '

G"(k)=a'k exp( —g, k —. ),
6"(k)=a'k exp( —gk — ) .

(3.21a)

(3.21b)

(3.21c)

(3.21d)

Clearly, this gives a manifold of EOM s in which the two
species diffuse independently of one another. The sim-
plest sort of interaction would involve including in the
generator

6,'(k) = —Do' D2'k —+ (3.22)

Then the coefficient [c (r, l)],
( i

describing the influ-

ence of the s content on the e content is nonzero. Thus
extra electrons appear in numbers proportional to the
number of s's: The s's act as mobile sources of electrons
if Do'~0. If D,"=0, but D2'&0, electron-hole quadru-
poles (e.g. , spherical distributions with holes inside and
electrons outside) are emitted.

The simplest nonlinear interaction is generated by the
propagator depicted in Fig. 1(c),

T: Dm~2Dm (3.17a) 6,', (k, q) = Bo—Bk ——B2k (k q) B—3$—

and from Eq. (3.13) for the fluctuation generator we ob-
tain

T: a~2a,
T:

(3.17b)

(3.17c)

R: D ~D
but from Eq. (3.13),

R: a ~a/4,
R:

(3.18a)

(3.18b)

(3.18c)

For space coarsening, Eq. (2.10) implies

S: ( —DO —D2k — )~(—Do —D2(k/2) —' ),

The actions of R and S are best seen in the limit that the
generator Gs is infinitesimal; the results will extend to all

Gg by repeated time-coarsening. Then exp( Gg )- 1@+Gs,
and S and R act on generating propagators exactly as
they do on the EOM propagators themselves; this action
is given by Eq. (2.7) for R and Eq. (2.9) for S. It can be
seen that R has no effect on the single-particle propagator
[Eq. (3.12)],

(3.23)

If Bo & 0, electrons disappear in proportion to the product
of the electron density and the s density; this reaction ki-
netics implies that the s's are traps for the electrons. If
Bp (0, e's are appearing instead of disappearing, and
therefore the s's can be interpreted as replicase enzymes
for copying e's. If Bo——0, but B&0 we can describe the
interaction as a modulation of the electron diffusivity pro-
portionately to the local s content: We show in Sec. VI
that the effective diffusivity D' changes by c'B. Thus we
can think of the s's as (forward) scatterers (backward if
B(0), and B as the scattering strength.

We have now uniquely defined a rather large invariant
manifold of EOM's for a two-component system, each of
which is obtained by exponentiating a generating EOM
Es defined by Eqs. (3.21)—(3.23). The manifold is
parametrized by a fairly large number of parameters
( D~,D~,B, a', g„.. .). For brevity, let us denote these by

(pi,p2, . . . ) =p. Then we can write an arbitrary member
of the manifold as E(p). In the Markovian (large-D2)
limit we have been using, we can define the action of S on

&by

so thai
(3.19) E(Sp) =SE(p), (3.24)

S- Dm~2 Dm

and Eq. (3.13) gives

S: a —+2d a,
S: g~g/2.

(3.20a)

(3.20b)

(3.20c)

and similarly for T and R~. We have already computed
Tp, Rp, and Sp for a one-component system [Eqs.
(3.17)—(3.20)]; we can generalize these equations to a
two-component system merely by putting a superscripts
on D and a, and a subscripts on R and g'. We extend the
manifold to small D2 by assuming (3.24) holds for all p;
an explicit definition is
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E(p)= lim S"E(S "p) . (3.25) so that

This gives the E for a small Dz in terms of the E for
"Dz ——2 "Dz, which is large.

IV. FIXED POINTS AND THEIR VICINITIES

We would like to identify a family of fixed points
among the two-component EON's which is analogous to
the family of diffusive fixed points parametrized by Dz
and A' which was found' for the one-component elec-
tron system under the combined coarsening transforma-
tion ST R, . Evidently, the two-component EOM gen-
erated by Eqs. (3.21) with nonzero parameters
Dz, D'z, a', a' is fixed under ST R~~z, where

ST2+ cf/2, B 2—d/2B (4.3)

The eigenvalue for 8 is 2 ~, larger than the previously
dominant one if d & 4. (The sources and traps [Eqs. (3.22)
and (3.23)] give still larger eigenvalues, but we consider
only electron-conserving systems here. )

The large-scale behavior of an interacting two-
component system in one, two, and three dimensions will
thus be dominated by the effects of this eigenvector; it is
therefore the main objective of this paper to determine
these effects.

R:—R,R, , (4.1) V. LARGE-SCALE BEHAVIOR OF A SYSTEM
VfITH SCATTERERS

since this acts like ST R, on the electron propagator
and like ST R, on the s propagator. Let us use
A =a /2Dz [Eq. (3.11)] instead of a to describe the
fluctuations: There is a four-parameter family of dif-
fusive (Fick's-law) fixed points parametrized by Dz, Dz,

and A' in the invariant manifold for a two-
component system. As in any system, ' the large-scale
behavior is determined by the coarsening behavior of the
EOM's near a fixed point. In particular, the dominant
corrections to diffusive large-scale behavior are deter-
mined by the largest eigenvalues of the coarsening
transformation ST R "~ linearized near the fixed point.
A very useful feature of the parametrized invariant mani-
fold we have defined is that by perturbing the parameters
(Dz, D'z, D4, 8, etc.) one at a time, we obtain instant
eigenvectors of S, T, and R. This is because the transfor-
mations do not couple the parameters. The actions of the
transformations on D are given by Eqs. (3.17)—(3.20),
from which we deduce, for example, ST R ~:
DO~2 Do. A perturbation from the fixed point with
nonzero decay rate Da is unstable; it is moved 4 times far-
ther from the fixed point by the transformation, i.e., the
corresponding eigenvalue is 4. However, this corresponds
to a nonconservative system and will not arise in the sys-
tems we consider. A perturbation involving changing the
diffusivity Dz is unchanged by the transformation
ST R: Dz~D2, so that the corresponding eigenvalue
is 1 (such an eigenvector is called "marginal" in the
language of critical phenomena' ). The eigenvalue for the
Burnett coefficient D4 is 2; this was the largest eigen-
value we found for the one-component system, '0 which
therefore determined the large-scale behavior of such a
system. In the two-component system, however, the coar-
sening rules (Sec. II) imply, for the scattering strength 8
[Eq. (3.23)],

S B~2

T: 8~2B,
(4.2)

R, : B-+B,

We now know the fixed points of the coarsening
transformation ST R~~ and some of the eigenfunctions
and eigenvalues of the linearized transformation. Let us
then suppose we have a two-component diffusive system
described microscopically by a certain EOM, which we
have coarsened with ST R until it is close enough to a
fixed point that only one eigenfunction has significant
amplitude. This will be the one with the largest eigen-
value (2 "~ ), whose amplitude is the scattering strength
denoted by 8 in Eq. (3.23). The fixed point we approach
is uniquely specified by the electron and scatterer dif-
fusivities D' and D' (from now on we will omit the sub-
script 2), and by the mean-square fluctuations in electron
and scatterer densities A' and A' [Eq. (3.2)]. It turns out
to be necessary to allow one additional nonzero parameter
describing the scatterer fluctuations, namely their correla-
tion length g„because the fixed-point limit g, ~O is
singular in a certain sense.

We would like to calculate some experimentally
measurable properties of this system with scatterers. We
will concentrate on the dynamic structure factor S(q, c0)
for the electrons, which is determined by the equilibrium
unequal-time averages 6,"q(k, l, —k, O). These can be re-
garded as "EOM coefficients" in the equilibrium ensem-
ble, and can be calculated by the ensemble-changing pro-
cedure of Appendix C from the EOM coefficients (such as
6") in the smaller ensemble in which all variables at
times t&0 are constrained. This procedure essentially
amounts to averaging over the possible fluctuations of
these t (0 variables. One can do this in two stages: First,
average over the scatterer fluctuations (i.e., convert to an
ensemble in which only the electron contents are fixed at
t & 0) via graphs such as those in Fig. 5, and then, average
over the electron fluctuations using the graphs in Fig. 6.
It can be seen that the latter averaging is uninteresting in
our case; we have only Fig. 6(a), in which there is only one
graph. It tells us that the unequal-time average is ob-
tained by convoluting the propagator 6,' with the equal-
time average 6,"~ [which is in fact nearly independent of
k for small g; see Eq. (5.2)]. We have

Rs: B—+2B 6',q(k, 1, —k, O) =6,'(k)G~(k, O, —k, O) . (5.1)
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(a) lgs ~ 0 ~

(b) ~ ~ ~

S 8

FIG. 5. Graphs for averaging the EOM coefficients over the
scatterer contents (described in Appendix C). They involve
averaging over all values c'(. . . ,0) of the scatterer content at
t=Q.

FIG. 7. Wave-vector labeling for the quadratic scattering
propagator 6,'„(k,q, q'} [Eq. (5.4)].

This really contains no more information than the propa-
gator did. [If we chose to allow electron-electron interac-
tions, we would have nontrivial graphs like Fig. 6(b).]

Thus, the physics is all contained in Fig. 5(a), which
gives the scatterer-averaged electron propagator (denoted
by a prime: [G,'(k)]') in terms of the fixed-scatterer
propagator G,'(k) and a correction term involving the in-
teraction propagator quadratic in the scatterer density,
G,'„(k,q, q') (the wave vector labeling is indicated in Fig.
7). We must therefore calculate these unprimed propaga-
tors for our EOM in the invariant manifold, whose gen-
erating EOM is given by Eqs (3.21) and (3.23) with
nonzero D', D', a', a', g„and B. We will compute the
exponential [Eq. (3.7)] perturbatively in B using the
method of Appendix E. We will take the unperturbed
EOM e this time to be the fixed-point EOM
parametrized by D', D', A', and A', except we will also
allow the scatterer correlation length g, &0. This modi-
fies Eq. (3.9b) by a factor exp( —g, k ),

(a)

eo

k

eo
k

"U

. U

The perturbation generator E will be the B term of Eq.
(3.23), i.e., the scattering. The rules listed in Appendix E
then lead to the topological graphs shown in Fig. 8.
These have simple physical interpretations: In the second
term of Fig. 8(a) an electron diffuses until time u, when it
interacts with a scatterer fluctuation. Both it and the
scatterer diffuse until. time u', when they interact again,
after which the electron diffuses until (dimensionless) time
l. Applying the evaluation rules (Appendix E) to Fig. 8(a)
gives the invariant-manifold electron propagator to order
g2

G (k)=A'exp( —g, k )[1—exp( —2D'k )], (5.2a)

leading to a similar modification of the equilibrium aver-
age,

-0

G",q(k)=A'exp( —g, k ) . (5.2b)

(c)

k-q-q' q q'

k-q'
8

-.U

"U

S S

FIG. 6. Graphs for computing equilibrium averages from
scatterer-averaged EOM coefficients by averaging over electron
contents c'(. . . ,0). Species labels are all e and are omitted in
(b).

FIG. 8. Graphs for computing invariant-manifold propaga-
tors (left-hand sides) perturbatively using the method of Appen-
dix E. In the composite graphs on the right-hand sides of the
equations, subgraphs with the shortest ("infinitesimal" ) arms
represent the perturbation generator I', and those with longer
arms represent the exponentiated unperturbed EOM acting over
a time interval hu, e ". (E and I" here are different from
those in Fig. 3.)
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G;(k)=exp( —D'k )+ f du f du'(2«) f dq exp( —D'k «)d'exp( I,—k )[(—exp( —2D*q «)]

X[—B(k+q) ]exp[ —D'(k+q) (u' —u)]exp[ —D'q (u' —u)]( —Bk2)

)&exp[ —D'k (1—u')] . (5 3)

The factors in the integrand are just the propagators in Fig. 8(a), reading upward. The factor involving A is the condi-
tional scatterer fluctuation 6 [Eq (5.2a)], part of the unperturbed EOM for propagating from time 0 to time u, which is
represented by the horizontal line in Fig. 8(a). Each factor involving B is an interaction generator [Eq. (3.23)], represent-
ed by a three-armed subgraph. The interaction propagator 6,', (k,q) can be calculated similarly [Fig. 8(b)]. The first
graph on the right-hand side is the unperturbed (B=0) 6„,which vanishes; we therefore omit the corresponding graph
in Fig. 8(c), which is the other propagator we need for the scatterer-averaged EOM {Fig. 5), 6,'„(k,q, q'). This is of
second order in B; algebraically,

6,'~(k, q, q') = f du f du'exp[ uD'(—k —q —q')I][ B(k ——q')2]

Xexp[ —(u' —u)D'(k —q)2]( —Bk )exp[ —(1—u')D'k2 —uD'qi —u'D'q2] . (5.4)

We now return to Fig. 5(a} to calculate the scatterer-averaged electron propagator. The wave vectors in Fig 5(a) are to
be labeled as in Fig. 7, but with q'= —q. The rules of d]k.ppendix C give

6,'(k)'=6,'(k)+(2m. ) "fdq G,'„(k,q, —q)G,q(q) . (5.5)

1

(e ) = —P G;(k e0) 2dD' =2dD'=d*(2«) —f d qq' f du f du'exp[ —(u' —«)(D'+D')q —I q ], (5 6)

where we have dmpped the subscript from g, the scatterer correlation length. Note that the second term of Eq. (5.6) de-
pends only on the sum D'+D', which we will denote by D Thus the. behavior of a system with diffusing scatterers is
not qualitatively different from that of a system with frozen disorder. Equation (5.6) can be integrated exactly, giving,
for d= 1,

& r'), , =2D —~ ]"B'A D '[{D/P-+Zg —2{g'-+D)'"] .

To see the actual time dependence, we must express this in terms of physical rather than dimensionless quantities. The
physical time interval is At and the physical displacement is

(5.8)

Thc pllyslcal dlffuslvltlcs ale

D~ =D (hr) /At,

where the correct factors of hr, ht, and b,c can be determined' by requiring ttm physical quantities to be invariant
UQdcr S, T and R. Appbfing th18 criterion to 8 aQd A g1vcs

(5.9)

Writing the integral in Eq. (5.5) explicitly [using Eqs. (5A} and (5.2b)], we see that. it exactly cancels with part of the first
term 6,'(k) [obtained from Eq. (5.3)], namely the term proportional to exp( —2D'q u). (Physically, this is because the
decay of fluctuations during u must exactly cancel their generation to maintain equilibrium. ) The remainder of Eq. (5.3}
is therefore our final result for the scatterer-averaged propagator 6,'(k'). As we have observed in Eq. ( 5.1), this is essen-
tially the electmn time correlation function, from which the inelastic scattering function S(k~,co~ ) could be obtained by
converting to the physical variables {kz, Dz, etc )and .Fourier-transforming in fq t.

In this paper we will examine the mean-square displacernent (at t= 1, i.e., t~ =Et) which involves the k=0 limit only.
From the remaining term of Eq. {5.3),

Bz B(b,r) + /b. t h—c-',
A~ =A (f]kr) "(hc )

ustng Eqs. {4.2), (3.18), Rnd (3.20). Thus tllc pllysICR1 IIMRII-square dlsplaccIncIlt, Rftcl R ttmc kt Is

{rp(f(kt))d ] 2Dpht n'~ BpAp——Dp [{Dp—bt/gp)+2' —2(g~p+Dq fq.t)'~ ] .

(5.10)

(5.11)

(5.12)

{5.13)

Th18 expression ls exact to Second OI'dc1 in 8&, 1Q tIM 111mt
of large D for which the continuum-limit exponential
form of the invaria, nt-manifold EOM holds vnthout the

need for space-coarsening [Eq. (3.25)]. In practical terms,
this means Eq. (5.13) may have corrections of relative or-
der 1/D, i.e., (b,t)
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VI. MEAN-SQUARE DISPLACEMENT
AT LONG TIMES IN ONE DIMENSION

In the limit of long times (and/or short correlation
lengths: ht »gz/D& ), the mean-square displacement [Eq
(5.13)] becomes

(r'(at)) =2D' at+2~ '"B'-A'(D )-'"at'"

where the effective diffusion coefficient is

(6.2}

It is now apparent why we had to allow /&0: The elec-
tron diffusivity undergoes an infinite renormalization
("ultraviolet divergence" ) in the limit of zero scatterer
correlation length.

These results agree with those obtained by other work-
ers for specific disordered one-dimensional systems. To
apply it to a specific system, one must determirle the
values of the coefficients Dz and A~ describing the dif-
fusive fixed point which the system approaches under the
coarsening transformation ST R, and the values of the
scatterer correlation length gz and the scattering strength

Bz describing its distance from the fixed point. We will
do this explicitly for the most frequently studied' '

disordered random walk. This is a walk (of electrons, for
instance) on a regular lattice of sites separated by l in
which the jump rate 8' between two sites is a random
variable fluctuating (independently of the rates for other
bonds) about a mean value Wo. 5 W = W —Wo. On a mi-
croscopic (b.r = l) scale, 5W plays the role of the "scatter-
er," and we may as well set the scatterer content c& equal
to 5W. (There is a technical complication due to the fact
that the scatterer and electron contents are most naturally
defined in cells displaced by —,', but this has no macro-
scopic consequences. ) We are free to choose the unit of
scatterer content; the simplest choice is Ac'=8'o. It is
well known that the diffusivity of this system in the ab-
sence of scatterers (i.e., with 5W=0) is

(6.3)

We can relate the fluctuation (5W ) to our parameter A'
by integrating Eq. (2.5) over k' and using Eq. (3.2),

(6.7)

We can now calculate the mean-square displacement (Eq.
6.1),

(r (bt))q

=2D' a t+2%- '~zl2W'~2((5Wz) /W')(ht)'~z

(6.g)

and the coefficient of b,t ' is identical to that obtained by
exact solution of this model for weak disorder. The ef-
fective diffusivity D~ [Eq. {6.2)] is harder to obtain for
this model since it is not obvious what to use for g~. Evi-
dently, it should be of order l; the exact result is repro-
duced if we choose gz 1/2m'~ ——.

The renormahzatron-group idea has been apphed previ-
ously to this model by Machtas from quite a different
point of view. Machta took a site-decimation approach
father than the present ce11-lumping approach. The
dynamics was described by a waiting-time distribution,
which can, in principle, be renormalized by computing the
waiting-time distribution for a double jump of length 2l.
The renormalized waiting-time distribution is very diffi-
cult to compute, however, and in Ref 8 only the zero-
frequency component was actually renormalized. This de-
scribes the approach to the fixed point correctly, but will
not correctly describe the system on a microscopic
(b,r =2l, 4l, etc.) scale. The present approach has the ad-
vantage of being able to renormalize an equation of
motion accurately on any scale (this has not been done for
small scales in the present paper, but see Ref. 11) One can
follow in detail the renormalization trajectory of a system
from the microscopic scale to the fixed point.

Another advantage of our discrete-hydrodynamics
method is that it works in any dimensionality; the decima-
tion approach does not straightforwardly generahze to
d & 1. In the next section we present the results for d=2
and 3.

VII. MEAN-SQUARE DISPLACEMENT
IN TWO AND THREE DIMENSIONS

The formula for mean-square displacement [Eq (5.6)]
can be integrated for d=2, giving

(r,'(at})„,=4D,'at
A =G",,(l =0)= g (c'(r, o)c'(r', 0)), (6.4}

BpAp 2 [Dpg—p ht —ln(1+Dpht/gp)] .P P D2 P P

Ar' ——(5W )/l (6.5)

To determine the interaction strength 8, it is easiest to
consider a system having a uniform scatterer density c',
i.e., a uniform 5W. The scatterer-averaged electron prop-
agator (Appendix C) is then

6,'(k) =exp( —D'k —Bc'k 2),

so that the scatterers increase the effective diffusivity to
D'+Bc'. The change in the physical diffusivity [Eqs.
(5.9) and (5.10)] is B~c~/l~; equating this to the known

diffusivity increase l 5W of the microscopic model gives

(7.1)

Again there is a nonanalytic term at long times
(ht »gz/Dz ), and this time it is a logarithm

( r~(ht) )g 2 4D~ At +m'B~A—pDp 1n(Dph, t/g. p), (7.2)

w11cl'c tllc rc11orfllalizcd diff llsivlty 1s

(7.3)

Corrections to Eq. (7.2) should be of order (ht)0 or small-
er. For the two-dimensional (2D) version of the disor-
dered random-walk model of Sec. VI, the In{Et) term in
Eq. (7.2) is
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n 'I2((5W )/W )1n(ht) . (7.4)

This model has not been solved exactly, but has been stud-
ied in an effective-medium approximation by Haus, Kehr,
and Kitahara. ' ' From their effective waiting-time dis-
tribution W(t), one can calculate the mean-square dis-

I

placement [the inverse Laplace transform of 2dW(s)/s ].
For the case of weak disorder the nonanalytic term
reduces exactly to expression (7.4).

In three dimensions, the mean-square displacement (Eq.
5.6) gives

(rp(ht))g 3 6'——ht (3/—4n. ~
)BpApDp [gp Dp ht 2g~—+2(gp~D~ ht) '~ ],

so that the effective diffusivity is

and for long times,

( (ht)) =6D' ht+(3/2 ~ )B 2 D g '(b, t) +(3/2 ~ )B 2'(D ) ~ (b, t)

For the random-walk model of Sec. VI, the (b,t) '~~ term
of Eq. (7.7) is

l W ' ((5W )/W )(bt) (7.8)

This has also been estimated in an effective-medium ap-
proximation by Haus et al. their result reduces in the
hmit of weak disorder exactly to Eq. (7.8). Thus the
effective-medium approximation gives the leading nonan-
alytic long-time behavior exactly for d=3 and 2; this was
previously known for d = 1 [the (b, t)'~i term]. '

VIII. CONCLUSIONS

Using a discrete formulation of hydrodynamics, we
have identified the fixed points of a scale-coarsening
transformation which govern the large-scale behavior of
diffusive systems. The eigenfunctions of the linearized
transformation which modify this behavior in disordered
systems have also been calculated exactly. The known
nonanalytic behavior in one dimension was exactly repro-
ducedan, d the behavior in two and three dimensions was
de'ternliiled.

The problem of nonanalyticity ("long-time tails" ) in
disordered systems is closely related to the corresponding
problem in fluids. It is hoped that the identification of
the exact fixed points and eigenfunctions for a fluid sys-
tem will facilitate the calculation of transport properties
of dense fluids by the numerical coarsening of small-scale
equations of motion. '

Other problems which may be susceptible to attack
from this point of view are transport in a disordered sys-
tem subject to a uniform field ' [by including a term of
order k in Eq. (3.21a)] and diffusion in materials with
tlaps.

APPENDIX A: DERIVATION OF GRAPHICAL RULES
FOR TIME-COARSENING MARKOVIAN

DYNAMIC EOM'S

Let us first look at the problem of time-coarsening the
general discrete EOM discussed in Sec. II. A very general
solution to this problem was derived in Ref. 11, which
was used to iterate the coarsening transformation numeri-
cally. That result was more general than we need for the
present purpose in two ways. First, variables were defined
at half-integer values of t ("transfers"), as well as at in-
teger values ("contents"). The former are not used in the
present formulation and complicate the calculation con-
siderably. Second, the EOM was allowed to be non-
Markovian, whereas in the present case we are considering
the continuous-space hmit in which the EQM is Markovi-
an (the contents at t= 1 depend only on those at t=0).
We will therefore give here a simplified rederivation of
the time-coarsening equations, valid for Markovian
EOM's for the cell contents; we will not assume the
continuous-space limit.

Let us suppose that we know the discrete equation of
motion coefficients,

(Al)

such as those in Eq. (2.2), describing a system on the time
scale b,t (The sp.ecies index a plays no role here, and so
we will not write it explicitly. ) These give the moments of
the c s at time t= 1 in an ensemble in which they are fixed
at t & 0; they are identical to the coefficients

[c(r, 2) ],(,-,). . .

describing the moments at t=2 in the ensemble fixed at
t & 1, because our system is stationary. %'e wish to corn-
pute the time-coarsened EOM coefficients

(A3)
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describing evolution over the larger time interval 2,ht.
Note that coefficients (A3) describe the same ensemble as
coefficients (Al), namely that in which the contents are
fixed at t &0 (it is true that one has contents fixed at
t = —1 and the other does not, but in our Markovian sys-
tem the moments do not depend on times t& 0). This en-
semble is larger than the ensemble described by the coeffi-
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APPENDIX C: GRAPHICAL METHOD
FOR ENSEMBLE-CHANGING

gf p ~S + %

m eg 111 I eq gS I' + ~ ~ ~

e s e S I';e

cients (A2), in which contents at t= 1 are also fixed. We
are therefore faced with computing EOM coefficients
[moments of c(r,2)] in a larger ensemble [Eq. (A3)] from
those in a smaller ensemble [Eq. (A2)]. This is precisely
the ensemble-changing problem addressed in general in
Appendix C. The solution obtained there is depicted
graphically in Fig. 9. The top equation of Fig. 9 corre-
sponds to

+ g [c'(r,2)],, „„[c'(r",1)],, „,,

FIG. 9. Graphs for time-coarsening an EGM. Time t in-
creases upward. Vertices representing contents c (r, t) are la-
beled by position r and species index u (equal to e or s).

We will describe a graphical procedure which can be
used to compute EOM coefficients such as

[c(r,t)c(v', t) ],~„- o~. . .

in a large ensemble L from those in a smaller ensemble S
(i.e., one in which more variables are constrained). Essen-
tially, this method (but without the graphs) was used in
Refs. 23 and 11. We apply the method in Appendix A to
the case where the large ensemble L is that in which all
variables are fixed for t &0, and in S they are fixed for
t= I as well. In Sec. III we consider principally the case
where the small ensemble S is the one in which all vari-
ables (c' and c') are fixed for t & 0, and L is the equilibri-
um ensemble; Sec. V involves yet another choice. Here we
will describe the method for an arbitrary choice of L and
S.

Three types of content variables are involved: those
which a«p«dieted (i.e., not constrained) in both ensem-
bles, which we denote by p, those constrained in the small
ensemble S but predicted in the large ensemble I., denoted
f because they fluctuate in L, and those constrained in
both S and L, denoted c [not to be confused with the
symbol for content, c(r, t)]. Thus in the case of Appendix
A, p is c(r,2), f is c(r, 1), and c is c(r,0).

The EOM coefficents in the L ensemble describe the
moments of the predicted variables p and f as functions
of the constrained variables c. Using a concise notation in
which a p, f, or c denotes a product of variables of that
type, the power-series expansion of a general moment is

[If]'= X [pf]:c

(A4)

according to the rules described in Appendix C. The
graphs can also be 1nterpreted I Fouf1er space, labe11ng
the arms by k vectors as in Fig. 2. The rules for writing
the corresponding algebraic expression in k space [the
Follrlcl transform of Eq. (A4)] alc glvcI1 II1 Appendix D;
they lead to Eq. (2.11).

APPENDIX 8: MUI.TIPI.YING MARKOVIAN EQM'S

In Appendix A we developed graphical rules for time-
coarsening Markovian EOM's by combining propagators
between t=O and I with those between 1 and 2. We now
note that these two EON's need not have been the same.
We could have used any two EOM's, for instance, E, and
Eb, in each coarsening graph (for example Fig. 2), each
lower EOM graph (previously connecting times 0 and 1)
would represent a propagator of E„and each upper ROM
graph (previously connecting t= 1 to t =2) would
represent a propagator of Zb. The graphical procedure
[or Eq. (C7)] would then give us the propagators of a new
EOM which we may denote EbE, . We have thereby de-
fined the product of an arbitrary pair of Markovian
EOM's.

which defines the EOM coefficients [p f],. A superscript
L (S) indicates that the EOM coefficient describes the
large (small) ensemble, and the sum is over all products c
of constrained variables. The corresponding expression
for the small ensemble is

[p]'= Xb ],'fcf .

We can relate the L and S coefficients by averaging Eq.
(C2) over the large ensemble

lb ]']'=[p]'= g [p]' c[f]'.

Using Eq. (Cl) to express [f] in terms of c's, we can
make a comparison to the expansion [Eq. (Cl)] of [p] to
identify the EOM coefficients,

[pL'= g g [p]', f[f]'.- .
f fact

The inner sum is over all factorizations of the product e
into two products c'c"' note that c'=e,c"= 1 or
c"=C,C'=1 is allowed, as is f= l. As an example, we
write Eq. (C4) explicitly for the case in which p and c are
products of one variable only:
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[p],'=[pl'. + g ([p]J[f]'.+ [ply. [f]i )

f
+ g ([p]yy [ff'],'+[pgy'[ff']i ) .

ff'
(C5)

pn pn

, /4,

Equation (C4) is one form of the desired relation between
L and S coefficients. However, in practice, we must
deal with cumulant moments [p]'" defined inductively
by

[p]= g [p']™[p"]'".
fact

pn

of Q

pn

where we sum over all factorizations p'p" =p. The
correct form of Eq. (C4) in terms of cumulants is"
(omitting the superscript "curn"—from now on all mo-
ments are cumulants)

C o of

FIG. 10. Graphs representing Eqs. (C5) and (C8). The graph
on the left-hand side represents an EOM coefficient [p], in the
L ensemble. On the right-hand side each EOM graph with a
predicted (decorated) f vertex (the lower graphs here) describes
the L ensemble, and the other ones describe the S ensemble.

Here, the inner sum is over factorizations p'p" of p,
c'c" c ' of c, and over two independent factoriza-
tions f'f" =f and f 'f " =f of f. Each individu-
al content factor f of f appears in one [ ] and one [ ],
linking them; the sum includes only terms all of whose
EOM factors are linked in this way. For our special case
of one p and one c, the cumulant form of Eq. (C5) has the
additional terms

+ g([pgy[flil:f'l'
ff'

+[p]ff'[fl, [f']i+[pity, [f]i[f']i )

These equations are easiest to grasp graphically; a graphi-
cal representation of Eqs. (C5) and (C8) is shown in Fig.
10. Each EOM coefficient [ ].. . is represented by an
"EOM graph"; the one on the left in Fig. 10 represents
[p],. In general, an EOM graph has several arms which
diverge from a central point. The central point is visible
as a junction of three arms in the third graph on the right,
representing [p],~[f]; [p], should be thought of as having
an upper and a lower arm which meet invisibly at the
center. Each vertex (the end of an arm) which is decorat-
ed with a circle represents a predicted variable, and each
undecorated vertex is a constrained variable (i.e., a sub-
script in [c(r,t) ],~, , ~. . . ). The EOM graph
representing [f] in the third graph on the right has an
arm of zero length; only the circle decorating the end is
visible. The terms on the right in Fig. 10 are composite
graphs each involving several EOM graphs, and represent
products of the corresponding EOM coefficients. Where
two vertices from two EOM graphs are drawn next to
each other (e.g., at f in the second term on the right) they
represent the same variable; we will refer to this as a sin-
gle "internal" vertex. Exactly one of the two arms at an
internal vertex will be decorated, since fmust be predicted
in one EOM graph and constrained in the other. Each
internal vertex is to be summed over; this is indicated by a
sum over f in Eq. (C5), meaning a sum over positions r
and, if a is not specified on the graph as in Fig. 9, over a.
The linkage condition on Eq. (C7) requires simply that a
graph not fall apart, but be connected by internal vertices.

Unlinked graphs must be omitted (actually you cannot
even draw one unless p has more than one variable). All
the graphs in Fig 10 vanish for the case dealt with in Sec.
V, except the first and fifth terms which are included in
Fig. 5(a). In Appendix A ( T-coarsening) only the second
term is nonzero; it appears as two graphs in Fig. 9 because
the sum over a has been shown explicitly.

Equation (C7) can easily be generalized" to give [pf]„

[pf]'= g g [p'],'J [f 'f '].-'
f fact

(C9)

where now f is factorized as f'f". . . Figure 5(b) is
such a case, with p=c'(r, 1),f=c'(r', 0), and c=1. Fig-
ure 6 represents a different choice of L and S.

APPENDIX D: DERIVATION OF RULES
FOR GRAPHICAL CALCULATION IN k SPACE

The ensemble-change equation (C7) used for time-
coarsening (Appendix A) and scatterer-averaging (Sec. V)
can be Fourier-transformed via Eqs. (2.4)—(2.6). We may
represent the Fourier transforms

G, '. '. '. (k, t, k', t', . . . ;k, t, . . . )

by EOM graphs such as those of Appendix C. They have
the meanings indicated in Fig. 1; a general G with N~
predicted variables (superscripts aa' ) and n, con-
strained ones (subscripts aa' ) is represented by a
graph with nz+n, arms intersecting at a single point, la-
beled by k, k', . . . , k, . . . The vertices at the ends may be
labeled by the species index a; those corresponding to
predicted variables are decorated by circles (these arms
will usually point upwards). We must sometimes distin-
guish the G's describing the L ensemble from those of the
S ensemble; in Sec. V these are called G' and 6, respec-
tively.
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To see how to calculate such a Fourier transform
graphically, consider an r-space graph such as Fig. 11(a)
representing a term in the ensemble-change equation (C7).
Suppose for concreteness we are time-coarsening so that
the upper vertex involves time t=2 [c'(r5,2), for in-
stance]. The bottom vertices are c'(ri, 0) and c'(rz, 0),
and the ones labeled r3 and r4 are at 1= 1 This term is a
sum over r3 and r4 of a product of EOM coefficients,
each of which can be expressed in terms of its Fourier
transform [most generally, using Eq. (4.2) of Ref. 10].
The upper EOM graph, for example, is

(b)
k,

"

k, ~k„
k, -q+

r, k, k, k, k,
FIG. 11. (a) Fourier transformation of a graph of the type

used in Eq. (C7) (e.g., for time-coarsening). The properly la-
beled k-space graph is (c). A11 vertices represent electrons, and
so ~e omit the species label e.

dk5 ik5ge dkl —ik3t'3[c'(r5,2)], , = e ' ' e
g (r3ti)C (r4rl) (2 )d (2 )d I dk4;k. .,

d e ' '(2m) 5I„(ks—ks —k4)6,', (ks, ks, k4) .
(2m. )

Multiplying by the lower graph and summing over r3 and
r4. , wc obtain an expression which can be described using
the labeling in Fig. li(b). There ia a $, for each mternat

vertex (i.e., r&, r4). There is a factor e' " for each decorat-
ed (predicted) arm in each EOM graph (i.e., for k5, k'I,
and k4 } and e ' " for each constrained one (k3, k4, k„
and kz). For each EOM graph there is a factor 6
[e.g., 6,",(kl, k4, ki, k2)] and a factor such as
(2~) 51 (ks+k4 —ki —k2} expressing k-vector conserva-
tion. [In T-coarsening (Appendix A) we need not distin-
gmsh between 6's in the I. and S ensembles in the com-
posite graphs, because the system is stationary. ] There is
a I dk/(2m. )"for each k vector; the integral can be taken
over a d cube of side 2m located anywhere, because of the
antiperiodicity of G. We can put together g, e' " ' "for
each internal vertex (rs and r4), and replace it by
(24r)"5z (k' —k). This eliminates all the integrals over
primed k's; we set k'=k and do not need to put k labels
on both sides of internal vertices. At this point we may
change variables to single out the independent external k's
(all but one will be independent) and the free internal k's;
in this case these could be taken to be k„kz, and an
internal "momentum transfer" q, as shown in Fig. 11(c).
We have chosen a variable h such that one of our 5 func-
tions is 5z~(h); in general, we include such a variable for
all but one of the EOM graphs. Our integrals are now
over ki, k2, k5, q, and h; that over h can be done using
the 5 function. In general, this leaves one 5 function ex-
pressing overall conservation of k vector [in this case,
52 (k5 —ki —k2)], in an expression which is exactly that
defining the Fourier transform [Eq. (4.2) of Ref. 10]. The
Fourier transform turns out to contain just the factors of
6 and the integrals over internal momenta.

I.et us sumnlarize the rules for evaluating a k-space
ensemble-changing graph, for example, obtaining Eq.
(2.11) [the Fourier-transform (FT) of Eq. (A4)] from the
time-coarsening graph in Fig. 2.

(1) Label the lines in terms of the independent external
and. internal k vectors.

(2) Write a factor 6 for each constituent EOM graph,
using thc k s on thc lines and tllc spccics labels A on thc
vertices.

(3) Write a d-dimensional integral f dk/(2m )" for each
internal k vector.

APPENDIX E: PERTURBATIVE CALCULATION
OF EXPONENTIAL EON'S

In this appendix we give a general procedure for calcu-
lating any propagator of an exponential EOM e + as a
power series in a perturbation generator E. By definition
[Eq. (3.7)],

eE+"= lim g (1+Edu +Edu)
du

(El)

A specific example in graphical form is the left-hand
equality in Fig 3. The sum is over "rosary" graphs, such
as the middle graph of Fig. 3, in which the system pro-
pagates successively through many small time intervals
du. Each 6;(1+Edu, Edu} is one of the propagators for
such an interval; the notation means it can be a propaga-
tor of either of the EOM's 1E+Edu or Fdu. We single
out those that involve the perturbation E and draw them
explicitly in the rightmost graph [in Fig. 3 there is only
one, the horizontal line 6 (k) at time u]. These F
graphs break the collection of 1+Edu graphs into con-
nected components (two in Fig. 3); each component ex-
tends between two times u~owcr and u„p~„each of which
18 0, 1 01' 'the tlllle of all E grapll. Sllch a colllpollellt, is
exactly a graph in the expansion of a propagator of the
unperturbed EOM e ", where hu =u„&~,—ui, „(equal
to 1 —u in this case). We may collect the rosary graphs
into classes which are topologically equivalent (i.e., are
bounded by the same F graphs, perhaps at different
times). We represent each such class by a "topological
graph" such as the one on the right in Fig. 3, Each con-
nected component is replaced by the corresponding propa-
gator of the unperturbed EOM. The topological graph

where we have divided the time interval [0,1] into n inter-
vals du. The product on the right-hand side (defined in
Appendix B) can be expressed in terms of graphs (Appen-
dix C); a particular propagator [call it 6'(e +")] can be
schematically written

6'(e + )= g Gi(1+Edu, Fdu)
rosary

graphs

XGz(1+E du, Fdu)
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will have the same numerical value as the sum of its
rosary graphs if we sum over the times u&, uz, . . . of the
E graphs.

The result of all this is the following set of rules for
computing a propagator of a perturbed EOM e +".

(1) Draw all possible topological graphs out of pertur-
bation propagators (of the perturbing EOM F) at times
u &,u2, . . . and unperturbed propagators extending be-
tween these times, according to the rules of Appendix D.

(2) For each graph, write the product of the unper-

turbed propagators (obtained from the EOM e ", where
hu is the difference of the relevant u's; in Eq. (3.9a) this
is exp[ D—k (1—u)]) and the perturbation propagators
[ak in Eq. (3.9)]. Integrate over internal wave vectors
using the rules of Appendix D.

(3) Integrate over u~, u2, . . . subject to 0&u&
&u2« . 1.

Applying these rules to Fig. 3 gives the fluctuation propa-
gator at the fixed point [Eq. (3.9a)].
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