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Valence-bond theory of linear Hubbard and Pariser-Parr-Pople models
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The ground and low-lying states of finite quantum-cell models with one state per site are obtained
exactly through a real-space basis of valence-bond (VB) diagrams that explicitly conserve the total
spin. Regular and alternating Hubbard and Pariser-Parr-Pople (PPP) chains and rings with X, elec-
trons on 1V ( (12) sites are extrapolated to infinite arrays. The ground-state energy and optical gap
of regular U=4

i
t

~

Hubbard chains agree with exact results, suggesting comparable accuracy for
alternating Hubbard and PPP models, but differ from mean-field results; Molecular PPP parame-
ters describe well the excitations of finite polyenes, odd polyene ions, linear cyanine dyes, and slight-

ly overestimate the absorption peaks in polyacetylene (CH)„. Molecular correlations contrast sharp-

ly with uncorrelated descriptions of topological solitons, which are modeled by regular polyene radi-

cals and their ions for both wide and narrow alternation crossovers. Neutral solitons have no

midgap absorption and negative spin densities, while the intensity of the in-gap excitation of charged
solitons is not enhanced. The properties of correlated states in quantum-cell models with one
valence state per site are discussed in the adiabatic limit for excited-state geometries and instabilities
to dimerization.

I. INTRODUCTION

Quantum-cell models are defined by localized spins sp
or orbitals Pp at sites p =1,2, . . . , N Asingl. e ])I]p per site
occurs in s-band solids, in Hubbard and related models,
and in Pariser-Parr-Pople (PPP) models. The restriction
to one electron per tt]p leads naturally to sp ———,

Heisenberg-spin models. Systems with N, electrons on N
sites, a single valence orbital P» per site, and spin-
independent intersite interactions thus encompass many
theoretical models in both physics and chemistry. ' In ad-
dition to diverse applications, various approximate solu-
tions have been proposed to augment the few exact results
in one-dimensional arrays.

We present in this paper a real-space approach to cell
models with a single Pp per site and spin-independent in-
teractions. As summarized in Sec. II, the use of valence-
bond (VB) diagrams as basis states allows exact numerical
solution for models with over 10 electronic configura-
tions, while even 10 configurations for benzene were dif-
ficult for previous approaches based on molecular-orbital
(MO) methods. The benzene ring of N, =N=6 was in-
dependently solved by Heilmann and Lieb, by Shiba and
Pincus, and by Schulten, Ohmine, and Karplus. We
find below low-lying states of N, =N=12 Hubbard and
PPP chains in Cq symmetry using diagrammatic VB
methods. Mazumdar and Dixit have recently discussed
the dimerization of N, =N=10 Hubbard and extended
Hubbard rings, also via VB methods, and summarize the
related theoretical approaches.

For one-dimensional cell models, N-12 sites suffices
for accurate extrapolations to the infinite chain. Bonner
and Fisher's famous treatment of s = —,

'
Heisenberg anti-

ferromagnetic chains was restricted to N(12. Lieb and
Wu's exact results for one-dimensional Hubbard models

l I+2K
p~p

Here np is the number operator,

np =apactpa+apt]ttpy . (2)

The site energies Ep on-site correlations Up, and intersite
interactions V&z are arbitrary in (1); their spin-
independence is assured as coefficients of number opera-
tors. The usual case of Coulomb interactions requires the
charge zp at site p for empty Pp. More distant transfers
can also be handled via VB methods. Both N, =Xnp and
the total spin S are conserved in (1}and the Lieb-Mattis
theorem' holds for constant tp. Even and odd N, have

afford similar tests for extrapolation of the ground-state
energy per site or of the optical gap, as discussed in Sec.
III for different types of boundary conditions with com-
mon N~ao limits. While finer points like critical ex-
ponents require larger N, the electronic spectrum, transi-
tion moments, bond orders, spin densities, etc., may be ex-
trapolated accurately for arbitrary spin-independent inter-
site interactions. PPP applications to polyacetylene
(CH}„ in Secs. IV and V exploit N~ co extrapolations for
dimerized even chains and rings, for regular radicals
representing neutral solitons, and for singlet ions describ-
ing charged solitons.

We choose orthonormal valence states Pp and define
fermion operators apo, ap for creating, annihilating an
electron with spin tT in tt]p. The most general one-
dimensional cell model with spin-independent interactions
and nearest-neighbor tp that conserve spin is

A = y t'tp(ap~ap+] ~+ap+] ~ap~)
p, a

+epnp+ Upnp(np —1)/2]
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S=O and S= —,
'

ground states, respectively.
A real-space basis such as VB diagrams is off-diagonal

for the t~ terms in (1), which alter the [ n~ ), but is diago-
nal for all other contributions. Thus different e~, U~, or
V&& merely change the diagonal elements, in sharp con-
trast to MO approaches where two-electron terms are
off-diagonal. The Iz terms in (1) define the uncorrelated
Huckel model. Adding Uz gives Hubbard. models, while
adding both U& and Vzz leads to PPP models. The site
energies e~ are required for unlike atoms, as illustrated in
Sec. V for cyanine dyes, or for donors and acceptors in
solid charge-transfer complexes. ' The general VB
analysis of (1) is consequently independent of the parame-
ter values of e~, U~, or V~~. Spatial symmetries of chains
or rings naturally allow reductions on forming
symmetry-adapted linear combinations.

The direct solution of one-dimensional cell models has
implications beyond understanding (CH)„or organic ion-
radical solids. Like exact results, successful N~ ao extra-
polations provide calibration for Hartree-Fock (HF), unre-
stricted HF, and other approximations that may be ap-
plied to far larger systems. The mean-field estimate of
the optical gap of alternating Hubbard models, for exam-
ple, needs revision. When several different self-consistent
schemes are possible, the choice can be made by compar-
ison with numerical results.

The occupation numbers nz and spins at each site are
specified in any real-space basis. An N -fold product of8

operators a~ acting on the vacuum ~0) yields an N, -

electron Slater determinant. Although S, is readily con-
served, linear combinations of Slater determinants are
needed for eigenstates of S. Conventional VB diagrams,
by contrast, explicitly pair spins in n&

——1 sites. The six-
electron Kekulc, Dewar, and ionic VB diagrams in Fig. 1

are consequently singlets. Mazumdar and Soos" associate
a normalized state

~

k ) with each VB diagram by operat-
ing on ~0) with a ~~& for doubly filled P~, with

(alt~»p —a&~» )/I/2 for singlet-pairing of an electron in

Pz and another in P», and with a&~a« for triplets in sing-
ly occupied sites at p and q. A few phase conventions
suffice for generating

~
k) with .arbitrary S(N, /2 in

terms of commuting, paired combinations of a~ . Singlet
pairi. ng corresponds to covalent Heitler-London bonds
that are denoted by lines in Fig. 1, while S & 1 involves an
arrow connecting 2S sites and S= —, is handled separate-

ly. A diagram with m singlet lines represents a linear
combination of 2 Slater determinants. Linear indepen-
dence and completeness is achieved by retaining" all dia-
grams without crossing lines or arro~ on arranging the X
sites at the vertices of a polygon.

The bit (binary digit) representation of VB diagrams in-
troduced by Ramasesha and Soos' ' is the key for han-
dling larger bases. Now

~

k) for an N-site diagram is
written as a 2%-digit binary number with bits 2p —2,
2p —1 associated with site p =1,2, . . . , N, as shown in
Fig. 1. Each benzene diagram becomes an integer Ik that
is necessarily smaller than 2 . The code is 00 and 11 for
empty and doubly occupied Pz, respectively, while 10 and

Site
2 3 4

IGOI I QQ I IQQ I

2457

I OIQPI Ql IQQI

I QOI I Q I I OQQI

FIG. 1. Bit representation of m. electrons in a Kekule, Dewar,
and ionic VB diagram of benzene.

01 represent the lower- and higher-numbered site of a
singlet line, or the beginning and end of the line. Since
lines do not cross in linearly independent

~

k ), the binary
code is unambiguous for S=O and may readily be general-
ized to any S(N, /2. Integers up to 2 are tested
sequentially to generate P, integers Ik representing
linearly-indcpcndcnt VB diagl ams with X~ electrons~
sites, and spin S. In addition to the compact notation, the
increasing sequence Ik allows efficient tree searching. A
similar procedure' based on a single bit per site may be
used for s~ = —,

' sites, where only singly occupied P~ occur.
Simple combinatorials for distributing N, electrons on

N sites always suffice for evaluating" ' the number P, of
linearly independent

~
k). Empty and doubly filled P~

are nondegenerate singlets, while the spins of singly filled

Pz are coupled to form the total S. For example, even
N, =2n and N, (N leads after some algebra to

2S+1 %+1 %+1
Pg(2n, N) = (3)n +1+S n —S

for S=0, 1, . . . , n in terms of binomial coefficients. We
usually require S=O or 1 for even N, and S = —,

' for odd
N, . The latter are found via the singlets of an expanded
system with a singly occupied phantom" at X+ 1 that
does not participate in electron transfers under (1), but
merely allows drawing nonintersecting lines connecting
nz 1sites; (3) is again——found, with n replaced by
N, /2=n+ —,'. Some representative P, are compared in
Table I with the number of Slater determinants:
[(2n)!/n!li!] wltli Sg ——0 and N~ =N =2li aild
[(2n+1)!/n!(n+1)!] with S,=—,

' and N, =N=2n+1
or with S,=O and N=2n+1, N, =N+1. The advan-
tage' of the VB basis is even greater in spin problems
based on purely covalent diagrams with all n&

——1.
Additional spatial or electron-hole symmetries require

linear combinations of VB diagrams and reduce the
P, )&P, matrix of (1) for spin S. We suppose RJ to be one
ofj= 1,2, . . . , G symmetry operators, with

[A,Rl]=0 .
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TABLE I. Dimensions of S=O ( 2 ) subspaces for even (odd)

N, on N sites for VB diagrams and for the Slater determinants
with S,=0 (even) and S,= 2 (odd).

N, /N

6/6
8/8

10/10
12/12
14/14
7/7
9/9

11/11
(6,8)/7
(8,10)/9

(10,12)/11

VB diagrams

175
1764

19404
226 512

2 760 615
784

8820
104 544

490
5292

60 984

Slater determinants

400
4900

63 504
853 776

11 778 624
1225

15 876
213 444

1225
15 876

213 444

Skk =(—2)' (7)

where
I
k),

I

k') have identical I np j,n —m singlet lines,
and form i (n —m disconnected cycles on superposing

The coefficients of diagrams RJ I
k) for j=1,2, . . . , G

then differ at most by a phase factor. For larger N„N
problems it is advantageous to store only

ik=minIR.
I
k) j .

The minimum integers ik represent diagrams whose linear
combination is fixed by symmetry. Unnormalized linear
combinations suffice. Owing to highly symmetric dia-
grams similar to the Kekule structure in Fig. 1, the exact
subspaces are only approximately given by P, /G, al-
though this estimate is quite accurate for %„1V-10. We
have G=4 for half-filled chains, G=2 for ionic chains,
and G =2N for half-filled regular rings.

We summarize next the representation of M in the VB
basis. All terms of (1) other than the transfers tp are diag-
onal and simply require the I np j of ik in (5), since all
symmetry-related VB diagrams have identical ep, Up, and

Vpp contributions. The transfer terms interconnect VB
diagrams

g tp(ap~p+ & +ttp+ &~p )
I
k &

= X hkj Ij & (6)
p, o J

The completeness of the VB basis in the Hilbert space of
one Pp per site ensures that the matrix h is an exact repre-
sentation of the transfer terms of (1). The fact that elec-
tron transfer occurs with spin conservation, as motivated
physically by small spin-orbit coupling, ensures that

I j)
in (6) remains for the -P, /G linear combinations of dia-

grams for the chosen space and spin subspace. The k&j
coefficients hkJ have already been found for real transfers
in ionic problems" and for virtual transfers' in Heisen-

berg exchange models. Furthermore, transfers between
nonadjacent sites may systematically be represented' as
products of nearest-neighbor transfers.

The nonorthogonality of the VB basis is not a major
difficulty in the diagrammatic theory. The overlap ma-
trix Skk =(k

I
k') for singlets is real, symmetric, and

found via Pauling's island-counting method, "

the two diagrams. Similar rules apply to diagrams with
arbitrary spin. The elements hk~ in (6) form a nonsym-
metric matrix h related' to the usual symmetric matrix
representation by

~=h S=ShT.
The left eigenvector of h is the eigenstate P of A,

P

k=1

(8)

(9)

The coefficients ck are chosen to normalize g, which ex-
plicitly involves a linear combination of the P, diagrams

I
k ) with fixed S, N„and N.
The matrix h is quite sparse, since N sites give -N

nearest-neighbor bonds and electron transfers to the right
and left generate 0, 1, or 2 diagrams per bond. Each row
in (6) has less than 2N nonvanishing elements for -P, /G
symmetry-adapted basis vectors. The matrix A in (8) is
far less sparse on multiplying by the overlap matrix. We
note that MO bases involving one-electron orbitals, or N
Fourier components in one-dimensional arrays, are even
less sparse because two-electron terms in (1) generate
-N off-diagonal elements. The sparseness of the h ma-
trix is a general feature of real-space bases with near-
neighbor transfers, while spin conservation is achieved via
the VB basis.

We have modified' the coordinate-relaxation pro-
cedure' for symmetric sparse matrices to give the lowest
eigenstate of unsymmetric sparse matrices. Both the left
and right trial vectors of h must be relaxed in the usual
Rayleigh quotient. Deflation and further coordinate re-
laxation yield the second lowest eigenstate, thereby pro-
viding two states in each exact subspace with fixed S, spa-
tial, and electron-hole symmetry. All computations were
carried out on a Digital Equipment Corporation VAX-
11/780 computer. The orthogonality of VB diagrams
with unlike {np j greatly simplifies' matrix elements over
correlated states such as (9) for operators that do not
change the total spin or the Inp j. Transition moments
and bond orders illustrate the former, spin densities and
spin correlations the latter. We are not aware of previous
procedures for matrix-elements evaluation in large
configuration-interaction (CI) problems.

III. THE U =41 t
I

HUBBARD MODEL

Hubbard models are restricted to on-site correlations.
For N, =X electrons on equivalent sites, we take
ep ——

Vpp Oand Up=U i—n—the general cell model (1).
Bond alternation 5 is defined as

(10)

with 5=0.0 for regular chains and 5&0 for dimerized
chains. We take

I
t

I
=1 as the unit of energy and

u = U/41t
I

as the reduced on-site correlation. The most
difficult and interesting case of U =41t

I
is studied for

half-filled (N, =N) Hubbard models.
Lieb and Wu found exactly the ground-state energy

per site e(5,u) for regular Hubbard chains,
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TABLE II. Ground-state energy per site, e(5, 1)/
~

t ~, of ¹iteHubbard models with U =4
~

t
i

and
alternation 5. Rings of 4n and 4n + 2 form separate sequences.

6

10
12

Chain

—0.51543
—0.529 48
—0.53806
—0.543 85

Regular (5=0.0)
Chain (N —1)

—0.483 50
—0.509 54
—0.526 93
—0.536 16

—0.573+0.005 ( —0.573 73)'

Ring

—0.61145
—0.575 44
—0.583 43
—0.576 70

Alternating (6=0.07)
Chain Ring

—0.546 13 —0.61800
—0.556 98 —0.586 94
—0.563 52 —0.593 81
—0.567 89 —0.589 57

—O. 587+0.005

'Exact, Ref. 7.

~o(~)Ji(~)
E(O, u)= —4 f dco . (11)

co 1+exp 2uco

The optical gap Es(5,u) for the lowest charge-transfer ex-
citation at 5=0 is'

J)(co)
Eg(O, u)=4u —4+8 I dco . (12)

co 1+exp 2uco

The corresponding results for the 5~1 limit of decoupled
Hubbard dimers are

e(l, u)= —(u +4)'i +u,

E,(l,u) =(u'+4)'" .
(13)

e(5,0)= ——E[(1—5 )'i ], (14)

The ground-state energy of alternating Hiickel models was
found by Longuet-Higgins and Salem'

The optical gap Ez(5, 1) is extrapolated as N ' in Fig.
3 for even chains and 4n, 4n +2 rings. Numerical results
are collected in Table III. A11 regular 4n Hiickel rings
have vanishing gap, while Es(0,0,4n+2) decreases' as
N '. These features will be more evident in Sec. III for
PPP models with standard parameters. The U =4

i
t

i

gaps in Fig. 3 decrease for both chains and rings and con-
sequently provide less accurate extrapolations; the strong-
est dependence is found as expected in 4n+ 2 rings and
will require N=14 results. The extrapolated Es(0, 1)
= 1.20+0.10 for chains and 4n rings is within 10% of the
exact result, 1.2867, from (12).

The mean-field result for the optical gap is

Emr(5, u) = [Es(O,u)+(45) ]'~ (16)

Quite typically, the squares of the u =0 result (15) and the
5=0 result (12) are combined. Numerical results for al-
ternating Heisenberg spin chains, whose smaller basis al-
lows %=20 chains and rings, indicate that the gap opens

where E is the complete elliptic integral of the second
kind. The Hiickel gap is O.O

—0.51,
0.05

I

O.IO N
'

O.l5

b, Es(5,0)=45 . (15)

These exact results, all in units of
~

t i, are consistent
with the physical expectations that a repulsive on-site in-
teraction u makes e(5,u) less negative while increasing al-
ternation 5 makes e(5,u) more negative. The optical gap
Ez(5,u) increases with both u and 5.

Table II contains e(5,u) results for chains and rings up
to N, =N=12. Boundary conditions must become ir-
relevant as N~ ao. Regular Hiickel rings of 4n sites have
orbitally degenerate ground states and e(0,0,4n) converges
strictly from above, while 4n+ 2 regular Hiickel rings
have nondegenerate e(0,0,4n+2) that converge strictly
from below. These trends persist in Table II at U =4

i
t

~

and give separate sequences for 4n and 4n + 2 rings. The
weak n dependence of e(0, 1,4n) must eventually reverse
in view of the exact result (11). As found in spin sys-
temss's and shown in Fig. 2, e(5,u) converge approxi-
mately as X and X ', respectively, for rings and
chains. The functional dependence on N is, however, not
known a priori. Extrapolations of independent sequences
are consequently more accurate, ' especially when conver-
gence is from both above and below, and also suggest the
uncertainty at N~oo. The present e(5, 1) results are
good to better than +S)&10 at either 5=0.0 or 0.07.

Hubbar-d, 0=4ltl
6 = Q.Q
6 = Q.Q7

43

-0.55
0

Even Chains

a

0

Exact

4n Rings

0

—0.60-
Rings

00 OQl

a
I g

0.02 N-~ 0.03

FIG. 2. Ground-state energy per site e in units of
~

&
~

vs

1V
' for chains and N for rings in regular (5=0.0) and alter-

nating (5=0.07) Hubbard models with U=4~ t ~; the exact
5=0.0 result is from Ref. 7.
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3.0

2.0

Exact

i.o

0.0
I

0.05

FIG. 3. Optical gap Eg in units of
~

t
~

vs X ' for regular
and alternating Hubbard models with U=4~ t ~; the exact
6=0.0 result is from Ref. 17.

as 5" with v=0.9+0.1. The less complete results for
%& 12 in Table II are in clear disagreement with (16),
since 5=0.07 produces a 0.20 increase at u= 1, while (16)
predicts an increase of less than 0.03. The critical ex-
ponent v is more difficult to estimate. The point here is
that Es(5,u) increases with 5 far more rapidly than (16).

Any alternation 5 & 0 may be converted to dimerization
x =5/a by introducing a linear electron-phonon coupling
a. A harmonic restoring potential per site, in units of

c5/2=ex /(2/t /a ) (17)

favors the regular lattice. Longuet-Higgins and Salem
demonstrated' the instability of linear Huckel models to
dimerization. The electronic energy change per site in
(14) for small 5 is

he(5, 0) =e(5,0)—e(0,0)-5 ln
~

5 ~, (18)

which clearly exceeds any finite restoring potential in (17).
The instability of Hubbard chains has subsequently

been studied by several groups, as summarized by Ma-

zumdar and Dixit. Mean-field theories tend to give de-
creasing dimerization with increasing u, while more exact
treatments suggest that u ~ 1 enhances the dimerization.
Mazumdar and Dixit combine general topological argu-
ments for 4n + 2 rings with numerical results for 6- and
10-site rings to obtain enhanced dimerization up to u —1.
The Jahn-Teller distortion of 4n-site Hiickel rings make
these unsuitable for their analysis, although this distinc-
tion must disappear as n~ oo.

In view of the difficulties of finding critical exponents
for b.e(5, u) in (18), we focus on fixed 5. The constant c
in (17) may always be chosen to give a minimum at 5 for
a Huckel chain, whose electronic

~

b,e(5,0)
~

is given in
(18). We have increased or decreased dimerization,
respectively, whenever

~
Ae(5, u)

~

is larger or smaller
than the u=0 value. The main advantage of this ap-
proach is that infinite chains are compared directly. The
stabilization

~

b,e(5, u)
~

is shown in Fig. 4 for even chains
and 4n, 4n +2 rings at 5=0.07 and u = l. All three extra-
polations exceed the Huckel value and point to increased
dimerization at u= 1 and 5=0.07, in agreement with re-
cent results beyond the mean-field limit. But the reverse
holds for large 5, when u= 1 decreases the dimerization
relative to u =0.

The physically unrealistic but exactly soluble case of
linear electron-phonon coupling for large distortions 5~1
is instructive. Now (13) and (11) yield

~

b,e(l, u) ~, which
is always smaller than the Huckel value, 2—4/m. . Thus
any u & 0 decreases the dimerization at 5= 1 and u = 1 in-
creases dimerization relative to Huckel chains only for
slightly dimerized chains which, however, are realized ex-
perimentally. The interplay of u and 5 in Hubbard chains
is complicated and requires accurate e(5, u) values. The
main features could be obtained from extrapolations based
on X & 12 rings and chains, but the procedure is inevit-

ably tedious. In addition, larger N and/or better extrapo-
lations should be considered before computing chains and
rings at many values of u and 5.

IV. EVEN PPP CHAINS AND RINCxS

Finite even polyenes have alternating double and single
carbon-carbon bonds in the ground state, as sketched in

Fig. 5(a). Typical estimates' of the transfer integral
~

t
~

in (10) range from —2.2 to —2.6 eV; we adopt the stan-

dard values '
~

t
~

= —2.40 eV and alternation 5=0.07
for nominally double and single C—C bonds of length

rd ——1.35 and 1.45 A, respectively. Unless otherwise stat-
ed, we take the idealized all-trans geometry with 120' an-

TABLE III. Optical gap Es/
~

t
~

of N-site Hubbard model with U =4
~

t
~

and alternation 5. Rings
of 4n and 4n + 2 form separate sequences.

Chain
Regular (5=0.0)
Chain (N —1) Ring

Alternating (5=0.07)
Chain Ring

6
8

10
12

2.670
2.306
2.076
1.920

2.926
2.442
2.177
1.991

1.20+0.10 (1.2867)'

3.249
1.931
2.296

1.667

2.784
2.440
2.227
2.085

1.40+0.10

3.275
2.011
2.369

1.789

'Exact, Ref. 17.
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5.0—
Hubbard, U = 4ltl

PPP, all tr ans 0

o~

Even Chains

0

(a)

oo
4)
CI

o
4n R)ngs

.~Even Chains
(c)

I 2 n+I 2n+ I

2.0

I.O

n+I 2n+ I

0.0
I

0.05
I I

O.IO ~-& O.I5

FIG. 4. Electronic energy gain per site,
~
he~ /~ t

~

vs N
for alternation 5=0.07 in U=4~ t

~

Hubbard models and in
PPP models with standard molecular parameters; the exact
Huckel result is given by Eqs. (18) and (14).

V~~ = U(1+0.6117rpp ) (19)

The geometry and U thus fix all intersite interactions.
These gas-phase values may eventually require corrections
in solids, for example, by considering dielectric and polar-
ization effects. Finally, we set e~ =0 for carbon atoms in
polyenes, thereby defining a convenient reference energy.

gles in Fig. 5(a). Cyclic boundary conditions in the x-z
plane leave the polyene width along y undisturbed. The
same bond lengths and angles are used for the cis transoid-
geometry in Fig. 5(b).

The parametrization of PPP models is a separate
topic. ' ' ' We adopt standard molecular values, with
U=11.26 eV for C sites from gas-phase ionization and
electron affinity data. Intersite Coulomb interactions V~~
between charged C+ or C sites in the cell model (1) go
as +e Irzz for distant sites. They are interpolated to U
according to the Ohno formula,

FIG. 5. Idealized ground-state geometry of conjugated ~-
electron systems with 120' angles: (a) 2n-site all-trans polyene,
(b) cps-transoid even polyene, (c) polyene radical with central al-

ternation crossover, (d) ions of odd polyenes with a central
crossover, and (e) linear cyanine dye.

The preceding remarks fix all the parameters in the cell
model (1). The molecular correlations Vzz in (19) and

~

t
~

= —2.40 eV in (10) are denoted collectively as u' and
kept without change for consistent comparison at alterna-
tions 5=0.0 and 5=0.07. As indicated in Table IV, stan-
dard molecular parameters correctly place the two-photon
2 Ag state below the dipole-allowed 1 'B„excitation in po-
lyenes with 4, 5, and 6 double bonds. This reversal from
the HF order has been extensively discussed ' as evi-
dence for highly correlated states. The agreement in
Table IV may be improved by -0.3 eV on relaxing the
excited-state geometry, as determined by its m-bond or-
ders. We have also noted in Table IV excitations of
anions of odd polyenes, whose geometry is essentially reg-
ular.

To examine infinite alternating chains in (CH)„, we be-
gin with the ground-state energy e(5,u') per site of even
PPP chains and rings. The results in Table V are extrapo-

TABLE IV. Optical gap Eg and two-photon excitation energy of gas-phase polyenes with N carbons,
N, m electrons, and alternation 5. The PPP results are for all- trans geometry and molecular parameters.

Molecules'
8

10
12

Ionsb

5
7

8

10
12

6,4
8,6

0.07
0.07
0.07

0.0
0.0

PPP

4.561
4.234
4.001

3.456
2.799

Eg (eV)
Expt.

4.40
4.02
3.65

3.42
2.88

PPP

3.775
3.404

2 Ag (eV}
Expt.

3.59
3.10
2.73

'Expt, Table IE, Ref. 24.
Expt, Ref. 26.
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TABLE V. Ground-state energy per site e(5,u') in eV of N-site PPP models with molecular parame-
ters and alternation 5. Rings of 4n and 4n + 2 form separate sequences.

6
8

10
12

All- trans (5=0.0)
ChaIn Rj.ng

—1.9519 —2.3243
—1.9957 -2.0990
—2.0228 —2. 1995
—2.0413 —2.1315

—2. 14+0.02

A11-trans (5=0.07)
Chain RIng

—2.0730 —2.3467
—2.1054 -2.1730
—2.1250 —2.2358
—2.1382 —2.1987

—2.20+0.02

—2.0735
—2.1063
—2.1267
—2.1395

—2.4233
—2.1821
-2.2766

—2.2029
—2.20+0.02

@is-transoid (5=0.07)
Chain R1Ilg

PPP ali trans
~ =o.o
s =0.07 ———

CAQil1s

o

4n Rings

lated in Fig. 6 as X for rings and as X ' for chains.
Convergence from above and below ls again found, as in
U =4

~

t
~

Hubbard models in Fig. 2, and the accuracy is
+0.02 eV for both 5=0.0 and 0.07. The cis transoi-d re-
sults in Table V extrapolate within experimental error to
the trans value.

The dipole-allowed 1'B„excitation defines the optical
gaps Es in Table VI for even PPP chains and rings. As
shown in Fig. 7, Es(5,u', 4n) converges from below,
which is a remnant of the vanishing gap in regular 4n
Hiickel rings. We also note that Es for even and odd reg-
ular chains in Fig. 8 falls on the same line, in sharp con-
trast with alternating odd Huckel chains' with a midgap
absorption. We return to this point in Sec. V.

The ex trapolated gap Es of 2.8+0.2 eV for ill flIllte
PPP chains with alternation 0.07 in Fig. 8 ls a single-
strand or gas-phase result. The 0.0 absorption for finite
polyenes in solution or in matrices is red shifted by
-0.5 eV depending on the medium's polarizability. The
absorption maxima of cis and trans (CH)„ indicated in
Fig. 7 are consequently in fair agreement with theory and
suggest at most small reductions in the correlations. The
optical gaps for conjugated polymers estimated by MO
methods are several volts higher, even for self-consistent

calculations. Direct solution of the PPP cell model (1) is
thus required for accurate excitation energies in both fin-
ite and infinite polyenes.

The e(5,u') and Es(5,u') entries for cis transo-id (CH)„
in Tables V and VI are, contrary to experiment, con-
sistently below the trans values. PPP theory favors the cis
isomer because its more coInpact geometry shghtly stabi-
lizes highly-ionic excited VB diagrams and thus enhances
their CI with low-lying, largely covalent states. The phys-
ically important nonbonded H-H repulsions that destabi-
lize cis relative to trans, are not included in the m-electron
model (1). All-electron MO treatments without CI often
give good ground-state geometries and relative stabilities,
while model Hamiltonians such as (1) focus on excitation
cncrglcs.

The instability of PPP models at 5=0.07 may be com-
pared to the Hiickel result, as discussed above for
U =4

~

t
~

Hubbard models. The convergence of
b,e(0.07,u') in (18) for even chains and 4n +2 PPP rings
is less accurate, as shown in Fig. 4, no doubt because
long-range CouloInb interactions increase the sensitivity
to different boundary conditions. The intercept in Fig. 4
is 2.6+0.4, as compared to 1.6+0.1 for the U=4i t

~

Hubbard model and 1.1077 for the Hiickel model. The
PPP model with standard parameters is consequently far
morc plonc to dimcrlzation. The harmonic Icstoring po-
tential in (17), for example, more than doubles over the
Hiickel value to maintain alternation 5=0.07.

Thc covalent 2 Ag stRtcs below Eg 1n Table IV~ Rs well

as even lower' 1 8„ triplets, may be characterized from
the corresponding excitations of Hubbard and Heisenberg
chains. The infinite regular half-filled Hubbard chain
has' a band of singlet and triplet excitons with vanishing

gaps at long wavelength (k —+0). Regular Heisenberg
antiferromagnetic chains also have vanishing gaps for the
lowest triplet and singlet spin waves. Gaps for both open

up for 5&0. We consequently anticipate covalent gaps
for both triplet spin excitons derived from 1 B„and sing-
let spin excitons derived from 2 As in alternating Hub-
bard and PPP chains. The covalent gaps vanish in regular
chains and have vanishing oscillator strength for dipole
translt1ons Rt Rny 5.

I

O.oi

0
I

N '003
V. ODD PPP SEGMENTS: SQI.ITGNS

AND CYANINE DYES

FIG. 6. Ground-state energy per site e vs N ' for chains and
N for rings in regular (5=0.0) and alternating (5=0.07) PPP
models with correlations given in Eq. (19).

Neutral polyene radicals in Fig. 5(c) have S = —,
'

ground

states and odd N, =N; their ions in Fig. 5(d) have singlet
ground states. Infinite odd segments contain an alterna-
tion crossover, or a topological soliton. Su, Schrieffer,
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TABI.E VI. Optical gap Eg in eV of E-site PPP models with molecular parameters and alternation
5. Rings of 4n and 4n + 2 form separate sequences.

All-trans (5=0.0)
Chain Ring

A11-trans (5=0.07)
Chain Ring

cis- transoid (5=0.07)
Chain Ring

4.693
4.171
3.812
3.552

6.214
1.624
4. 154

1.712
2.4+0.2

5.046
4.561
4.234
4.001

6.230
2.164
4.301

2.383
2.8+0.2

5.016
4.508
4.162
3.914

5.521
1.971
3.845

2.144
2.8+0.2

and Heeger (SSH) predict a crossover of 2$-15 in un-
correlated (Hiickel) chains with linear electron-phonon
coupling and optical gap 4

i
t

i
5-1.4 eV. These Huckel-

based results are significantly altered by correlations. '
To extrapolate consistently, we consider two limiting

geometries. Since 5 vanishes near the center of crossover,
any N &2g-15 segment may be taken as regular (5=0.0)
to mimic a wide domain wall. Conversely, a sharp ($~0)
crossover immediately reverts to alternation 5 about a
central spin in 4n+ 1 segments and a central allyl in
4n —1 segments that begin and end with double bonds.
The two bonds of the allyl are intermediate at

i
t i, just as

in benzene, with r=1.40 A. The emergence of separate
4n+1, 4n —1 sequences is better illustrated by spin soli-
tons in odd-length Heisenberg antiferromagnetic chains,
where X& 19 is readily accessible.

%e retain the all-trans geometry in Fig. 5 and standard
PPP parameters for the optical gaps of regular radicals in
Table VII, which fall on the same line as regular even
polyenes in Fig. 7. By contrast, 2n+ 1 site Hiickel
models with 5~0 have a nonbonding, singly occupied
MO plec1sely at the gap center fol any ( imp J according to
the pairing theorem. Excitations at Es/2 then involve
either exciting the nonbonding electron to the bottom of
the conduction band or exciting an electron from the top
of the valence band into the nonbonding state. Correla-

tions ' split the degeneracy and, within cell models (1)
with equivalent sites and X, =X, all the oscillator
strength goes into the upper state. The covalent gap in
Fig. 8 is the lower state that becomes degenerate with the
upper state at Es/2 in Huckel theory. The Es/2 excita-
tions of charged solitons, with empty or doubly filled non-
bonding MO, are nondegenerate and less sensitive to
correlations. ' Sharp domain walls increase slightly
( & 0.2 eV) the absorption of neutral radicals. Weinberger
et al. have recently confirmed that paramagnetic states
in (CH)„do not absorb in the midgap region, while
charged states do.

Optical gaps for odd polyene ions, or charged solitons,
are given in Table VII for both regular chains and sharp
domain walls. The 5=0.0 data are plotted against N ' in
Fig 8. In PPP models with common ez, Uz parameters at
all sites, electron-hole symmetry gives identical electronic
excitations for N, =%+1. Positive and negative solitons
may consequently be treated together. The exactly solu-
ble regular Hubbard model with X,&X has vanishing

5.G

4.G

5Q-
PPP, all tr ans

5 = O.O

6 = 0.07 ———

QQ-
Even Chains

Chains

I.Q

2.Q
n Rings QQ-

QQ N G.2Q

FIG. 7. Optical gap E~ vs N ' of regular and alternating
PPP models with molecular correlations.

FIG. 8. Optical gaps vs N ' of regular PPP chains with
molecular correlations, ions of odd segments representing
charged solitons and linear cyanine dyes; the covalent gap of
radicals is dipole forbidden.
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Radicals
(X,=X)
5=0.0

Odd ions
(X,=%+1)

5=0.0,$-+ oo 5=0.7,/=0

Cyanlnes
(X,=%+1)

5=0.0
5.009
4.389
3.969
3.669

3.456
2.799
2.343
2.009

3.493
2.875
2.429
2.116

3.075
2.128
1.547
1.221

TABLE VII. Optical gap E~ I eV for X-sjte all-trans
polyene radicals, their ions, and cyanine dyes, with standard
PPP parameters and either regular (5=0.0) geometry or alterna-
tion 6=0.07 and a sharp central domain wall (/=0).

with V ~ in eV and r ~ in A. We retain regular all-trans
segments with

~

t
~

= —2.40 eV. Some alternation occurs
in longer cyanines and the C-N transfer is somewhat
higher. Different t» may readily be incorporated since the
point-group symmetry is not re«Iuced.

The I'esulting E in Table VII and Fig. 8 vanish more
linearly with X ' than the isoeiectronic odd anions. The
stable even polyenes bave alternation 5-0.07 and higher
Es given in Table VI and Fig. 7; the lower Es for regular
PPP chains in Fig. 8 also remains finite as N~oo. We
h8vc conse«IUently illustrated how PPP parameters are
changed for different atoms and shown that quite dif-
ferent ep, Up, aiid V»»~ valiies iii (1) lead to vanishiiig Ee
in regular infinite chains with N, =%+1.

Eg, and this expectation also applies to partly filled PPP
models. The extrapolation for odd ions in Fig. 8 is con-
sistent with a vanishing gap, given the downward curva-
ture, Rnd thc «Ilpolc-allowed excitations are certainly
below Ee/2.

A sharp central domain wall increases Eg for charged
solitons in Table VII, with the greatest change at large N.
Extrapolations are not sufficiently accurate, however, to
go beyond such qualitative results as Eg ~0.4 CV as
N —+ oo. The more realistic picture of a finite crossover of
-2$' sites is intermediate between the 5=0.0 (g~ oo ) and
(=0 limits. The photogenerated trans (CH)„state at
0.43 eV indicated in Fig. 8 is associated with charged soli-
tons. The latter are ions of odd polyenes in the model of
fixed finite segments defined by crosslinks, chain ends, or
defects.

The qualitatively different length dependence of m-m*

excitations of polyenes and cyanine dyes has long been
recognized. ' lt turns out to be largely a correlation ef-
fect in half-filled (X =N, ) even polyenes and linear cyan-
ine dyes or odd ions with X,=%+1. Strong correlations
provide the simplest physical picture for the difference.
when thc most covalent vB «IlagraIns dominate, an
electron-hole pair at Es —U —Vi is the lowest dipole-
allowed excitation in half-filled bands. For X,=%+1,
on the other hand, the ground state already contains hnear
combinations of diagrams with one ion among N sites.
Low-energy Eg excitations do not require additional ions,
but merely change thc 11nc81 comb1nat1on RIl«I occur Rt
vanishing energy in regular infinite arrays.

The chemical formula of a type-I cyanine dye is
RzX—(CH=CH)„C=NR2, as —sketched in Fig. 5(e).
The m. system has odd N, with terminal nitrogens each
providing two clcctI'QIls RIld thus fcqu1ring zl ——z~ ——2 1n
the cell model (1). Then N, =%+1 is even and the
glound state 1S 8 s1nglct. Typ1CR1 molecular parame-
ters ' for nitrogen are e, =e~= —18.43 eV relative to
e» =0 at carbons, again from gas-phase atomic data, and
Ui ——U~ ——15 eV, to reflect the more compact 2p, orbital
relative to U=11.26 eV for carbon. The Ohno formula
(19) now reads

The restriction to one P» per site in the general cell
model (1) yields a large but finite basis. VB methods then
provide exact results for models that conserve S. In addi-
tion to eigenvalues, correlated states such as (9) may be
used to evaluate matrix elements of interest. In all
cases, g is a linear combination of -P, diagrams with
fixed S. The familiar orbital picture is lost, however, and
the unfamiliarity of correlated states remains a problem.

We discuss first some exact properties of cell models (1)
with one P» per site. The I.ieb-Mattis theorem, ' that the
ground state has the lowest possiMC S, applies to a one-
dimcnsional array with constant nearest-neighbor tz ——t,
Ep =0 an«I Rrblt1 Rry spin-independent potcnt181
V(. . .,n», . . . ). We expect and find S=O ground states
for even N, and S= —,

' for odd N, in finite chains.
The case %,=2% is trivially identical to VB and MO

theory, since doubly occupying all P» gives a nondegen-
clatc closed shell. Spcc181 properties also occu1 fox'

N, =N, the half-filled case, as discussed'9 extensively for
Huckel models as the pairing theorem and PariseI' s alter-
nancy symmetry. ' N, =N results for the cell model (1)
involve the electron-hole (eh) symmetry. The eh
operator commutes ' with A for equivalent sites (ep,
U», and zp=1, all independent of p) and N, =¹It
behaves like a symmetry operator RJ. in (4) and gives for
each eigenstate of (1),

n»=1 (p =1,2, . . . , X), (21)

whenever [R,t„A ]=0. This exact result precludes a
charge-density-wave (CDW) ground state in cell models
with eh symmetry.

Tbc ek opc1atoI' simply 1ntcrchangcs empty Rnd dou-
bly occupied P», which occur with equal frequency in
each diagram

~

k }for X,=X, and multiphes the new di-
agram

~

k'} by a phase factor. The integer Ik has inter-
changed 00 and 11 sites from Ik. Their diagonal energies
are equal in systems with eh symmetry. Their expansion
coefficients in (9) thus satisfy ek =+ck and (21) merely
states that diagrams with n& ——0 Rnd 2 always occur in
c«IUally wcightc«I pairs.

The spin density at site p in state P is

tp=&@12 ~ 14&=&PI( Wp ap p) I @}. —
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The ground-state expectation value is usually sought. We
consider even N, and a singlet ground state. Now p& van-
ishes for each p since the operator in (22) annihilates any

~
k) with nz

——0 or 2 and generates a triplet diagram
when nz ——1 that is orthogonal to all singlets in (f

~

. Sys-
tems with odd N, and S= —,

'
ground states, 'on the other

hand, may show both positive and negative pz. Polyene
radicals' ' in Fig. 5(a), for example, with overall spin a
have

p2q i)0, p =1,2, . . . , (N+1)/2

p2q &0, p =1,2, . . . , (N+1)/2.
(23)

In Huckel or SSH models with arbitrary nearest-neighbor

t~, the pairing theorem ensures pz~ ——0 because the non-
bonding MO has nodes at these sites. Correlations give

pz &0 and a spin-density-wave (SDW) ground state.
40Magnetic resonance studies of odd-alternant radicals

and more recently of spins ' in (CH)„ indicate negative
spin densities. Standard PPP parameters for 5=0.0 radi-
cals up to N, =N & 11 overestimate by —10% the ratio

~ p /p+ ~

of total negative and positive (CH)„spin densi-
ties.

Such considerations pose serious challenges for self-
consistent schemes. HF theory readily accounts for van-
ishing pz when 1V, is even and all spins are paired in the
lowest-energy MO's; but then p2&

——0 for odd N, follows
from the pairing theorem. The situation is reversed in
unrestricted Hartree-Fock (UHF) theory, ' which in
Hubbard radicals gives both positive and negative pz in a
SDW ground state; but, S is not a good quantum number
in UHF and SDW's are also found for even N, . A heuris-
tic compromise would be to use HF for even N„UHF for
odd N, . The latter could be calibrated against exact re-

M=(e
~ p ~g), (25)

where p is the dipole-moment operator. Spin is conserved
but the eh and inversion indices change. Table VIII lists
transition dipoles for PPP polyenes, radicals, and ions
whose geometries are given in Fig. 5 and transitions in
Tables VI and VII. The reduced M„ from Hiickel theory
reflects the lower energy, and consequently higher
weights, of adjacent C+C sites in the correlated states.
Reductions of

~

M
~

of 2—3 from the Hiickel value are
observed for N -6—12 polyenes in solution. The agree-
ment in Table VIII provides strong additional support for
correlations, but more accurate gas-phase data is required
for improved parametrization.

suits in N-12 systems and then applied to far larger N.
Similar tests apply to CDW's or other symmetry-breaking
solutions found self-consistently.

In addition to the representation of sz, in (22), we have

s~ =at~tt3, s~ =atilt
+ (24)

Static spin correlation functions like (sz,sz, ) or ( sz s& )
may all be evaluated by considering their effects on nz

——1

sites in diagram
~

k). While the rules are more compli-
cated, spin correlations in Hubbard or PPP models and
fine-structure constants in triplet excited states open many
new possibilities. Matrix elements over diagonal operators
involving nz are quite simple once the linear combination
of VB diagrams has been normalized. Such charge corre-
lation functions are important for the electrostatic ener-
gies of partly ionic organic solids.

We turn next to the transition dipole of the lowest
n +n.* ex—citation defining Eg, whose oscillator strength
provides another comparison with experiment. The tran-
sition dipole from the ground (g) to excited ( e) state is

TABLE VIII. Transition moments M in Debye and oscillator strength per site f/N of the Eg excita-
tions of ¹iteall- trans polyenes, radicals, ions, and cyanine dyes with standard molecular PPP parame-
ters.

Length

Polyene
6
8

10
12

Radical
7
9

11
Ion

7
9

11
Cyanine

7
9

11

Alternation
5

0.07
0.07
0.07
0.07

0.0
0.0
0.0

0.0
0.0
0.0

0.0
0.0
0.0

Parallel
M„

6.965
8.405
9.681

10.838

8.076
9.618

11.013

10.062
12.409
14.706

9.599
12 /IA/I

15.192

Perpendicular

My

2.137
2.225
2.327
2.423

0.0
0.0
0.0

0.0
0.0
0.0

0.0
0.0
0.0

Ratio'
M2/M (Hiickel)

0.4954
0.4493
0..4168
0.3930

0.3883
0.3453
0.3110

0.6027
0.5747
0.5545

1.2355
0.9773
0.8848

f/N

0.1694
0.1635
0.1592
0.1560

0.1512
0.1548
0.1535

0.1536
0.1521
0.1499

0.1063
0.1010
0.0972

'Huckel value for same geometry and t~.
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The oscillator strength per site of nondegenerate transi-
tions ls

f/N=1. 085X10 v~M
~

/e N,
a

where v is the transition energy in cm ' and M/e is in A.
The f/N results in Table VIII are surprisingly constant
and may be extrapolated by inspection for alternating
even polyenes, xegular polyene radicals, or their ions. The
results for correlated states are again quite different from
the SSH enhancement of the midgap absorption by
for a soliton half-width of g-7. Both the energies and
the intensities of in-gap excitations are qualitatively dif-
ferent for standard PPP parameters.

The m-bond order Pg' between sites r and s in the
correlated state g is

(27)

and is the partial of E» with respect to t„ for adjacent
sites. The evaluation of (27) is straightforward, ' especial-
ly for s=r+1. The p„„+~ in the 2'Ag state of even

polyenes cleax'ly indicate ' two bond-alternation rever-
sals, or two incipient neutral solitons, while odd segments
have a single alternation crossover in the ground state.

The excited-state geometry may be found in general by
readjusting the t~ according to p~~+, . The physical con-
straint of fixed overall length is usually included by keep-
ing g t~ constant. The solution of (1) gives a relaxed ex-
cited state and new bond orders. Test calculations for
standard m'-electron parameters give small (&0.3 eV) re-
laxation energies and slight changes in p„„+i. The first
iteration suffices for most applications. As shown by
nonlinear spin-phonon coupling in soft lattices, ho~ever,
different parametrizations may require several iterations
for self-consistent bond orders.

The bond orders (27) consequently provide a general
method for geometry optimization of each electronic state

~ q) within the adiabatic or Born-Oppenheimer approxi-
mation. Nonlinear contributions to t&, e&, U&, or V&& in
(1) or anharmonic corrections to (17) are easily incorporat-
ed into the VB solution when the point-group symmetry is
not lowered. Thus finite segments with C2 symmetry are
more useful than rings for studying distortions, and
N, =N & 12 chains afford many possible tests or compar-
isons. The restriction to the m-electron model (1) should
be remembered, however, in view of the rich vibronic
structure of finite even polyenes, which clearly involve
other modes besides C- C stretches.

VII. DISCUSSION

%e have shown diagrammatic VB theory to give exact-
ly the low-lying states of the quantum-cell model (1) for
X„N& 12 chains and rings. Accurate extrapolations to
N~no are possible, especially when different boundary
conditions give decreasing and increasing sequences. The
functional form for identifying critical exponents or van-
Ishmg energy gaps Is less accurately found from fmite sys-
tems. arround-state energies per site, finite optical gaps,
transition moments, spin densities, etc. all extrapolate
smoothly and provide stringent tests for perturbation,

mean-field, or renormahzation calculations in one-
dimensional models. For example, perturbation calcula-
tions showing U to make slight modifications to the
SSH results are sharply restricted to sufficiently small
correlations that leave the Huckel states undisturbed and
are at least an order of magnitude smaller than molecular
PPP correlations. Self-consistent VB methods, valence
effective theories or various extended HF schemes
offer improved descriptions of particular properties.
Comparisons against numerical extrapolations are an im-
portant area for future work.

Quantum Monte Carlo methods ' have recently been
applied~ to one-dimensional Hubbard models and extend-
ed Hubbard models with nearest-neighbor interaction. VI.
They are in many respects complementary to VB theox'y.
Monte Carlo methods yield the free energies, and thus the
thermodynamics, of rather larger systems with

20—40; larger X, h1gher accuracy, and lower teID-
perature are primarily questions of computer time. VB
theory focuses instead on ground-state properties and ex-
citation energies, since solving all eigenstates of large CI
matrices is prohibitive. Exact T=O results reflect directly
small changes in the parameters; long-range interactions
are readily included; and detailed analysis of the correlat-
ed state is possible. To be sure, smaller N in VB calcula-
tions requires longer extrapolation, thereby offsetting the
greater accuracy.

Numerical approaches to infinite systems inevitably re-
quire extrapolation, and this topic merits additional atten-
tion. As suggested by the factorials in (3), direct solutions
for ever larger N are not promising. The —P, /G
symmetry-adapted hnear combinations of VB diagrams
cannot be reduced further without approximation and
cannot be stored more efficiently within a single integer ik
in (5). We encounter P, /G-10' in half-filled chains of
12, dimerized rings of 14, and quarter-filled rings of 16.
Fol oiie fp pel' site tile CI matrices lllci'ease by 11 oil
adding two sites, which is only slightly less than 4 due to
N, and S conservation. Better extrapolation of exact re-
sults will consequently be restricted to a few additional
points.

Approximate VB solutions allow more significant in-
creases in X. In large- U Hubbard models the 2 covalent
states dominate in half-filled systems and lead to the ef-
fective Hamiltonian,

A e= +2Jpsp'sp+i .

The antiferromagnetic exchange Jz 2'�/U describes ——vir-
tual transfers in second-order perturbation theory and
may be extended in higher order. Now dimerized rings
of X-26 and chains of &-24 are currently feasible with
a VAX 11/780 computer. But the extreme simplification
to (28) precludes any ionic states needed, for example, to
define the optical gap.

The real-space VB basis allows intermediate choices for
effective Hamiltonians, for example, based on an energy
cutoff E'. Diagrams

~
k) with diagonal Ek &E' in (1)

are treated as before in constructing the matrix hkj in (6).
Transfers to diagrams

~
q) with E» &E', on the other

hand, axe considered to be virtual. In second order, we
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have (28) with J~ =2t~ l(Eq E—k) explicitly dependent on
the diagonal energies. The resulting contribution is diago-
nal when tz in (6) acts on connected singly occupied sites
p,p+1 in

~
k) and off-diagonal for unconnected sites.

We are testing such effective Hamiltonians when E' is
chosen to retain approximately the lowest 5 X 10
symmetry-adapted diagrams, which in Hubbard or PPP
models with N, =%=18would easily include all covalent,
singly ionic, and doubly ionic diagrams. Since the ground
and low-lying states are only indirectly coupled to the

neglected states, accurate solutions are expected for signi-
ficantly larger N
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