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The dielectric function of the electron gas with dynamical exchange effects, obtained from a vari-

ational treatment of the equation of motion for the Wigner distribution function, is compared with

the expansion of the proper polarizability to first order in the electron-electron interactions. The
latter dielectric function turns out to be the expansion of the variational one to first order in the ex-

change effects. Furthermore, the diagrammatic approach shows finite regions in the particle-hole

continuum, where the imaginary part of the perturbative dielectric function is negative.

In an earlier paper, ' a variational method was proposed
to include dynamical exchange effects in the dielectric
function of the homogeneous electron gas, via a complex
and frequency-dependent "local-field correction" 6(q, co).
In this procedure, a variational principle was used to ob-
tain the dielectric function from the equation of motion
for the Wigner distribution function, which was con-
sidered to first order in the applied external fields and
decoupled according to the Hartree-Fock (HF) prescrip-
tion.

As a result, the dielectric function was obtained in the

Qo(q, to)
e""(q,to) =1+

1 G"'(q, to )—Qo(q, co )

where Qo(q, co) is the Lindhard function

4~e'
Qo(q, co)= I d p

co —p q/m

fiV (p)=f (p+A'q/2) —f (p —A'q/2), (3)

f (p) is the equilibrium distribution function, assumed to
be homogeneous in space, and for which in the actual cal-
culations, the paramagnetic Fermi-Dirac distribution at
zero temperature was taken. For the exchange correction
6""(q,to) the following expression was obtained:

4~e2 2~e'~'
6YRf( ) d3 d3

Qo(q ~) ip —p'i co+ —p q/m co+ —p'. q/m to+ —p. q/m

Some preliminary frequency-dependent results for
6""(q,co} were already given in Ref. 3, and also the out-
line of a method to reduce (4) to a numerically tractable
twofold integral. A more elaborate study of the analytical
methods involved is given in Ref. 4, and in Ref. 5 we give
a quite extensive overview of the numerical results and of
the sum rules and consistency requirements which are
satisfied.

It should be noted that several other attempts " have
been IDadc to account fol dynamical exchange cffccts v1a

a complex frequency-dependent function 6 (q, co ), al-

though in most of these treatments the actual evaluation
was restricted to some limiting cases. The relation be-
tween these approximations is discussed in Ref. 12 and
lies beyond the scope of the present paper. The treatment
of dynamical exchange effects by Holas, Aravind, and

Singwi" (hereafter referred to as HAS) leads to a dielec-
tric function which is closely related to our variational re-
sult 6""(q,co). They obtain

P (q, to) = I+Qo(q, co)[1+6""(q,to)Qo(q, co)] . (5}

If (5) is written in the more familiar form

Qo(q, co)
&HAS( q

1 —6 (q, co)Qo(q, co)

the relation between 6""(q,co) and 6 (q, co) is obviously

GHAS(q

1 —6 (q, co)Qo(q, co)

Since HAS included dynamical-exchange effects by a di-
agrammatic expansion of the proper polarizability to first
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order in the electron-electron interaction, it is not surpris-
ing that their result G (q, co) is the dominant term in
the expansion of G""(q,co) if exchange effects are assumed
to be relatively small. Similarly, the dielectric function
P (q, co) is obtained by expanding e'""(q,co) to first order
in the exchange correction.

The close relation between both approaches is also man-
ifest from the equation of motion for the Wigner distribu-
tion function with dynamical exchange decoupling. As is
discussed in Ref. 12, P (q, co) can be obtained from this
equation of motion by iterating to first order, treating the
exchange term as a first-order perturbation.

It should be emphasized that both the perturbative and
the variational approaches give fairly similar results in
many aspects. Most of the consistency requirements that
have been checked do not favor one of both approaches,
except for the compressibility sum rule. Indeed, the
compressibility as obtained from P s(q, co) turns out to be
the expansion of the HP compressibility to first order in
the electron-electron interaction, whereas e""(q,co) is con-
sistent with the HF compressibility. This phenomenon is
closely related to the fact that G""(q,co) is a universal
function of q/kz and fico/2EF for all densities. The per-
turbative result G (q, co), however, explicitly depends on
the density, even as a function of q /kF and fico/2'.

A detailed discussion of the general properties of
e""(q,co) and P (q, ro) can be found in Refs. 5 and 12.
But it is remarkable that neither of these properties gives
some decisive insight concerning the validity of the ap-
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FIG. 2. Same as Fig. 1, but for r, =3.

proximations considered. Interesting conclusions should
be obtained from the explicit evaluation of the ground-
state energy, the static structure factor and the pair-
correlation function from the dielectric function. Al-
though HAS claim to have performed this calculation
(slightly favoring their perturbative approach), we must
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FIG. 1. Imaginary part of the variational (solid line) and per-
turbative (dashed line) dielectric function with dynamical ex-
change effects, compared to random-phase approximation
(RPA) (dotted line), as a function of frequency for q =kF/2 and
rs —2.
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FIG. 3. Same as Fig. 1, but for r, =4.

I

)

I

I
I
I
I
I
I
I

I
I
I
I
I
I
I
I
I
I
I'.J'

I '
~.

I
I

I
/

/
/

I

0.6 (d/4) p



DYNAMICAL EXCHANGE EFFECTS IN THE DIELECTRIC. . .

confess that we were unable to reproduce their results. Up
to now, we did not succeed in developing an algorithm
with sufficient accuracy to handle the rather singular
dielectric function, including dynamical exchange effects.

However, another rather straightforward condition is
that the imaginary part of the dielectric function should
be positive. It is surprising that a direct evaluation of
P (q, co), starting from the tables in Ref. 5, and using (5)
or (7) and (6), shows appreciable regions in the (q, co) plane
where its imaginary part turns out to be negative for suffi-
ciently low density. This is shown in Figs. 1—3, where
ImP (q, co) is plotted as a function of co/~~ (co~ is the
plasma frequency) for q =kz/2 and for the three values
r, =2,3,4 of the Wigner-Seitz radius r, . For reference, the
corresponding results of the random-phase approximation
(RPA) and of the variational method are also given.

A major difference between e""(q,co) and e (q, co) is
that ImP (q, co) has pronounced discontinuities at the
parabolas v=

~

k /2 —k
~

and v=k /2+ k with

v=1m/2E~,

k =q/kp .
These parabolas define distinct regions in the particle-hole
continuum. In contrast, Imc""(q,co) tends to zero at these
parabolas. This fact is related to the logarithmic singular-
ities in 6""(q,co), as discussed in Ref. 5. Since the pertur-
bative appmach is supposed to describe sufficiently small
r„ it is not completely unexpected that ImP (q, co) be-

comes negative for larger r, . However, a rather surprising
problem occurs in the region v&

~

k /2 —k
~

for k&2
where Ime (q, co) turns out to be negative, independent
of r, . This behavior can be derived from the following
analytical considerations.

It has been shown (sce, e.g., Ref. 4) that 6""(q,co) can
be written as

6""(kk~,'2vE~/A) = f(k, v)R (k, v),
k

R (k,v) =k J dzT(z, k)
1

v+ —k /2 —kz

(10a)

1

v++k'/2 —kz
(10b)

1

2m aok kpgo(q, al)

It is well known, as follows «om (2), that

where ao is the Bohr radius, and where T(z, k) is explicitly
given in Ref. 4. From (5), (10), and (11) one readily
derives

ImP (q, co) =Imgo(q, al ) + ImR (k,v)

m aokpk"

I
k —k 1/2

~
& v & k'l2+ k .

0(v(k —k /2
aokpk'

Imgo(kkp, 2vE~/lrl) = '
kz

aokpk

Furthermore, it follows from (10b) that

m[T(v/k —k/2, k—) —T( —v/k —k/2, k)]„0(v( k —kz/2

AT(v/k k/—2,k),
~

k ——k l2
~

&v &kz/2+k .

The lowest-frequency limit of the particle-hole continuum
for k&2 corresponds to v=k /2 —k, and thus involves
T( —l, k), which is given by (see Ref. 4)

Since T( —l, k)&0 for k&2, and Imgo(q, al)=0 at the
boundary of the continuum under consideration, it clearly
follows from (12)—(15) that ImP (q, co) & 0 in a finite re-
gion of the particle-hole continuum (which broadens with
increasing r, ), even for arbitrary small r, . These analyti-
cal considerations confirm the numerical evaluation. A
very careful analysis to second order in the deviation from
the boundary of the continuum leads to the same con-
clusion.

A similar analysis was performed for the variational re-
sult. Because in c""(q,co) both the imaginary and the real

parts of Qo(q, co) and 6""(q,al ) must be included, the alge-
bra involved is rather tedious, although straightforward.
This analysis revealed that Imc'""(q, co) does not present
thc pl'oblc111s wlllch occlll 111 P (q, co), cxccpt possibly 111

an infinitesimally small interval for k & 2 and
v=k —k /2. Owing to the combination of logarithmic
singularities from 6'"(q, o1) and the discontinuity in the
slope of Qo(q, co), we could not yet handle this region with
sufficient Icliability. Also, thc nUIllerical cvalURtlon tUrns
OUt to bc rather 1naccUlatc 1n thc iHlIDcdiatc nclghborhood
of tllls parabola.

In conclusion, we stress that both the perturbative and
the variational approach for treating dynamical exchange
effects have in many aspects the same merits and disad-
vantages. There are, however, a few properties which
seem to favor the use of the variational dielectric function.
In the first. place, P (q, co) is to be considered as the ex-
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pansion of e""(q,co) to first order in the exchange effects.
Furthermore, the imaginary part of the perturbative
dielectric function P (q, co) becomes negative in a finite
region of the particle-hole continuum. The variational
treatment of dynamical exchange seems not to suffer from
this disadvantage, except possibly in an extremely small
region, which up to now could not be handled accurately

enough by analytical or numerical methods.
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