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Temperature variation of sound velocity in liquid He II
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The temperature dependences of the sound velocity in liquid helium II in bulk and in film are evaluated
explicitly for low temperatures. In the bulk case, our theory yields results which agree with experiment
better than the previous theories of Andreev and Khalatnikov and of Singh and Prakash. The film case is

shown to be somewhat different from the bulk case.

I. INTRODUCTION

Some years ago, Andreev and Khalatnikov' investigated
the temperature variation of the sound propagation in liquid
helium using a collisionless kinetic equation and normal en-
ergy dispersion. More recently, Singh and Prakash investi-
gated the behavior of the retarded single-particle Green's
function for a weakly interacting Bose gas and showed that a
new temperature-dependent term arises in addition to what
Khalatnikov and Andreev obtained. However, through
theoretical considerations, heat capacity, scattering, ' ther-
mal expansion, ultrasonic propagation, and other measure-
ments, evidence has been accumulated that the dispersion is
actually "anomalous. " While there are some different
forms proposed for anomalous dispersion, ' Kim, Um,
Choh, and Isihara derived the following form based on a
microscopic theory:

e = cq (1+Stq —82q3+ )

where the 5 are positive. On the other hand, the normal
dispersion was assumed to be of the following form,

II. BASIC EQUATIONS

The velocity of sound can be obtained by solving the
equations of motion of the liquid. We consider sound pro-
pagation near absolute zero following Andreev and Khalat-
nikov. Thus, we deal with the kinetic equation for the pho-
non distribution function n (q, r, t):

"+[n, H]=0,
Bf

(2.1)

0= (qa) q+v, (2.2)

together with the equation of continuity and the equation
for the superfluid velocity v, :

We sha11 report also that the case of helium films is dif-
ferent from the bulk case. Since experimental data on heli-
um films seem unavailable, our theoretical results can be
useful in the future.

a=cq(1 —yq ) (1.2) (2.3)

where the units are such that t = 1, 2m = 2, and c is the
phonon velocity and y is positive. These two dispersion rela-
tions represent different phonon decay mechanisms. In the
case of the normal dispersion, it has been discussed' that
four-phonon processes are the lowest, while in the
anomalous case, three-phonon processes become most im-
portant at low momenta.

It has been shown by Maris3 that anomalous dispersion
gives sound velocity in better agreement with experiment
than normal dispersion. It is the purpose of the present ar-
ticle to show that the anomalous dispersion relation given
by Eq. (1.1) results in a sound velocity which agrees with
experiment better than previous results. On the other
hand, we have shown elsewhere that p„/T (the normal
fluid density divided by temperature cubed) shows interest-
ing temperature dependence if Eq. (1.1) is adopted. Thus,
the temperature dependences of these two different quanti-
ties are described in a consistent way.

Qv I+ v(p, + —v, ) =0
Bt S (2.4)

dqj =pv, +„qn (2.5)

(2.6)

where p, o is the chemical potential at absolute zero.
As usual, we assume that deviations from equilibrium are

small and are proportional to exp[i(q r —rut)]. After a
straightforward calculation for small deviations from equili-
brium and making use of Eq. (1.1), we arrive at a sound

where j is the momentum of a unit volume of the liquid
and p, is the chemical potential, which are given by
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velocity expression:

oi/g =c+Sc
r

Sc =3c —(u+1)'in

higher temperatures, the constant terms in the curly brack-
ets of Eq. (2.7) will contribute, leading to a T proportional-
ity. Since these terms are minus, they will reduce 5e when
it is plotted against temperature.

3 po Bc pn

Spo) po

[in three dimension (3D)], where we have neglected the ef-
fect of 82 and where po is the equilibrium density of thc
liquid, c is given in the Appendix, and

po Qc

c 8po
(2.8)

is a dimensionless parameter introduced by Khalatnikov. s

The normal fluid mass density in Eq. (2.7) can be evaluated
from a consideration of the total momentum carried by
quasiparticles as follows:

pi=
6m

when fI, O is the equilibrium distribution. Thc resulting low-
ternperaturc expression is

p, (T)= 1"(5)g(4) kT 1 (8)g(6) kT
6m 2c c 6m2c c

I
7 l/2

I {9)g(7) kT 1, m
82 + qo e

2c c 3~ 2~/

(2.9)

(in 3D), where m', 6, and qo are, respectively, the effective
mass, roton energy, and momentum.

Note that for very low temperatures, Sc is proportional to
T ln(1/T) because in Eq. (2.7) the first term is dominant,
in agreement with Andrcev and Khalatnikov. At slightly

I

III. RESULTS AND DISCUSSIONS

1

Sc= —c (u+1) + ————1 po S'c p. (T)
2 3 c Qpo: po

where the normal fluid density is

(3.1)

In order to evaluate thc temperature variation of sound
velocity explicitly, it is necessary to determine the theoreti-
cal parameters. The coefficients hl and 52 in the energy
dispersion relation (1.2) have been determined else-
where. 9'0 We list these parameters for two and three
dimensions, respectively, as follows:

St=1.47 A, S2 ———40.24 A3 (for 2D)

Si = 1.51 A', S2= 3.25 A3 (for 3D)

These values are close to what Aldrich, Pcthick, and Pines"
found independently and reproduce the experimental disper-
sion curve, thc cUtoff momentum, and thc 1atlo of thc
group velocity to thc sound velocity very well. We have
listed other parameters in Table I including thc case for
helium films. Because of the lack of motion perpendicular
to the surface, the sound velocity in helium films differs
from that in bulk. In this table, the parameter u defined by
Eq. (2.8) for two dimensions is assumed to be 1.8 which is
the value used by the previous workers" for the bulk case.

Figure 1 compares our theoretical results (solid curve)
with the experimental data of Whitney and Chase. ' Curves
I and II represent, respectively, the results of Singh and
Prakash and of Andreev and Khalatnikov. In comparison
with these previous results, our agreement with the data is
much better.

The two-dimensional case can be treated as in the bulk
case. The sound velocity expression (2.7) is replaced by

r(4)g(3) kT
4~c c

~ 5
t

I/2
I (7)g(6) [1 t

( 4)( 3 4 y )] kT + 1 3 Nl —g/T
877'c C 2 2&kT

~~

(3.2)

(for 2D).
Using thcsc results, wc have 111Ustlatcd thc thcorctlcal

sound velocity in Fig. 2 as a function of temperature. As
we see, the temperature dependence is very different from
the three-dimensional case.

The main reason for the above difference is due to the
difference in the angle integrals. In the Appendix, we have
given the relevant angle intcgrals for both dimensions. An

l

angle integral produces a logarithmic term for three dimen-
sions. As we see, the two-dimensional integral docs not in-
clude a logarithmic term, resulting in the difference. It will
be very interesting to have an experimental test of such a
difference.

The basic physics behind thc present work is in investigat-
1ng thc cncrgy dlspclslon and ln flndlng thc I'olc played by
three-phonon processes. In contrast, four-phonon processes

TABLE I. Theoretical parameters.

c (cm/sec)

20
30

0.75
1.71

1.02
1.92

2,79&&10-' (A-2)
2.18~10-' (A-')

164.4
238

1.8
1.8
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FIG. 1, Temperature depend'ence of the sound velocity of bulk
liquid helium. Curve I: Singh and Prakash (Ref. 2); Curve II: An-
dreev and Khalatnikov (Ref. 1); Curve III: present theory. The or-
dinate represents the sound velcoity deviation Sc = c —co/q

(cm/sec}.

play a major role in Andreev-Khalatnikov and Singh-
Prakash theories. From the analysis of the present work,
together with our other studies, ' it seems clear that
three-phonon processes are important.

Concerning the energy dispersion itself, we remark that
several different forms have been proposed. For instance,
Greywall and Dynes and Narayanamurti' have used an
even-powered polynomial expression, while Maris has pro-
posed his own. In comparison, our dispersion relation has
been derived from a microscopic theory of liquid helium.
Different from some other microscopic theories, such as
those based on variational principles, our theory treats den-
sity fluctuations due to collective couplings of the helium
particles and derives the internal energy. It is very interest-
ing that this internal energy expression is of the Landau
form. That is, the theory justifies the Landau theory itself
rather than deriving only the excitation energy for absolute
zero, and thereby massless quasibosons appear in a natural
way although the theory deals with actual helium particles.

Because of different dispersion relations, it is by no
means a simple matter to compare various values of the
coefficients. We must remember that higher-order terms in
the dispersion relations affect the lower-order coefficients
such as Si. In addition, as pointed out by Greywall, experi-
mental determinations may be based on some questionable
assumptions. Nevertheless, we remark that our values 1.51

and 3.25 for Si and 52 are in excellent agreement with the
values of Aldrich et al. " which are 1.5 and 3.7, respectively.
The errors in our determination are +0.15 for Si and
40.20 for 52. On the other hand, Si is around 0.9, 0.45,

and 0.13 according to the analyses of Maris and co-workers,
Philips, Waterfield, and Hoffer, and Bhatt and McMillan,
respectively. Therefore, together with higher-order coeffi-
cients, further studies of the dispersion relation are definite-
ly needed.

At temperatures of order 0.4 K, the Si and 52 terms con-
tribute approximately 15% and 1.2% of the first phonon
term in Eq. (2.9). Hence, we expect a reduction in Sc of or-
der 14%. This explains why our result is lower than the
previous results. As temperature increases the logarithmic
term in Eq. (2.7) becomes smaller. Finally, around 0.65 K,
the constant terms, which are negative, become larger.
Hence, Sc is expected to decrease, in agreement with Whit-
ney and Chase and also with Kebukawa. ' A further in-
crease in temperature will make the roton contribution
more and more important. Hence, a precise measurement
of the temperature variation of the sound velocity is desir-
able.
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Our microscopic theory ' adopts a soft potential of the
following form:

Vp, r~a
y(r) =

,e'[(a/r)' —(a/r) i, r ) a (Al)

The second velocity c = cu/q in the limit of small q is given
by

c = [nu (0)/m']'~', (A2)
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where

I.O-

O.O

-1.0-

u (0) = a'( Vo ——a e') (for 3D)

u (0) = ma ( Vo= —,o
e") (for 2D)

(A3)

-2.0-
'o -&.0
~ -4.0-
~ -50-
GQ

-6.0-
-70-

~np v cosH & Bcn'+q p + ecosH =0
Bc cv/q —v cosH Bpo

(A4)

The kinetic and hydrodynamical equations (2.1)-(2.4) are
reduced in small n' and p' by expressing n =no+n' and
p = pp+ p' as follows:

-8.0
0 P.~ 0.6 O.S 1.2 1.5 1.8 2.1

T(K)
2.4 ——p + ppv + ' qn'cosH dv =0OJ p

5 (AS)

FIG. 2. Sound velocity in helium films. The curve represents
Eq. (3.I).

——vz+ — - +
2 npdv p'+ n' d7' = 0

pp happ
" ~po

(A6)
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where dv is the volume element in momentum space and
u = Ba/Bq.

For three dimensions, the angle integration of Eti. (A4)
leads to

dqq' '
in q " =in(2/3gq'), (s,q'«1) . (A7)

8a cd/q —u

q on the right-hand side is then replaced by its mean value.
On the other hand, for t~o dimensions, such a logarith-

mic term does not appear:

cos d8 = —2rr~/q ~
co/q —v cosq

Accordingly, in Sc ~e expect a two-dimensional peculiarity.
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