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Intrinsic structure and long-ranged correlations in interfaces
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An intrinsic interface structure for phase separation in the planar Ising model is defined and calculated

exactly. This structure is scaled by the bulk correlation length in accordance with Widom scaling theory.
The pair correlation function with one of the points conditioned to lie in the interface decays as the inverse

square root of the separation when this is parallel to the flat interface direction. This is an exactly solved

example of the Wertheim phenomenon.

The structure of the interface between phases in a
statistical-mechanical treatment at a molecular level has
been the subject of much controversy in recent years. On
the one hand, the theory of van der Waals' as developed by
Cahn and Hilliard' and by Fisk and Widom predicts an in-
terface between phases which varies on the scale of the bulk
correlation length, as Widom scaling hypothesizes. On the

l

other hand, such exact solutions and rigorous results as
there are for systems in two or more dimensions indicate,
depending on the parameters, large fluctuations of the posi-
tion of the interface; these fluctuations diverge with increas-
ing system size. For instance, referring to Fig. 1 for no-
tation, let the magnetization at the point (x,y) in the strip
of width N be m (x,y~N). Then the limiting result
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has been obtained' for Pe( —1, I) with
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rn' the usual spontaneous magnetization, and

b'= sinh2(K j' —K2)
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where exp2x' = cothx defines the usual dual variable. Equa-

I

tion (1) shows that JW is a natural length scale in the prob-
1

lem; the result for 5= —,, however, cannot be derived from

simple capillary wave theory, but can be recaptured as
shown by Fisher, Fisher, and Weeks' using the angle-
dependent surface tension of the planar Ising model. " The
idea is that the magnetization jumps abruptly between its
extremal values +m' on crossing the interface along any
vertical line (see Fig. 1). The probability of finding the in-

terface at (n,y) is given by simple fluctuation theory as
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:+ where r(8) is the surface tension for an interface at an an-
gle 0 to the x axis. The magnetization in this model is then
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FIG. 1. Ising strip lattice with boundary conditions to achieve
1

phase separation perpendicular to y = —2. The fluctuation proba-

bility is computed by considering the lengths L& and L2 of the
straight lines from (n,y ) to (0, 0) and to (N, 0) and by using an

angle-dependent surface tension v(0), as given in (4). The hor-
izontal and vertical nearest-neighbor ferromagnetic couplings are K&

and K2 in units of kT.

m (ny~N) = ,m'QP„~(n, y'~N) sgn(y —y') (5)

m (ny) = QP„„(n,y ~~)mjgj(n y y ) (6)

and

m;„,(y) = lim m;„,(n,y )
+~OO

Taking the leading term in the expansion in (4) of the ex-
ponent in powers of y for y ((N gives exactly the limit-

ing result of (1). It is vital to notice that any reasonable
function increasing from —1 to +1 could replace sgn in

(5), and still yield (I).
By extending Ref. 5, the magnetization m(n, y)

= m (n,y ~oo) has been obtained exactly in the present work.
An intrinsic structure m;„, is defined by
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The first new result is that

m (n,y) = P t do) e "'r' ' 'r' "e'"g (cu)/(e' —1)2'
+ O (e —2ny(0))

where 9'is the Cauchy principal part,
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where
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A = cothKI'cothK2, B = cothKI' tanhK2

To obtain decay as y + ~, the partial difference 8~ is ap-
plied to (6). This removes the singularity at can=0 in (8).
Since (6) is a convolution, it can be solved by standard
Fourier series methods. The fluctuation theory gives

P„p(n, cu ~uu) = exp —n [y(co) —y(0) ] (12)

where f (cu) is the function having f (y) as its Fourier series
coefficients (in e'~"). The limiting solution as n ~ is

coshy (ru ) = cosh2K ~' cosh 2K' —sinh2K ~' sin h2Kq cosa'

(9)
[y(ru) ~ 0 for real co] and

no restriction of ensemble on the line x = n in Fig. 1. It is
of interest, nevertheless, that the results are qualitatively
similar.

(iii) A convolution structure such as (6) has also been
suggested by Jasnow and Rudnick, ' but with a pure Gauss-
ian for P„,. This will not do to solve (6) in an interesting
way; (4) in fact contains a more careful estimate of large
fluctuations. What appears here as a mathematical necessity
may well prove useful in analyzing light scattering data from
interfaces.

(iv) As stated above, (14) is not in accord with Fisk-
Widom theory. This could well be connected with the
anomalous decay of the truncated pair function

u)(r ) —(m')'e '"'/r'

obtained by Wu" in place of the usual Ornstein-Zernike
result.

(v) Other definitions of intrinsic structure are avail-
able' ' "which are not based on the convolution idea, but
they do not appear to be amenable to exact analysis at all
temperatures below the critical value.

We now return to another aspect of the problem, the ex-
istence of long-ranged correlations within the interface origi-
nally proposed by Wertheim' and found within the colum-
nar model. ' ' An intrinsic pair function C(x,y) is defined
by the solution of

lim (o(n y ).o(n +xy)).= QC(xy'~n )P„,(n y —y'~uu)

with C(x,y) = C(x,y ~~). The reasoning is the same as be-
fore and the solution is

C(x,y) —m'm;„, (y) 't de exp —x [@(co)—y(0) ]
2n ~~

'r)ym;„, (o)) = g (~)

from which (y ~ 0)

m" —m;„, (y ) —e "«y [1+0 (1/y) ]

(13)
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+ 0 (
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which has a 1/Wx behavior as x —~, as was obtained using
the restricted ensemble. "

where K = lnB is the bulk inverse correlation length. This is
in accord with Widom scaling theory, " although (14) is
not a solution of Fisk-Widom theory'" which would have a

pure exponential decay as y + ~.
We now make a number of remarks about the solution.
(i) Equation (6) is a tautology until P„, is defined. The

Fisher-Fisher-Weeks fluctuation theory gives a physically
natural choice which turns out to be mathematically suffi-
cient to get a nontrivial limit m;„,(y) to exist.

(ii) Unlike the conclusions reached earlier, " (12) implies
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