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Failure of the classical approximation for CsNiF3;
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An exact numerical-transfer-matrix method is used to calculate the thermodynamic properties of an
easy-plane Heisenberg ferromagnet with in-plane magnetic field. The results clearly show that the often-
adopted classical approximation is totally inadequate for CsNiF; in typical experimental circumstances. In
particular, it is shown that a quantum treatment of the out-of-plane fluctuations is crucial.

The properties of a ferromagnetic chain with easy-plane
anisotropy in a symmetry-breaking external field

N N N
#=-235,S+D 3 (5D —gusH 3,57 (1)
j=1 i=1 i=1

have attracted much interest in recent years. On one hand,
there is a material, CiNiF;, which is described by (1); on
the other hand, in the classical limit the Hamiltonian (1)
may be approximated (in the continuum limit and for
D — ) by the sine-Gordon (SG) one.! The classical SG is
a prototype system for studying linear excitations as well as
nonlinear excitations, breathers, and topologically stable sol-
itons and how they affect the thermodynamic and scattering
properties.!:2

However, much experimental work®* on CsNiF; ad-
dressed to provide a direct evidence of the role of nonlinear
modes has not been interpreted in a univocal way.>® Also,
more recent theories that start with the full Hamiltonian (1)
have not yet clarified the problem. In particular, various
authors have estimated in the continuum limit the effect
due to out-of-plane fluctuations on the thermodynamic
properties.”? These theories, which lead to a reduction of
about 20-30% of the SG soliton energy, assume the classi-
cal approximation to be valid for CsNiF; in typical experi-
mental circumstances.!?

In this paper we show that the universal behavior of the
experimental data for the magnetization!! (a soliton-
insensitive quantity) on the parameter kzT/(HJ)Y2, with
H = gugH, unexplicable by classical models, is reproduced
at low temperatures by a simple quantum spin-wave theory.
In particular, we find that even at T=0, owing to zero-
point motion, the out-of-plane fluctuations are very strong.
Consequently, the applicability of the classical model to
describe CsNiF; is suspect. In order to analyze the validity
of this approximation, we calculate the thermodynamic
properties for the classical system with Hamiltonian (1) us-
ing a numerical-transfer-matrix (TM) method. Since this
method is exact, from the comparison with the experimental
data, we conclude that the classical approximation is abso-
lutely inadequate for CsNiF; in the range of parameters
(field and temperature) of interest. Finally, the validity of
some theoretical predictions® is examined by a comparison
with our exact TM results.

Before discussing the various thermodynamic properties,
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we briefly describe the TM method. Let us take a magnetic
chain described by a symmetric Hamiltonian with nearest-
neighbor (NN) interaction

H=3H(S, S+ ;H(S, S0 =HE41,5)
i

with periodic condition for the classical spin vectors. By
means of the transfer-integral formalism!? any thermo-
dynamic property can be expressed in terms of eigenvalues
and eigenfunctions of the integral equation
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The explicit expressions of the thermodynamic quantities in
terms of A, and y,(S;) have been quoted elsewhere.!? For
an axially symmetric system an angular integration can be
done analytically and the remaining integration can be sim-
ply performed by a Gaussian method.!? However, for the
model (1) the lack of axial isotropy makes the solution
more complicated owing to the double integration that re-
quires much computer time. To overcome this difficulty we
have performed the integral (2) using McLaren’s 72-point,
14th degree formula for integrals over the surface of a
sphere, a method already used by Pandit and Tannous!? for
the classical canted antiferromagnetic chain. The accuracy
of this method can be checked by comparing the results ob-
tained for H=0 or D=0 with those obtained by using the
standard technique: consistent results have indeed been
found in all ranges of interest of the parameters. In addi-
tion, our results exactly reproduce the magnetization data
obtained by Loveluck, Schneider, Stoll, and Jauslin,® for
H =5 kG, carrying the double integration.

In all our calculations we have assumed values of parame-
ters appropriate for CsNiF;: J=11.8 K, S=1, g=2.4. For
the easy-plane anisotropy, consistently with the classical ap-
proximation, we have taken D =4.5 K.

(i) Magnetization. Cibert!? has analyzed the experimental
data by Rosinski and Elschner'* of the magnetization (S”)
finding that it is a universal function of kgT/(HJ)Y2 1t is
known that classical planar’® and classical Heisenberg
models!® show universality for low H/J, while the classical
easy-plane model is close to the planar one at low tempera-
tures and exhibits a crossover towards the Heisenberg limit
for high temperatures. In order to understand this behavior
we have calculated (S”) by TM as well as by a quantum
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linear-spin-wave (LSW) theory. Following Reiter,® at the
lowest order we obtain the diagonalized Bose Hamiltonian

HB=2wkbgbk N (3)
k

with b,I and by Bose operators and
w=S[(Jo—J)*+2(D+ H)(Jy— J) + 2DH + A*1V? |

where J,=4J cosk, D=D (S — % )/S=4.5 K. The magneti-
zation is given by

(8 =S—=N-13 [(af+BE)nc+BE] , @)
k

where ay=coshfy, By=sinhd,, and tanh(20,) =D (J,
—Jy+ D+ H)"Y, ng is the Bose factor. In Fig. 1 we report
the predictions of quantum LSW and the TM results for
(S”) vs kgT/(HJ)Y2 1t is evident that, whereas the classi-
cal results in no case are universal function, the existence of
a scaling law for the quantum results is clearly demonstrat-
ed. The agreement with the experimental data is very good
as far as kg T(HJ)Y2~ 2. These results clearly show that a
correct quantum treatment of the out-of-plane fluctuations
is required. In order to elucidate the different behavior of
these fluctuations in the classical and quantum case, we
have calculated the quantity ((S?)?) which in the quantum
LSW theory is given by

((SH)9=(S/2IN7' 3, (ax—Bi)*(2n+ 1) . (5)
k

This quantity is shown in Fig. 2 together with its classical
counterpart

((S7)?) = SkpT[(JoS +2DS + H)*— (JyS)?] !

and with TM results versus T for H =15 kG. In the classi-
cal case ((S7)?) vanishes for T— 0 and increases almost
linearly with 7. This strong variation explains the crossover
found by TM methods® between the planar model at low T
and the Heisenberg one at high T for the magnetization. In
the quantum case at T=0 the out-of-plane fluctuations for
the easy-plane model (1) are very large: ((S7)?) ~0.424
for H=15 kG, to be compared with the value 0.5 (indepen-
dent of H) for the isotropic Heisenberg model. The ther-
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FIG. 1. Universal plot for reduced magnetization (S”),/

(87 7o Vs kgT/(HI)Y2, Curves: TM data. Symbols: quantum
LSW theory results.

5247
05 | _‘,./-/""
Nt\
= -
> 0.25 | ===
15 kG
° " 1 1 n
o 2.5 5 7.5 10
T(K)

FIG. 2. Temperature dependence of the out-of-plane fluctuations
((SH)?) for H=15kG. Full line: TM data. Dashed line: classical
LSW results. Dashed-dotted line: quantum LSW results.

mal increment is extremely slow in the range of tempera-
tures examined, thus explaining the universal behavior ex-
perimentally found for the magnetization of CsNiF;. Our
quantum results for ((S7)2) are found to be in agreement
with the exact finite chain calculation by Tammetta and Oit-
maa!’ at low temperatures.

These results for the quantum easy-plane system (1)
strongly suggest the inadequacy of the classical model to
describe CsNiF;.

(ii) Specific heat. Ramirez and Wolf in their measures of
specific heat* notice the presence of an extra contribution to
the specific-heat difference AC = Cy— Cp-o, Where Cy is
the specific heat measured in a symmetry-breaking external
field. This anomaly is not reproducible by a quantum LSW
theory, that would give a negative Acgw and is attributed to
thermal soliton excitations.*%? By means of the TM
method we have calculated the classical specific heat for the
model (1) both for H=0 and H 0. It should be noted
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FIG. 3. Field dependence of (AC—ACsw)/Nkg at different
values of T. Full line: TM data. Symbols: experimental data (Ref.
4) for CsNiF;.
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FIG. 4. Universal plot for
§Hg=0)+5"(g=0) = (S55=0SF0) + (Sj=05{=0)

vs kgT/(HJ)Y2 at H=5 kG. Full line: TM data for model (1).
Dashed line: TM data for the planar model. Symbols: experimen-
tal data (Ref. 19) for CsNiF;.

that in both cases classical LSW theory gives an erroneous
constant value NKjp for the specific heat. Therefore, for a
meaningful comparison between TM results and experimen-
tal data (which obviously give C— 0 for T— 0), it is
necessary to subtract the classical LSW contribution from
the former and its quantum counterpart from the latter. In
Fig. 3 we report the TM and experimental results for
AC—ACgw versus magnetic field for different tempera-
tures. In spite of the addition of the positive quantity
—ACSy to the Ramirez and Wolf’s experimental data, these
remain much smaller than the numerical results. Also, the
peak positions are quite different. The specific heat of
CsNiF; is therefore impossible to understand within a classi-
cal model, at variance with the results obtained for
tetramethyl manganese chloride (TMMC).!8

(iii) Susceptibility. This property has been measured by
Kakurai and Steiner!® using the quasielastic neutron scatter-
ing technique. The susceptibility at ¢ =0 shows a broad
maximum in its temperature dependence. In Fig. 4 we re-
port the TM data obtained for the model (1). As it can be
easily seen these data do not reproduce the experimental
results, thus confirming that the classical model is inade-
quate for describing CsNiF;. The good agreement that we
find using the classical planar model (spin dimensionality
=2), as shown in Fig. 4, as well as that found by Kakurai
and Steiner!® for the SG one, seems then to be fortuitous.

Besides the experimental data, it is interesting to compare
the TM resultsowith the predictions of the theories of
Fogedby, Hedegard, and Svane® and Leung and Bishop,’
who find divergence in the soliton contribution to thermo-
dynamic quantities for a critial value bc=%— of the ratio
b= H/2DS. Although these divergences are attributed to
the inadequacy of the approximations close to the critical
field, Leung and Bishop® suggest that an ‘‘incipient diver-
gence’’ should be experimentally observable in CsNiF;,
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FIG. 5. TM data for the temperature dependence of S (g =0) at
different fields.

where H,=18 kG. As we have just observed that the clas-
sical model (1) is unreliable in explaining the experimental
data for CsNiF3;, we believe that only TM results should be
used to verify the presence of anomalous contributions.
The property where the most striking effect was expected by
Leung and Bishop® was the component along the magnetic
field direction of the susceptibility. In Fig. 5 the TM results
for the correlation function (S}-¢S}-o) are reported versus
T at different fields. For H=0 we find a divergence for
T— 0 which, as it is well known, indicates the establish-
ment of long-range order. Since the application of a mag-
netic field suppresses spin fluctuations, we observe a gradu-
al decrease of the correlation functions at fixed 7 when the
field is increased and no anomalous behavior is observed in
the range 5-25 kG. Consequently, the validity of the
theory? appears to be restricted to ranges of the parameters
much more limited.

In conclusion, in this Rapid Communication we have
demonstrated the inadequacy of the classical approximation
for CsNiF;, since the exact numerical TM data strongly
disagree with the experimental results for magnetization,
specific heat, and susceptibility, and consequently the neces-
sity of a quantum treatment. In particular, we have shown
that the quantum out-of-plane fluctuations are very strong
demonstrating the inadequacy of a mapping of Hamiltonian
(1) to the quantum SG model.®® Also, approaches which
include only the leading-order deviations from planar
behavior?! are to be regarded only as starting points for the
treatment of the real system CsNiFs.
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