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Monte Carlo study of a two-dimensional spin-polarized fermion lattice gas
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A model of spin-polarized fermions hopping on a two-dimensional lattice with a near-neighbor repulsive

interaction is simulated with the use of Monte Carlo methods. This system exhibits an Ising-like order-
disorder phase transition as the temperature is lowered. Results for the structure factor, staggered suscep-

tibility, and order parameter are obtained, and finite-size scaling on lattices of 4x4, 6&6, and 8x 8 is used
to estimate T, and test the nature of the phase transition.

Properties of two-dimensional spin-polarized quantum lat-
tice gases are of current interest. Adsorbed submonolayers
of spin-polarized He~ and D~ form examples of fermion
lattice gases. Here we present results of a Monte Carlo
simulation of a half-filled two-dimensional spin-polarized
fermion lattice gas interacting via a near-neighbor repulsive
interaction. As the temperature of the system is lowered,
the staggered-site susceptibility increases, and below a tran-
sition temperature long-range order is established. We have
calculated the structure factor S(I[), the staggered suscepti-
bility, and the order parameter. This example indicates how
recently developed stochastic methods' for treating interact-
ing many-fermion systems can be used to obtain insight into
the physical properties of systems in which both band-
structure effects and correlations are important.

The model we study has the form

0= [ —t(c, cJ+cJ'c,)+ V(n, —,')(nJ ——,')—], (1)
(y

with l = (t„,i~) and j= (j„,jr) the nearest-neighbor points
on a square, two-dimensional spatial lattice. Here t is the
single fermion transfer integral between sites and V is the
strength of the nearest-neighbor repulsion. ci creates and c;
destroys a fermion on the ith site, and ni is the occupation
number, ci ci. We are interested in the one-half-filled band
case so that Eq. (1) is written in a particle-hole symmetric
form.

The ratio V/t determines whether the lattice gas is basi-
cally classical or quantum. When V/t is large compared
with 1, the system approaches the classical Onsager limit.

I

(0) = Tr(Oe t'")/Tr(e &H) (2)

In order to construct a representation of Eq. (2) that is suit-
able for numerical simulation, we divide the imaginary-time
interval 0~ r ~ p into M equal subintervals of width b r, so
that Mhr =p. We then make use of a discrete Hubbard-
Stratonovich transformation recently introduced by Hirsch:

In this case an order-disorder transition occurs at a tempera-
ture T, =0.56 V. In the low-temperature ordered state of
the half-filled lattice, the near neighbors of an occupied site
are empty, and there are two possible ordered states. We
have checked our simulations for V/t )) 1 and find the
usual Ising behavior. When V/t is less than or of order 1,
quantum effects become important. In order to understand
the quantum limit, it is useful to consider the nesting prop-
erties of the Fermi surface of the noninteracting V= 0 sys-
tem. In the case of a half-filled lattice, the fermions fill the
lowest li//2 eigenstates E-„=—2t(cosk„+cosk~) leading to
a square Fermi surface rotated by 45 with respect to the
k„—k~ axes. Particle-hole transitions with momentum
2kF = (m. , 7r) give a perfect nesting of the Fermi surface so
that mean-field theory predicts that the interacting system
will undergo a second-order phase transition to a density
wave state with a period of (2kF) '. In the following we
have taken t= V=1 and carried out simulations on 4x4,
6x 6, and 8x 8 lattices.

At finite temperatures the average value of an operator 0
is given by

exp[ —Ar V(n, T)(nJ —~)]= e ~' J~~— g exp[6 r J(n; n, )S„]--
Si~ +1

with cosh(hr J) = e~' J'
Using Eq. (3) we write the partition function Z in the form

r

Z = Tre a = Tr g T exp —br XX [ —t(ct cJ+ cJ ct)+ JStj(1t)(n' nJ)]
S,.(~i)- l ij

(3)

(4)

with a similar expression for the numerator of Eq. (2). Here Sit(rt) is a spin variable which one can think of as being asso-
ciated with the lattice bond between the ith and jth site on the Ith time slice. T indicates a v-ordered product. Equation
(4) is exact only in the limit hr 0 with ArM=p fixed. In our numerical calculations we keep Ar finite, but small
enough so as not to introduce errors larger than our statistical ones.
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Since the effective Hamiltonian of Eq. (4) is quadratic in
the fermion creation and annihilation operators, the trace
over fermion degrees of freedom can be performed analyti-
cally yielding

IO

4x4
X 6x6
0 Bx8

z=
sy(~() 41

t

det I+ T exp —hr $ h(rt)
I

(s)

with h(rt) the Hamiltonian matrix for a single particle
which can hop to near-neighbor points on the lattice with
matrix element —t and which feels a potential on the ith
lattice site of

1[S-, -, +„(r.()+-S-,. —, + (r. , ) —. S-,. —, „(r.,)-J J

x S-, -, ~(r()]

Following the procedure discussed in Ref. 1, a set of spin
configurations are generated such that the probability of the
occurrence of a given configuration is proportional to the
determinant of Eq. (5). It is straightforward to solve the
single-particle problem of an electron moving in a potential
determined by a particular spin configuration and hence to
compute various physical quantities for that configuration.
Then by averaging over the set of spin configurations, the
effects of the interaction are taken into account just as in
the usual continuous Hubbard-Stratonovich procedure.

Figure 1 shows the density-density x-ray structure factor
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FIG. 2. Peak in the structure factor S(m, m} vs temperature T
for three different lattice sizes L = 4, 6, and 8.

a static staggered potential. This susceptibility is given in
terms of the order parameter, order-parameter correlation
function

—S(q)=pe'q' ' (n , +-, n—,). -.
I

fa pn= L2 (O(r) O(0)) dr (8)

on an 8x 8 lattice for T =0.667. A peak in S(g) at (q„,q~)
= (7r, m. ) is clearly evident. Figure 2 shows the growth of
this peak, S(m. , m), as the temperature is lowered for L x L
lattices with L =4, 6, and 8. In a bulk system we expect
that below a critical temperature T„S(q) will exhibit a
Bragg peak at (m, vr), corresponding to the formation of a
density wave phase with an amplitude proportional to the
square of the order parameter

with O(r) = eH'Oe H'. Figure 3 shows n versus tempera-
ture for lattices of linear dimension L =4 and 6. Note that
in Eq. (8) we have not taken the usual definition of n in
which L2(O) 2P is subtracted.

These results for the structure factor 5 and the staggered

l5

Here L is the total number of sites.
Another quantity of physical interest is the response o. to
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FIG. 1. Structure factor S(pz qy) for T=0.667 on an 8x 8 lat-

tice.
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FIG. 3. Staggered susceptibility n(T) vs temperature for lattices
with L =4 and 6.
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susceptibility a suggest that this system undergoes a phase
transition to a density wave state characterized by
'I=(n, m) reflecting the 2pF nesting of the Fermi surface.
This is just the quantum limit of the classical Ising transi-
tion. As noted before, when the transfer integral t in Eq.
(1) vanishes, our model reduces to a two-dimensional (2D)
Ising model with nt ~ equal to an effective spin Sf. For
small values of t, an expansion in the hopping introduces
only finite-range effective spin couplings, and hence, for
weak t, the system remains in the 2D Ising universality
class. Therefore, barring a crossover to another type of
fixed point when t becomes comparable with V, the transi-
tion should be characterized by the 2D Ising indices. Using
finite-size scaling we can explore the consistency of this and
obtain an estimate of T,.

According to the ideas of finite-size scaling, 4 if for a bulk
system near T, a quantity F(p) = Ip —p, ~

p, then in a
large but finite system this quantity will vary as

0.20— '.(p) =Lpt"GI(p p, )L"l-. (9)
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Here L is the lattice size, v is the correlation length ex-
ponent which is 1 for the 2D Ising model, and 6 is a
universal scaling function. For the order parameter (0) we
have taken P = T, the 2D Ising value, and plotted
L' (IOI) vs (P P, )L for—various choices of T, . We find
the scaling behavior shown in Fig. 4(a) when T, =0.4 and
from the deviations at other values of T, estimate that
T, =0.4+0.1 for t= V=I. Figures 4(b) and 4(c) show
similar scaled plots for S(n, m) and n using T, =0.4 and
the appropriate Ising indices 2 —q = ~ and y = 4. It can be
seen that these scaling parameters bring the data for our dif-
ferent sized lattices into reasonable agreement.

There remain a number of interesting questions regarding
quantum lattice gases which can be explored using simula-
tion techniques. 5 The band structure, and hence the nesting
properties of the Fermi surface, can be changed. Naturally,
the lattice structure can also be changed and different band
fillings studied. We also expect interesting behavior for an
attractive interaction, V & 0.
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FIG. 4. Scaling plots based upon two-dimensional Ising critical in-
dices and T, =0.4 for (a) the magnitude of the order parameter
(~O~), (b) the peak in the structure factor S(m, n), and (c) the
staggered polarizability. In these plots P = I/T.
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