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Orderings of a stacked frustrated triangular system in three dimensions
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An Ising system is constructed by stacking frustrated antiferromagnetic triangular lattices. Landau-
Ginzburg-Wilson and Monte Carlo analyses suggest two ordered phases. In the low-temperature phase,
one sublattice is fully ordered and, oppositely, two sublattices are partially ordered. In the intermediate
phase, two sublattices are fully and oppositely ordered, and one is disordered. The transition to the
paramagnetic phase is in XY universality. The transition between the ordered phases is due to sixfold

symmetry-breaking flop.

The Ising model with antiferromagnetic nearest-neighbor
interactions on the triangular lattice is the simplest spin sys-
tem which is totally frustrated.! In each elementary triangle
of this lattice, the three antiferromagnetic bonds cannot be
simultaneously satisfied and the energy is minimized with
any one of the bonds violated. Thus, the entire system has
infinitely many ground states, connected by single spin flips
made possible by mutually cancelling antiferromagnetic
bonds, and remains disordered at all finite temperatures.?
However, it is rigorously known?? that algebraic order is at-
tained at a zero-temperature critical point, where correla-
tions decay with an inverse power of distance, as opposed to
the rapid exponential decay of a truly disordered phase.
The many ground states play the same statistical role as the
critical fluctuations at an ordinary critical point.

To study the possible finite-temperature ordering of a
highly degenerate, yet simpiy formulated system, we con-
sidered antiferromagnetic triangular Ising systems stacked
and nearest-neighbor coupled along the z direction. Possible
experimental realizations* will be discussed below. The
Hamiltonian is
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where J,J' >0, s;= *1, and (jj) indicates summation over
nearest-neighbor pairs in the xy plane or along the z direc-
tion. This system is fully frustrated in the xy planes, but
has no competing interactions along the z direction. Each
ground state of the two-dimensional (d =2) model corre-
sponds to a ground state of the stacked d =3 model, with
spins aligned along the z direction, so that the ground-state
degeneracy? is exp(0.323N%%), where N — oo is the number
of spins. At zero temperature, the magnitude of the spin-
spin correlation function in the xy plane is bounded below
by that of the d =2 model. If we hypothesize ordering, the
average energy price of introducing a domain wall at a given
xy plane is at least
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using the known d =2 power-law decay.®> This domain wall
can occur at any one of NV positions along the z direction,
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so that the entropy gain is (1/3)InN. Thus, one naively
concludes true long-range order at zero temperature, which
can be presumed to extend to finite temperatures.

This expectation is indeed fulfilled, as seen in Fig. 1.
Specific-heat curves from Monte Carlo simulation of 15x 15
x L systems are shown. The rounded Schottky peak of the
L =1 system, due to the onset of short-range order in
d =2, sharpens as L is increased and is consistent with the
phase transition cusp discussed below.

The possible onsets of ordering can be deduced from
Landau-Ginzburg-Wilson (LGW) theory.>® The Hamiltoni-
an is Fourier transformed:

F =3J(@Ds(@s(-7) ,
T

with
J(G) = Jlcos(gy) +2cos(gy/2) cos(~3g, /2)1—J cos(q,) ,
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FIG. 1. Specific heats from Monte Carlo simulation, for J'=J
and 15x15x L systems. The number of layers L is 4(A), 8(0), and
12(e).
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where the sum is over a hexagonal Brillouin zone. The
mode(s) with the lowest energy J(Q) is predicted to be-
come critical as the temperature is lowered from the disor-
dered phase. In our case, J(Q) is minimized at the six
corners of the Brillouin zone.® These correspond to two de-
generate modes Q + = ( +4x/3,0,0), the other corners be-
ing related by reciprocal lattice vectors. A two-component
(n =2) order parameter is thus revealed. The LGW Hamil-
tonian is constructed in terms of the critical and nearby
modes ¢1,,(q) =s(Q+ £7), |g| << 1, by noting all possi-
ble invariants under the symmetries of the system, at each
consecutive order:
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where 3, signifies summation over p momentum argu-
ments which add to zero. Since s; is real, Y,
=mexp( 2i¢), yielding
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the LGW Hamiltonian of the XY (n =2) model with sixfold
symmetry-breaking appearing at sixth order. Simple power
counting indicates that the sixth-order terms are marginal at
d =3. Moreover, d =4— e expansion gives vg irrelevant at
criticality, with rescaling behavior

ve(1) =vg(0)e~ @+

Thus, quantitatively, the isotropic XY critical behavior
should not be modified much, if at all. Indeed, the specific
heat at the transition from the disordered phase is con-
sistent with the cusp of the XY exponent’ a = —0.02.

The microscopic configuration of the ordered phases can
be investigated by Fourier transforming _the thermal average
of the critical modes, (s;) —~M cos(Q.-T,;+®), where
m=M and ¢ = minimize #. Accordingly, the ordered
phases are characterized in terms of the three sublattices of
the triangular xy planes, with translational symmetry along
the z direction. For vg< 0, ®=0 and the magnetizations
(M, —M/2, —M/2) are assigned to the three sublattices
(Fig. 2). For v¢> 0, ® =m/6, dictating sublattice magneti-
zations® (v3M/2, —~/3M/2,0) shown in Fig. 2. The Ed-
wards-Anderson® order parameter Q =N"!3, (s;)? equals
M?/2 in either ordered phase. Each of these two ordered
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FIG. 2. (M, —M/2, —M/2) and (~/3M/2, —~/3M/2,0) phases,
respectively occurring at low and intermediate temperatures.

5251

phases is sixfold degenerate, as seen by up-down symmetry
M — — M and the three ways of singling out one sublattice.

The orderings suggested by LGW analysis are indeed re-
vealed by Monte Carlo simulation. These were carried out
on 15x15x L lattices, where L =4, 8,12 is the number of
layers, with periodic boundary conditions. We have per-
formed a number of runs starting from widely different ini-
tial configurations to verify final equilibrium. A single-flip
sequence of Metropolis dynamics was used, with the trial
spin chosen randomly. Typically, 1500-2500 Monte Carlo
steps per spin (MCS) were taken and the first 300-500
MCS were discarded. Longer runs were made near the
transitions.

Specific-heat curves obtained by cooling the system from
a disordered high-temperature configuration are shown in
Fig. 1 for J'=J. As mentioned above, these data are con-
sistent with a second-order phase transition at 7,=2.8J
with a slightly negative exponent. The sublattice magnetiza-
tions below 7. indicate the (~/3M/2, —~/3M/2,0) phase.
However, the system moved readily between the six degen-
erate ordered phases [for example, to (~3M/2,
0, —+v3M/2)], such interchanges occurring at the time
scale of a few hundred MCS. This special feature is ex-
plained in terms of the sixfold symmetry breaking of the
d =3 XY Hamiltonian and the finiteness of the system. If
the sixfold symmetry breaking did not occur (vg=0), the
system would be equivalent to an XY model. Then the or-
dered system would indeed be expected to shift between the
degenerate phases, corresponding to a global drift in the
direction of XY magnetization. This is related to the infinite
transverse susceptibility. In fact, this interpretation has
been recently given'® to a similarly shifting (M, —M,0)
phase of the d=2 triangular Ising model with nearest-
neighbor antiferromagnetic and next-nearest-neighbor fer-
romagnetic interactions. This is applicable with no further
caveat in d = 2, since vg is irrelevant for a range of tempera-
tures below the transition.!! This means that the effective
value of vg¢ decreases as larger length scales are probed, be-
ing zero at the macroscopic scales. The situation is different
in our d =3 case, where vg is nonzero (our simulation indi-
cates vg> 0 below T.) and presumably eventually grows
under rescaling inside the ordered phase, dictating the na-
ture of the ordering. However, this should occur only after
many rescalings, by continuity of renormalization-group
flows, since e expansion suggests an irrelevant v¢ at criticali-
ty. Thus, large length scales must be probed to have an ef-
fective vg strong enough to pin the system to one phase. In
sum, our observed shifts can be explained by weak cross-
over from isotropic XY order in a finite system.

The ordering into the (~/3M/2, —</3M/2,0) phase was
confirmed by application of a small conjugate field, namely,
H;= (H, — H,0) on the three sublattices. This field rounds
and moves the specific-heat peak to higher temperature.
The staggered magnetization M,=({sV) - (s5,2))/2,
between sublattices (1) and (2), and the Edwards-Anderson
order parameter Q clearly exhibit (Fig. 3) the expected
behavior in the temperature range J' < T < 2.7J. The fact
that Q levels at 2/3 as M, approaches 1 shows that sublattice
3 does not freeze.

To study the behavior at the lowest temperatures, we con-
sider small interlayer couplings (Fig. 4), for reasons to be
apparent shortly. Another phase transition is now indicated
by the peak in the specific heat at temperature 7y of the or-
der of J’, below which the system orders into the
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FIG. 3. Staggered magnetization M; and Edwards-Anderson or-
der parameter Q in presence of the conjugate field H;=0.1, for
J'=J and a 15x 15x 12 lattice subjected to 2000 MCS.

(M, —M/2, —M/2) phase. One possible explanation is
that the fluctuation renormalized v¢ changes sign as a func-
tion of temperature. (This is also consistent with the weak
crossover used to explain the finite-system phase shifting at
intermediate temperatures.) In that case, the transition is
crossing the isotropic, ordered XY phase along a symmetry-
breaking direction, so that a first-order transition with a
delta-function specific-heat singularity and an infinite
transverse susceptibility would be predicted for the ideal sys-
tem. The above results may be relevant to the experimental
system VI,, which is a stacked frustrated triangular system
with weak interplanar coupling.* Two consecutive transi-
tions into partially ordered phases have been reported* re-
cently for this compound, with the low-temperature transi-
tion first order.

As our Monte Carlo runs were taken to near zero tem-
perature, the sublattice magnetizations fell short of saturat-
ing to (1, —31—, —-17). We interpret this as a kinetic effect.

Indeed, the low-temperature ordering, which sets at the

BLANKSCHTEIN, MA, BERKER, GREST, AND SOUKOULIS 29

0-8 l [ I T T
02f 1
/& IRITAN 4
0.6 ~._,
/\ t 00 01 02
< ol / \; Ty |
Nk . \)
0.2 l& \k\ i
Anr}.
’C\’ o N\o
| 1 1
0. 0 1.0 2.0 3.0 4.0

TN

FIG. 4. Specific heats from Monte Carlo simulation of the
15x15x 12 lattice, with J'=0(A), 0.2(®), 0.5(0), and 0.05 (inset).

temperature scale of the interlayer coupling, involves a
strong enhancement of the interlayer correlations. (For
T < T,, the intralayer energy remains essentially constant at
its minimum value of —J per spin.) Strongly correlated
columns of spins are sluggish under the single-flip dynam-
ics. This should explain the shoulder and the absence of
the low-temperature order in Fig. 1.

To conclude, the large ground-state degeneracy of the
stacked triangular antiferromagnetic Ising model is reflected
by the intrinsic entropy of the ordered phases: The
intermediate-temperature phase has one sublattice totally
disordered,?® and the low-temperature phase has two sublat-
tices half-disordered. This entropy occurs factorized into lo-
cal units, which are the partially or fully disordered single
spins, periodically permeating long-range order. (A similar
behavior was seen!? for antiferromagnetic Potts models,
another system with large ground-state degeneracy.) The
disordering frustration of the xy planes and the stabilizing
third spatial direction conspire to produce here two distinct
ordered phases related to the XY model, but intrinsically ac-
commodating a significant amount of local disorder.
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