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In this paper a method is presented for analytically calculating the fixed points of scale-
coarsening (renormalization) transformations which act on equations of motion for diffusive sys-
tems. These fixed points demonstrate the universality of Fick's-law diffusive behavior: All micro-
scopic equations of motion, if they have the correct symmetry, satisfy the correct conservation laws
(i.e., particle conservation), and are not too pathological, will look the same on a large space and
time scale. Study of the eigenfunctions of the transformation shows that the dominant correction on
smaller scales is given by the Burnett equation. The method applied to homogeneous systems in this
paper is used in an accompanying paper to obtain new exact results for the universal long-time
behavior of inhomogeneous systems in arbitrary dimension.

I. INTRODUCTION

In this paper we will define space- and time-coarsening
transformations which act on the space of equations of
motion (EOM's) of one-component diffusive systems.
The EOM's are parametrized in a discrete form which can
be used to describe a very large variety of physical sys-
tems (solute molecules diffusing through a solvent, elec-
trons random-walking through a semiconductor, etc.).
The discrete EOM describes the system on a distance scale
hr and a time scale ht; we may describe the system in as
great or as little microscopic detail as desired by using
slllall of lal'gc kr alld 5t Applyl. Ilg the space-coR1'scnlllg
transformation S corresponds to viewing the system on a
larger space scale 2hr, and similarly the time-coarsening
transformation T yields an EOM on a time scale 2 b, t. It
will turn out that a combined transformation (essentially
T S) has a fixed point. That is, there is an EOM which
looks the same when you look at it with scales Ar, Ai or
with 2hz, 4ht. Furthermore, this is an attractive fixed
point: An arbitrary system looks more nearly like the
fixed point on the scale 2 hr, 4 ht than on the scale b,r, ht.
The fundamental reason for the universahty of Fick's law,
i.e., its applicability to a wide variety of diffusive systems,
is that Fick's law is the fixed-point EOM. These same
ideas are applied to disordered systems in an accompany-
ing paper, ' where they lead to interesting new physical re-
sults on long-time tails.

The principal difference between our approach to
scale-coarsening and the usual renormalization-group ap-
proach to critical phenomena is that we use EOM's (rath-
cl' than R HRIIllltollla11 dcscflptloll), Rnd that olll' EOM s
are discrete in time as well as in space. This approach al-
lows us to use tiIDe-coarsening as well as space-coarsening
transformations, which helps us analyze the dynamics of
a system. In noncritical systems such as the ones we con-
sider, the statics are trivial, and it is essential to treat the
dynamics correctly. There has been considerable work
«IOIlc OIl tbc dynamics of critical phenomena by modc-
coupling, e-expansion, and position-space renormaliza-

tion5' techniques. These techniques have used
continuous- IRthcI' than discrete-time VRflablcs, and ap-
pear not to allow the exactness possible (at least in dif-
fusive problems) with discrete-time hydrodynamic
EQM's.

The purpose of this paper is to derive exact fixed points
for a one-component system, and to thereby set up a for-
malism for discussing fixed points in two-camponent sys-
tems. ' We also linearize the coarsening transformation
around its fixed point; the eigenvalues of this linearization
determine llaw fast VRflous kinds of dcvlaflon fI'olfl
Fick s-law behavior (i.e., various eigenvectors) disappear
as we increase the scale. By identifying the largest eigen-
values we can predict the corrections to Fick's-law
behavior which will be important on a finite distance and
time scale.

We can obtain heuristic pictures of the diffusive fixed
point and some of the possible corrections (eigenvectors of
the coarsening transformation) from Fig. 1. Figure 1(a)
shows the probability distribution for the position at time
At of a particle which started at the origin at time t =0
(variously called the diffusive propagator or Green"s func-
tion). If p is a density which obeys Pick s law,

with diffusivity Dp, this distribution is a Gaussian with a
mean-square width 2D& b, t. (The subscript "p" stands for
"physical, " to distinguish D~ from a dimensionless D to
be discussed later. ) If we think of Fig. 1(a) as representing
the EOM of a diffusive system, we expect this Fick's-law
EOM to be a fixed point of a coarsening transformation.
To apply a time-coarsening transformation, we need to
compute the corresponding distribution for a time scale
2ht. Assuming that the displacement of the particle in
the second interval ht is independent of that in the fiI'st,
the new distribution should be a convolution of two of the
old ones~ th1s gives a Gaussian with a mean-square width
4D&ht, as shown in Fig. 1(b). Ta make this look mare
like the original curve, we can perform a space-coarsening
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(c)

Distance
(in cell widths AI)

tlpllcd by tlM Gauss1an to thc GausslaI1. Convolutlng thc
result with itself gives a factor (1+c), and T S gives
(1+c) =(1+4c). Thus the transformation multiplies this
pcrtulbatlon by 4, i.c., thc clgcilvalllc is 4. Tlic Gallsslan
fixed point is therefore not stable. However, we can stabi-
lize it by requiring our system to satisfy a law of conser-
vation of particles. This restricts the set of EOM's we are
considering, but does so in a way that is consistent with
the coarsening transformations (both S and T map this
subset into itself). The next eigenvector will then turn out
to be the derivative with respect to displacement of the
Gaussian; it is shown in Fig. 2(a). It has an eigenvalue of
2. Again, the fixed point is unstable until we impose yet
another condition on the ROM„and restrict ourselves to
the subset of ROM's which have left-right reflection sym-
metry. The next eigenvector is the second derivative of
the Gaussian [Fig. 2(b)]. Adding an infinitesimal constant
c multiplied by this eigenvector to the Gaussian of Fig.
1(a) turns out to give another Gaussian with a diffusivity
increased by some 5D Cle.arly, T S gives this same
Gaussian back. The perturbation was unchanged, and
hence the eigenvector is 1. Thus the fixed point is mar-
ginally stable (but clearly a member of a continuous fami-
ly of fixed points is always marginally unstable in this
sense). The first genuinely stable eigenvector is the fourth
derivative of the Gaussian. This can be interpreted as giv-
ing the system a nonzero Burnett coefficient [coefficient
of p p 111 thc diff llsioii cquatloll, Eq. (1.1)]. It lias an
eigenvalue of —,'; thus the Burnett effect decreases by a
factor of 4 each time we coarsen the scale, and becomes
imperceptible on a large enough scale.

In this paper„we will set up a precise and consistent
framework for investigating fixed-point properties such as

FIG. 1. (a) Propagator for the diffusive Axed point with large
dimensionless diffusivity D [proportional to exp( r /4D), with—
mean square width 2D]. (b) After time-coarsening (D~2D).
(c) After space-coarsening (2D~D j2).

transformation, replacing the cells of width b,r by cells of
width 2 hr. Then the same displacements involve half as
many cell widths, i.e., half of the horizontal distance in
Fig. 1(b). This shrinks the distribution to that shown in
Fig. 1(c), whose mean-square width has decreased by ( —,)

to D~t. Evidently, we must time-coarsen once more (for a
total of T 8, or two time and one space coarsening) to get
back to the original width of 2' t [Fig. 1(a)].

Thus, the ROM represented by Fig. 1(a) is a fixed
point of the coarsening transformation T S. Clearly, it
is not the only one; we could have used any diffusivity Dz
and found a fixed point. There is actually a family of
fixed points, one for each D~. To decide whether one of
these is a stable fixed point, we must examine whether
perturbations around it grow or decay when T S is ap-
plied. We will do this in Sec. VI by examining the eigen-
values of T S linearized about the fixed point; if all of the
eigenvalues are less than unity, the fixed point is stable.
Hc1c wc cxaIMnc the clgcnvector corrcspond1ng to thc
largest eigenvalue. This eigenvector corresponds to the
curve in Fig. 1(a) itself. That is, the perturbation corre-
sponds to adding a small coefficient (for instance, c) mul-

FIG. 2. Eigenvectors of coarsening transformation T with
(a) eigenvalue 2, and (b) eigenvalue 1.
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mentioned above. To do tllls, wc will first lcvicw thc for-
mulation ' of discrete hydrodynamic EOM's (Sec. H). In
Sec. III we describe how to perform space- and time-
coarsening transformations on such EOM's. These are
Fourier-transformed in Sec. IV. In Sec. V we search for a
fixed point and find a two-parameter family of them
(Fick's law). We examine the linearized transformation
near such a fixed point in Sec. VI, computing eigenvectors
and eigenvalues which determine the large-scale behavior
of the system. The coefficients of some of the eigenvec-
tors are essentially the physical transport coefficients (Sec.
VII).

II. DISCRETE EQUATIONS OP MOTION

Consider a one-component diffusive system. We want
to characterize the system by an equation of motion hav-
ing a specific distance scale hr and time scale bt, so that
we can perform space- and time-coarsening transforma-
tions. The easiest way to do this is to define a set of
discrete variables whose evolution will be described by the
equation of motion. These variables can be taken to be
the contents of cells (d-dimensional cubes of length hr) at
discrete times which are multiples of ht We .will denote
the physical mass content of a cell centered at position r&
at time t~ by c~(r~, t~); this is the total mass of diffusing
particles in the cell. 'o

We will want to compare discrete descriptions of the
system on different scales (different hr, ht) to search for
fixed points. The physical variables c~(rz, t~) are not
directly comparable: rz takes on values corresponding to
the four solid circles in Fig. 3 on scale hr, whereas on
scale 2b, r it takes values corresponding to the central &(
in the figure. Furthermore, the average content on scale
2 kr will bc lal.gcl. tllaI1 oI1 scale kr. To facllltatc sUcll
comparisons, let us define a dimensionless position vector
r =rzlb. r, which points to ceH centers in a dimensionless
space in which the cells have length 1. We can also adjust
for the variable average content by picking a unit of con-
tent b,c which is convenient for the particular hr we are
using, e.g., be=10 ' kg if Ar =10 m, and defining a
dimensionless mass content

c(r, t)=(hc) Ie~(r Ar, t ht), (2.1)

[c(r, 1)]=[c(r, 1 )]I++ [c(r, 1)],~„o)e(r', 0)

+ g [e(r 1)] (
' o) ( "o)c(r 0)c(r" 0)

(22)

where the dimensionless position vector r is the center of
a cell (i.e., its components are odd half-integers) and the
dirnensionless time I; is an integer.

Thus for each physical system and each choice of scales
hr, b, t, and Ac, there is a corresponding, unique dirnen-
sionless system, with variables c(r, t), which may be
directly compared with the dimensionless systems for the
same physical system, but with different b,r, ht, and he.

We will analyze the dynamics of a system by examining
the dynamics of its dimensionless variables for some par-
ticular scales, hr, At, and he. The most complete descrip-
tion possible would be the full probability distribution
function P(c), which gives the probability of any particu-
lar evolution of the system [any choice of c(r, t) for all
r, t] in an equilibrium ensemble. Since this is generally
difficult, " one often considers instead the equilibrium
time correlations {c),{cc'),{cc'c"),. . . , where the c's
can be contents of any cell, at any time. Since this gives
all moments of the probability distribution function P(c),
it is, in priruciple, equivalent to specifying P(c). The
equal-time correlations such as {e(r,0)c(r', 0)) are often
fairly simple, but the unequal-time ones, such as
{c(r,t)c(r'0)), are typically not. The basic idea of
discrete hydrodynamics is that the dynamics of the sys-
tem can be described Inofe concisely by a set of
"equation-of-motion coefficients" which are, in principle,
equivalent to the time correlations. First, consider the
correlations between t =0 and 1. Suppose we knew the
conditional moments of c(r, 1) in the ensemble whose
contents are constrained at t =0. The moments will be
functions of the values at which the latter are constrained;
let us write the moments as power series in these values.
Thus tllc fllst Iiionlcil't„wlilcll wc dciiotc by [c (r, 1)], ls

0
PIG. 3. One coarse cell [at r'=( —,, —, )] in d =2 dimensions,

divided into 2 fine ceHs [r =( , , , ), (T~, T~—),c—tc.]

where each subscripted [c{r,1)] is a power-series coeffi-
cient describing the dependence of c (r, 1) on the
variable(s) in the subscript (the subscript 1 indicates the
cocfflclcnt of 1, l.c., tllc colistRIlt tcHI1.) By subtracting R

constant from each c, we can redefine the variables so
that (c(r, t)) =0; this leads to [c(r,l)]i——0, and we will
omit such constant terms below. Thus the leading term
remaining in Eq. {2.2) involves [c(r, l)],I„o), which we
can think of as a propagator describing the influence of
the content c (r', 0) on the later content c (r, 1).

The knowledge of all these equation-of-motion coeffi-
cients (together with the equal-time correlations) is
equivalent to knowing all the equilibrium correlations in-
volving the two times 0 and 1. Vfe will not prove this
rigorously, but note that one can write relations between
them by multiplying each equation similar to (2.2) by a
product of c (r, 0)'s and averaging over the equiHbrium en-
semble. In the case of Eq. (2.2), multiplying by c(r",0)
gives
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( c (r, 1)c(r",0))=g [c(r, 1)] („'0)(c (r', 0)c (r",0) ) fluctuations are Gaussian, and thus the second moment

+ e ~ ~ (2.3)
( c (r,0)c (r', 0) ) (2.4a)

If we know either the time correlations on the left-hand
side or the EOM coefficients on the right-hand side, we
can solve for the other. As yet, we have gained very little
advantage over using the unequal-tine averages; the prop-
agator [c(r, l)],(„0) is not actually simpler than the
time-correlation (c (r, 1 )c (r', 0) ) (indeed, at the fixed
point they are essentially the same). However, describing
the system completely required including correlations in-
volving more times than just 0 and 1. The advantage of
the present scheme is that we can do this by just adding
more EOM coefficients, such as those in Eq. (2.2), but in-

volving ensembles constrained at successively more times.
If we call the number of constrained times m, then the
equal-time equilibrium averages such as (c(r, 1)c(r', 1))
correspond to the case m =0 (nothing constrained), and
the EOM coefficients in Eq. (2.2) to m =1 (one time,
t =0, constrained). In general, we define the mth set of
EOM coefficients to describe an ensemble in which con-
tents at m times (1—m through 0) are constrained. If we
think of the "zeroth set of EOM coefficients" as being the
equilibrium averages, what we showed above is that the
zeroth and first sets together determine all time correla-
tions among the two times 0 and 1. It can be shown in an
exactly similar way that the zeroth, first, . . . , mth sets
together determine all time correlations among the m +1
times 1 —m & t & 1. The collection of all such EOM coef-
ficients (for all m) therefore uniquely determines the sys-
tem.

The above parametrization of the EOM has been used
for numerical calculations on fluid systems which are
non-Markovian in the sense that several m's are needed.
However, our present interest is in Markovian systems in
the small-cell (hr~0) limit, for which m =0 and 1 are
entirely sufficient. This is because the second set of coef-
ficients, having I =2, describes the effects of c(r, —1) on
the future content c(r, 1), as well as the effects of c (r, 0).
However, the sufficiency of c (r, 0) to determine the future
evolution is, of course, what is meant by "Markovian" [at
least in the continuum limit b,r —+0; c(r, —1) is nrx:essary
if hr is large ]. Therefore, we may regard our system as
being uniquely determined by the equal-time correlations
and the m =1 EOM coefficients of Eq. (2.2). Further-
more, it will turn out that the fixed-point EOM's and the
most important perturbations around them are both linear
and Gaussian. By the latter, we mean that the equal-time

is the only EOM coefficient we need to retain in Eq. (2.2).
Our system is therefore specified by only the two quanti-
ties (2.4a) and (2.4b).

III. COARSENING TRANSFORMATIONS

Let us first define the space-coarsening transformation
S, which acts on dimensionless discrete equations of
motion. Consider a dimensionless EOM E giving the
dynamics of dimensionless variables c(r, t), which de-
scribes a physical system on the scale hr, ht, hc with
physical variables c~(r„,t~ ), through Eq. (2.1),

c~(r~, t~)=(hc)c(r~lbr, t~lbt) . (3.1)

We define the space-coarsened EOM, denoted SE, as the
dimensionless equation of motion which describes this
same physical system on the coarser scale 2hr, ht, hc.
Thus the dimensionless variables c'(r', t') of SE (we will
indicate coarse-scale quantities by primes) are related to
large-cell physical variables,

c~(r~, t~ )=(b,c)c'(r~ l2hr, t~ Ibt) . (3.2)

To see that this uniquely defines SE for each E let us
calculate a particular description of SE explicitly. It is
easiest to describe SE by the equilibrium moments of the
contents, so that SE is specified by equilibrium averages
such as

(c'(r'i, ti )c'(rz, tz) c'(r„', t„')) .

In terms of the physical variables [Eq. (3.1)] this is

(3.3)

(hc) "(cz(2ribr, tibt) cz(2r„'Ar, t„'bt)) . (34)

The coarse cell at rz 2r'b, r is made u—p—of exactly 2"
smaller ("fine") cells (see Fig. 3). Its content c' is exactly

dthe sum of 2 fine contents cz,

cz(2r'br, t'ht) =g cz((2r'+5)br, t'b t),
5

(3.5)

where each component of the dimensionless displacement
vector 5 is + —,'. The coarse moment [expression (3.3)] is
then expressible in terms of fine moments; it is

uniquely determines the equilibrium correlations. In a
linear system, the linear propagator

(2.4b)

(c'(r'), t'i ) . . ) =(hc)"g . . g (cz((2r')+5))br, t'i br) cz((2r„'+5„)hr, t„'ht))
5) 5„

g (c(2r', +5„t', ) c(2r„'+5„,t„'))
5i 5„

(3.6)

[we have again used Eq. (3.1)]. Thus we can compute SE
directly from E by merely adding averages, and the
space-coarsening transformation is well defined. It is not
so trivial to compute SE when E is specified by equation-

of-motion coefficients as in Sec. II, but a procedure for
doing so has been described and nuxnerically implement-
ed

Let us now define the time-coarsening transformation
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T. We can define TE as the dimensionless EOM which
describes our same physical system on the scales
Ar, 2ht, hc. Thus it should describe the dynamics of
physical variables c~ (r„,t~ ) which are exactly those of E,
except that half of them (those with odd t) are left out
(see Fig. 4). Unlike S, which involved a lumping together
of fine variables, T simply involves a decimation process,
that is, the elimination of some of the variables. Explicit-
ly

(c'(rI, t() c'(r„', t„'))=(c'(r(,2t() . c'(r„',2t„'))

(3.7)

gives TE in terms of E. An algorithm for applying T to
an equation of motion has also been described.

In addition to the coarsening transformations S and T,
we can also define a content rescaling transformation we
will denote by R. It is defined analogously to S and T: If
E describes a system with scales Ar, ht, Ac, then RE de-
scribes the same system with scales hr, bt, 2hc. This in-
duces a trivial transformation on the averages,
c'(r, t) = ,

' c(r, t), a—nd so

( c'(r„t1) c'(r„,t„)) =2 "(c(r(,t„) c (r„,t„)) .

(3.8)

0
t:0

tI ~

2&t 3&t 4L t
2 3 4
1 2

tp

FIG. 4. Relation between the physical time t~ and the fine t,
't)

and coarse ( t') dimensionless time variables.

The R transformation is nevertheless important because
combinations of S and T alone have no fixed points.

IV. FOURIER TRANSFORMATION OF DISCRETE
EQUATIONS OF MOTION

In this paper we will deal with the limit in which the
cell size Ar is very small compared to the characteristic
lengths of the problem, such as (D~ht)'~ . In this
continuous-space limit the EOM coefficients and averages
are smoothly varying and it makes sense to deal with
them in k space.

Consider an EOM coefficient

[c("1 tl) ' ' ' c(" t )] (, , t, , ). ( „,t„)

as in Sec. II, having s predicted and n —s constrained
variables. We will define its Fourier transform G„', by

(2~) 5, (k, + +k, —k, +,— —k„)G„',(k„t,, . . . , k„t,;k, +„t,+,, . . . , k„,t„)

+exp( ik(r1 —ik, r, +ik—,+1r,+1+ . +ik„r„)[c(r(,t1) . c(r„t,)],(, , ). . . ,(, , ) . (4.1)
r1 rn

The Dirac 5 function has been factored out because the translational periodicity of the system makes the right-hand side
singular; it is zero unless the sum k1+ . —k„ is zero (mod 2m). G need to only be defined for such k s. The function
52 is a d-dimensional periodic 5 function, defined by

52 (k)=+5(k+2mp),

where the p's are d-tuples of integers.
Evidently, G has a periodicity property in each k;: If the bth spacial component of the vector k; is replaced by

k; +2m, G changes . by a factor exp( 2nir; ). Because each r; is a half-integer, this factor is —1: G is antiperiodic in
each k;, with period 2m. . The inversion formula is

dk1 ik
1~ 1[c(r t ) ] . = eJc(rs+1, fs+1

77

ks + —ik 1r
X

(2m)
e '+''+' ~ (2~)d5 (k + . k —k — —k )2n. 1 s s+1 n

sXG„,(k, , t(, . . . , kg, t„k,+„t,+,, . . . , k„,t„) . (4.2)

OI

ik (r —r')

(2') rr'

t'(k —k')(r —(/2) (2 )d5 (k k~)

(4.3)

(4.4)

The integrals are over hypercubes, 2m. on each side, which
can be located anywhere because of the antiperiodicity in
each k;. The inversion formula can be verified using ei-
ther of the identities

I

(here —,
'

denotes a vector each of whose components is —,
' ).

In the case of n =2 variables of which s =2 are
predicted, Eqs. (4.1) and (4.2) define a Fourier transfortn
Go of the conditional fluctuation [c(r1,1)c(r2, 1)]. Since
we are describing fluctuations in terms of the equilibrium
average (c (r1,0)c (r2, 0) ) instead, we may use the same
equations to compute its Fourier transform, which we
denote by G,q(k1, 0,k2, 0).

In terms of the G's, the quantities that we concluded in
Sec. II were sufficient to describe a linear, Gaussian, Mar-
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kovian system are 6 I(k, l, k, O) and G,q(k, O, —k, 0).
Since the last three arguments are redundant, we will omit
them and denote the propagator by 6 I(k) and the equili-
brium average by G,q(k).

We must now examine the problem of carrying out
coarsening transformations in the Fourier representation.
First, considering space-coarsening, it is shown in the Ap-
pendix that the coarsened G,q, and 6]', are given by

6,' (k') =2~6,q(k'/2),
6", (k') =6'(k'/2) .

(4.5a)

(4.51)

The rescaling k'~k'/2 is certainly to be expected, and 2
appears because it is the volume scaling factor„ the num-
ber of fine-cell contents we add to obtain one coarse-cell
content.

Now consider time-coarsening in the Fourier represen-
tation. We defined the time-coarsening transformation T
in terms of equilibrium correlations [Eq. (3.7)]. Coarsen-
ing the equal-time average is then trivial: It is indepen-
dent of ht, and

neither T nor R affects its range. If we assume on physi-
cal grounds that G,q starts out finite-ranged in space
(nonzero-ranged in k), any fixed point it approaches must
be zero-ranged in space. This is infinite-ranged in k, i.e.,
a constant

G,q(k, O; —k, O)=A .

This corresponds in real space [using Eq. (4.2)] to

(c(r,O)c(r', 0))=2 5

(5.1)

(5.2)

(5 ~ is the Kronecker 5), and thus A is the mean-square
dimensionless content.

Let us check that Eq. (5.1) is actually fixed under
ST*R». From Eq. (4.5a), S turns A into 2"A; schemati-
cally S A —+2 A The time-coarsening transformation T
has, of course, no effect on the single-time average 6,„,
but Eq. (4.7a) implies R:2~2 2A. Thus

ST'R ~:A 2'2-'~A,

and we have a fixed point if

G,q (k)=G,q{k), (4.6a)

as may be formally verified from Eqs. (3.7) and (4.1). We
are describing the unequal-time properties by the propaga-
tor 6&, which cannot be time-coarsened so directly. A
very general graphical procedure for coarsening it is given
in the following paper, ' but the result we require here can
be seen more easily by thinking of the propagator as
describing the distribution of positions at t =1 of a parti-
cle which began at the origin at t =0 (Fig. 1). Evidently,
the distribution after two intervals is just the convolution
with another identical propagator (in real space), or in k
space~

We now need to find a propagator GI which is fixed.
Denoting it temporarily by 6,

6(k) =61(k, 1;k,O), (5.4)

we obtain, from Eq. (4.51), S: 6(k)~6(k/2). Since R
has no effect and T: 6 (k)~6 (k)2 [Eq. {4.61)], we haveST'R: 6—+6', where

6 (k ) =6{k /2)"*'.

Requiring 6 =6 and taking logarithms,

6 I' (k) =[6I {k)]2 . lnG(k) =2'lnG(k/2) . {5.6)

Equations {4.6) are the only ones we will need here for
time-coarsening.

For completeness we should also write the equations for
applying the rescaling transformations R to an EOM.
From Eq. (3.8), 6(k)=exp( —Dk') . (5.7)

The solution for lnG is then evidently a homogeneous
function of k, whose order is z: lnG= Dk' for som—e
constant —D. Thus,

G,q (k) =2 G,q(k),

GI' (k)=GI(k) .

(4.7a) We can now look at possible values of z; if we require 6
to be analytic it is a non-negative integer. The value z =0
is forbidden if we require conservation of mass,

{5.8)

V. FIXED POINT3

We now have formulas for space-coarsening [Eqs. (4.5a)
and (4.5b)], time-coarsening [Eqs. (4.6a) and (4.6b)], and
rescaling [Eqs. (4.7a) and (4.71)], a discrete equation of
motion E, which is described by two functions G,q and
G~ of a single vector variable k in the limit we are in-
terested in (which we may call the continuous-space or
Markovian limit). It is evident that no EOM can be fixed
under S [which continually spreads out the propagator 6 I
in k space via Eq. (4.51)] or T [which continually spreads
6 I out in real space by convoluting it; Eq. (4.6b)]. Thus,
we seek a fixed point under some unknown combination
ST'R» of the transformations. First examining the
equal-time average G,q, S spreads it out in k space, and

Inversion symmetry [6(k)=6 —k)] forbids odd z. Thus
we are left with z=2,4, 6, . . . . Each of these gives a
fixed point under the corresponding transformation
ST'R r . The ones for z =2 and 4 have previously been
calculated numerically (Refs. 8 and 12). It will turn out
that only z =2 gives a stable fixed point, so we will con-
centrate on it here. It evidently corresponds to Pick's law
of diffusion; we will call it a Fick s-law fixed point. The
constant D is then a dimensionless diffusivity [the physi-
cal diffusivity will be shown in Sec. VIII to be
D(hr) /At)].

In summary, we have constructed a family of fixed
points under ST R which is pararnetrized by the di-
mensionless diffusivity D and the mean-square content
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fluctuation A (recall that we subtracted a constant so that
the mean content vanished). We may denote the equation
of motion determined by D and A by E(A,D); it is de-
fined only for D ))1, by Eqs. (5.1) and (5.8).

56(k)
6"(k)

which corresponds to the eigenvalue

p=2

(6.4)

(6.5)

VI. EIGENFUNCTIONS AND EIGENVALUES:
UNIVERSAL LARGE-SCALE BEHAVIOR

5E=QX,E, (6.1)

and predict its further trajectory under coarsening:
ST R ~; k;~p;A, ;. The large-scale behavior of the sys-
tem will be determined by the eigenfunctions whose coef-
ficients decay most slowly as we coarsen the scale, i.e.,
those with the largest eigenvalues p;. Even if we cannot
find a complete set, it is useful for our purposes to identi-
fy these largest eigenvalues.

A very general but somewhat abstract method for find-
ing eigenfunctions is given in the accompanying paper.
Here we will use a more direct approach. %'e want to
find a perturbation in the EOM, i.e., small changes in the
functions G,q and 6', which describe it, which corre-
spoIlds fo a11 clgcnfllIicflo11. Wc w111 bcglI1 by lcftlllg 'tllc

equal-time average G,q stay the same, and perturbing the
propagato«(k) =61(k, l, k, O) from its fixed-point value
[Eq. (5.7)], 6'(k)=exp( —Dk ), to 6'+56. The eigen-
value equation is

ST R i (6' 5+)6= *6p+56
or [using Eqs. (4.5b) and (4.6b)]

[G (kl2)+5G(k!2)]"=G (k)+I456(k) .

Linearizing in 56 gives

56 (k /2) 56 (k)
6 (k l2) 6'(k) (6.3)

This has the same form as Eq. (5.6), and the same
homogeneous-function solution,

A particular diffusive physical system will have an
equation of motion which approaches one of the fixed
points computed in the preceding section as it is repeated-
ly coarsened. The results of very-large-scale (in space and
time) measurements will therefore depend only on the
fixed point, i.e., on D and A. Somewhat smaller-scale
measurements, however, may provide information about
the EOM just before it reaches the fixed point. The effects
of the coarsening transformation ST R "~ in the immedi-
ate vicinity of the fixed point can be described in terms of
the linearized transformation I. about the fixed point, de-
fined as follows: If E' is the fixed point E(A,D), and
E*+5Eis a nearby EOM,

Z. 5E = (ST'R'—")(E*+5E) E' . —

(We may define the operation of subtraction on EOM's by
subtracting the functions G,q and 61 which define them;
in the linear region around E* this should be equivalent
to subtracting equilibrium averages. ) If we can find a
complete set of eigenfunctions E; and eigenvalues p; of L,
we can expand

This gives an analytic function of k for any integer j&0,
and thus we have found a series of eigenfunctions which
we can label by these j's, and which turn out to be exactly
those we described heuristically in Sec. I. To interpret
them, examine

6 (k) =6*+56=exp( —Dk )(1+iMJ),
which is the same to linear order as

6(k)=exp{—Dk +Akj) . (6.6)

Evidently, j=0 causes 6(k) to be multiplied by a con-
stant e . This violates conservation of mass [Eq. (5.8)],
but is mathematically a perfectly good eigenvalue. The
j= 1 eigenfunction was shown in Fig. 2(a), but odd j
violates inversion symmetry. The next even value, j=2
[Fig. 2(b)], simply changes the value of D and thus has an
eigenvalue rM = 1, as mentioned in Sec. I.

Note that we can ~rite a propagator perturbed by a
linear combination of these eigenfunctions in the form

6{k)=exp( Do Dzk— D4k4— . . )——(6.7)

G,q(k)=A exp( —g k —A,4k ) . (6.8)

We have written the amplitude for i =2 as g~ instead of
A,2, since this is the standard notation for a correlation
length. This corrdation-length eigenvector has eigenvalue
p= ~, the same as the Burnett eigenvalue. In principle,
we should also consider perturbation of the average con-
tent (c(r,O)), which is uniform in space, or its Fourier
transform 6,'q(k, O). This is easily seen to grow with
eigenvalue 2"~2; it is highly unstable. That is why it, was
necessary to subtract off the average content after Eq
(2.2).

We now know various eigenfunctions and eigenvalues
of the coarsening transformation ST R . Just as in the
theory of critical phenomena, this knowledge enables us to

(leaving out odd j for brevity), which is useful because it
makes sense beyond first order in the DJ's. Thus Do de-
scribes the particle decay rate (degree of nonconservation),
and Dz is the dimensionless diffusion coefficient that we
denoted D previously. In terms of this notation, the larg-
est allowed eigenvalue corresponding to a deviation from
the family of fixed points (i.e., from Fick s law of dif-
flls1011) is p =

4 . Thc corresponding amphtudc D4 1S tllc
dimensionless Burnett coefficient. ' '

We must also consider perturbations of the equal-time
average G,q{k,O, —k„O), which we may denote by G,q(k).
The fixed-point value is G*,q(k)=A. Arguments similar
to the above lead to eigenvectors k' (i )0) and eigen-
values p; =2 '. Here i must be even since
( c(r, 0) c(r' 0)) is unchanged when r r' changes sign. —
The case i =0 corresponds to moving along the family of
fixed points, and has p= 1. The perturbed G,q can be
written
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predict the universal large-scale behavior of a diffusive
system. As we examine larger scales (i.e., apply
ST R~/ }, the perturbations from Fick's law correspond-
ing to stable eigenfunctions (@~1) will become smaller
(we have constrained the amplitudes of eigenfunctions
with p) 1 to vanish on all scales). The EOM will there-
fore approach the Fick's-law fixed point. The eigenfunc-
tions which disappear most slowly, i.e., the ones that are
most visible on a relatively large scale, will be those with
the largest eigenvalues. %e have not proved that the
stable eigenvalues we have found are the largest (indeed,
there are larger ones if we allow nonlinear EOM's, as we
see in the following paper on disordered systems'). How-
ever, they appear to be the largest ones„ if we restrict our-
selves to linear systems. There are two eigenfunctions
with the same eigenvalue p = —,', corresponding to a
nonzero Burnett coefficient and a nonzero correlation
length, respectively. These determine the leading correc-
tion to the dynamic structure function S(k,ro) obtained
from Pick's law, for example.

by analyzing the exact eigenfunctions and eigenvalues of a
linearized coarsening transformation near a family of
fixed-point equations of motion. The fixed points are
parametrized by two dimensionless parameters A and D2
related to the content-fluctuation amplitude and the dif-
fusivity. The coefficients of the two most relevant eigen-
functions are related to the correlation length and the
Burnett coefficient; this means that these are the dom-
inant corrections to normal (Fick s-law) diffusive
behavior. In the following paper these techniques are gen-
eralized to a two-component system, and are used to ob-
tain new results for the universal behavior of systems with
static disorder.
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In terms of a continuum equation of motion such as
Eq. (1.1), what we have done, in effect, is to confirm the
Burnett generalization

dp
Do»p+—Dip% p DgPV p—+ (7.1)

where DqP is the physical Burnett coefficient; we have
also included the decay rate DOP for generality. (The signs
must be chosen this way, with positive D's for physical
stability. ) Let us demonstrate explicitly the connection
between the dimensionless coefficients DJ of our eigenvec-
tors [as in Eq. (6.7)] and the physical transport coeffi-
cients D~~ in Eq. (7.1). First, we Fourier-transform Eq.
(7.1),

Bp 2 4
s

=—Dop —D2k p —B4k p— (7.2)

(here k» =k lhr), and solve it with initial condition
p(k», 0),

p( kp, t)0)PPP=exp( Do b,t D2 k —b, t —). (7.3)—

Letting p{k» 0) be independent of k» {an initial distribu-
tion concentrated at the origin), we can identify the ratio
p(k», t)/p(k», 0) with the propagator 6(k). Comparison
with Eq. (6.7) gives

APPENDIX

In this appendix we give a general derivation of a for-
mula for space-coarsening a Fourier-transformed EOM,
which leads to Eqs. (4.5) in a certain Markovian limit.

In previous work we have space-coarsened EOM's nu-
merically ' using a procedure which used the EOM
propagators directly. In the present case (a Markovian
EOM in the limit Ar —+0} there is a simple relation [Eq.
(2.3)] between the propagator 6', and the equilibrium
averages, which we can Fourier-transform [via Eqs.
(4.1)—(4.4)] to

6, (k, 1,—k,O)=Gi(k, l, k, O)G,q(k, O, —k, O) . (Al)

Thus it is sufficient to S-coarsen the equilibrium time
correlations; we can then obtain the propagator from Eq.
(Al). The equation for the S-coarsened time correlation is
simple in real space [Eq. (3.6)]. It is also simple in k
space [Eqs. (4.5), derived below] in the limit where br~0.
To show this and estimate the errors for b,r&0, however,
we need to Fourier-transform Eq. (3.6) for nonzero hr.
Substituting it into Eq. (4.1), which defines the Fourier
transform, gives an expression for the coarsened
6,"q(ki, ti, . . . , k„',t„) in terms of 6,"q. The expression
contains sums over cell coordinates

DJP DJ(hr)jlht . —— {7.4) e
—ik'r'eik (2r')~~ ~~

In particular, the physical Burnett coefficient is

DgP D4{br) /ht . ——
Note that under coarsening this changes by —,

' (2) /2 =1,
i.e., the physical Burnett coefficient is invariant. This is
true of all the DJP's.

VIII. SUMMARY

We have shown that a general understanding of the
large-scale behavior of diffusive systems can be obtained

Considering only a single component of k', k, and r', this
can be replaced [using Eq. (4.4)] by

2~a (k —2k)e""'-"'"=~a (k /2 —k)e'"'"-'&

where 5 has period m. It can, however, be expressed as
the sum of two 52 's,

2~v,.(k 2k)e""' '"'"—=~+a,.(k /2 k+e)e", —
8

where 0 takes on the two values 0 and m. Thus the sum
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ovcI' vcctoI' pos1tions p 1s

g e '"'e'"' "'=n"+5 (k'/2 —k+8)e
8

where 8 is now a vector with components 0 or m, and +8
is the sum of the components. This 5 function eliminates
the k integrals in Eq. (4.1), leaving

52 (ki+ )6,"q(ki, . . .)=g +2 "exp i+8i+i(ki/2+8i)5i
~1 81

xg g . 5, (k', /2+8, +k,'/2+8, +. )6,",(k', /2+8„. . . ) . (A2)

This is nonzero only when each component of gk i is a multiple of 2ir. When it is an even multiple, the 5 function on
the right-hand side requires each component of +8; to be an even multiple of n, and.

5(k)/2+8i+ . )=5(ki/2+k2/2+ . )=25(ki+k2+ . ) .
Thus Eq. (A2) simplifies to

G~ {ki,. . .)=2 g icos(k'i /4+8i/2) cos(k„'/4+8„/2)6,"q(ki /2+8i, . . .),
~n

where the sum is over 8; =O, m, and includes only 8 s for which each component of +8i le is even. We are using the no-
tation cos(k) for a vector k =(k', k, . . . , k ) to mean cos(k')cos(k ) . cos(k"). Because of the antiperiodicity there is
no need to evaluate 6,"q when a component of gk'i /2m. is odd; however, Eq. (A3) works for this case provided we re-
quire the corresponding component of +8;/m to be odd and insert a factor —1.

It is difficult to find analytic expressions for G,q
which are fixed points of a transformation such as Eq. (A3) involv-

ing a sum over displacements 8. In our calculations we will assume that 6 is strongly peaked near the origin, falling off,
for example, as exp( —g k; ) in each of its arguments k;, with a correlation length g))1. Of course, there is another
peak at k; =2m., but the peaks are separated by a region in which the value is very small, of order exp( —g m ), and be-
cause of the antiperiodicity they are all determined by the one near k; =0. When we evaluate Eq. (A3) near k; =0, the
terms with 8;&0 will be negligible, and the space-coarsening equation simplifies to

6,"q (k i,t„.. . ) =2"cos(ki /4) cos(k„' /4lG,"q(k i /2, ti, . . .),

with an error of order exp( —g m ).
For the present purposes, we shall also make a much

IIlorc severe approxlIIlatlon bp cxpandlng thc cos1ncs 1n

powers of k; and keeping only the constant term,

6,"q (ki, ti, . . .)=2 6,"q(k'i /2, ti, . . . ) . (A5)

The error introduced by this is of relative order g
Equation (A5) can be used to space-coarsen the equi-

librium averages G,q in Eq. (Al), and therefore to also
determine the coarsened propagator Gi', which is given
by Eq. (4.5). Equation(4. 5) is therefore valid for a Marko-
vian EQM in the continuum (hr~0) limit as required in
Sec. IV for large correlation length g.

The reader may note, however, that the fixed point we
finally end up with [Eq. (5.1)] violates the assumption
g&~1; in fact, /=0. Indeed, the argument for Eq. (5.1)
amounts to observing that 5: g~g/2 {5changes g to

G,q
(k', 0, —k', 0)=2d g cos(k'/4+8/2)

8=0

Xcos( —k'/4 —8/2)A

=2 [cos (k'/4)+sin (k'/4l]A, (A6)

from which Eq. (4.5a) follows.

g/2), T: g—+g, and R: g—+g so /=0 at any fixed point.
(Remember that g is a dimensionless correlation length,
i.e., the number of cell lengths across which the density is
correlated, which decreases as the cells enlarge. ) For-
tunately, Eq. (4.5a) can still be proved in this special case.
Applying the exact Eq. (A3) to Eq. (5.1) and noting that
the evenness condition on 8; can be satisfied by taking
8z ———8i, we obtain
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