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"True" self-avoiding walk in one dimension
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The "true" self-avoiding walk in one dimension is studied via extensive Monte Carlo simulations. For
any finite and nonzero value of the repulsion parameter g, the asymptotic behavior of the end-to-end dis-

tance is characterized by a universal exponent v =0.67+0.01, in close agreement with the value v = —re-

cently predicted by one of us (L.P.).
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The parameter g ( ) 0) measures the intensity with which

It has been common in the last years to identify the prob-
lem of the self-repelling polymer chain (SRC) with the ex-
pression "self-avoiding walk. "' Only recently, Amit, Parisi,
and Peliti have shown that the problem of a traveler who
steps randomly, but tries to avoid places which he has al-
ready visited, is actually different from the SRC. They call
this problem the "true" self-avoiding walk (TSAW) and
show that the upper critical dimensionality (d, ) of such a
walk is 2, while for the SRC it is known to be 4. They use
renormalization methods to calculate logarithmic corrections
to the ordinary random-walk behavior in two-dimensions.
This approach has been implemented by Obukov and Peliti
who, in addition, construct an e expansion for this problem.
One of us (L.P.) has then formulated a simple self-
consistent approach that gives, for a TSAW of N steps,

(x2) 1/2 ~ v

]—for d ~d, =2
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,2/(2+d) for d & 2

Here x is the end-to-end distance of the walk and d is the
space dimensionality. This result correctly reproduces d, = 2
in agreement with the renormalization analysis, but also
gives rise to a prediction for the nonclassical values of v for
dimensions d & 2. Of particular interest is the result of
v 3 for one dimension, which is quite surprising in view

of the fact that the self-repelling chain problem is essentially
trivial in one dimension and gives rise to v=1. Since the
TSAW for d = 1 is probably the simplest example of a non-
Markovian dynamics with infinitely long memory, we decid-
ed to clarify the situation by means of extensive Monte Car-
lo simulations. It is the purpose of this paper to report
these numerical results that give strong support to the

2
predicted exponent of v= 3.

The TSAW in one dimension corresponds to a traveler
that can move to one of the two nearest neighbors of the
site he is at. The probability to move to a site i depends on
the number of times, n;, this site has already been visited
and is given by

—gn.
I

dp(x)
~P =Pout Pin (4)

where it is assumed that for large N the occupancies n; can
be replaced by the smooth (differentiable) function p(x).
If this assumption is correct, it follows from scaling concepts
that v = 2/(2+ d), and therefore v = —, for d = I (Ref. 4) in

dependent of the value of g. If in one dimension the path
would proceed just iri one direction the above assumption
would be incorrect because p(x) would be a step function.
As discussed before, however, the situation is actually more
complicated because that path always folds back on itself so
it is possible that p(x) is finally a smooth function and our
assumption therefore correct.

Motivated by these questions we have performed Monte
Carlo simulations of the dynamics defined by Eq. (3), keep-
ing track of the total number of visits to every site n;. In
Fig. 1 we report the results for three values of the repulsion
parameter: g = 3, g = 1, and g = 0.1, corresponding, respec-
tively, to strong, intermediate, and weak repulsion. Each
set of data points corresponds to an averge over 1000
Monte Carlo runs of walks up to N =10000 steps. It is re-
markable to observe that: (i) The initial slopes are quite
different, but for large values of N the three slopes become
very similar, independent of the value of g. (ii) This

2
asymptotic slope appears to converge to the value v = 3,

the path avoids itself. At first sight one may think that in
the limit of large g (g ~) the traveler always moves in
the same direction, giving rise to v = 1 as for the SRC prob-
lem. This is actually not true. For any finite value of g
(however large) the path will make several consecutive
steps in a given direction, but after a large enough number
of steps there will be a finite probability for the traveler to
go back all the way in the opposite direction for a compar-
able number of steps. For larger and larger values of g one
has to wait longer and longer before the path folds back on
itself, but this will always happen. The asymptotic dynamics
is therefore highly nontrivial and the exponent can deviate
from v=1.

According to the self-consistent construction of Ref. 4, a
traveler after a certain number of steps has for the next step
a probability p,„, to move away from the origin (starting
point) and a probability p;„ to go toward the origin. Their
difference is linked to the gradient of the density of occupa-
tion of the various sites
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FIG. 1. Monte Carlo simulations of the TSAW for different
values of the repulsion parameter g corresponding to strong (g = 3),
intermediate (g = 1), and weak {g= 0.1) repulsion. Each set of
data is the average over 1000 Monte Carlo runs, each up to 10000
steps (the error bars in the data are of the order of the size of the

dots). Different initial slopes merge into the "universal" slope 3

(indicated by the continuous lines) for large N, independent of the
value of g.

FIG. 2. Extended Monte Carlo simulation (10000 Monte Carlo
runs, each up to 200000 steps) for g = 1 plotted in such a way as to
enhance eventual deviations from the slope 3. Flat behavior at

2
large N gives strong support for I =

3 with an estimated error bar

of the order of 1%.

fies scaling and universality properties. We introduce

represented by the three continuous lines drawn for com-
parison. Note that for large g the asymptotic regime is only
reached for very large values of N. In addition, the ap-
proach to the asymptotic behavior can have an oscillatory
part which would be more pronounced for larger values of
g. This could be the origin of the somewhat smaller ap-
parent slope of the case g = 3 in Fig. 1.

In order to obtain a more accurate estimate of the asymp-
totic exponent, v, we have performed a much more extend-
ed analysis of the case g = 1. In Fig. 2 we report data corre-
sponding to 10000 Monte Carlo runs each of 200000 steps.
Without particular program optimization this calculation
took about 110 h of CPU (central processing unit) time on
a Digital Equipment Corporation VAX-11/780 computer.
The data are plotted in such a way as to enhance deviations
from the 3 slope. If the real exponent is —, the data of Fig.

2 2

2 should become flat for large N. This is indeed the trend
shown by the numerical results, and it should be noted that
even a difference of only 1% in the slope is well visible in a
plot as that in Fig. 2. Clearly, it is a delicate issue to make
statements about asymptotic exponents from numerical
results, but we can safely say that our data provide strong
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support to the value 3, and if the real exponent is actually

different from this value the difference should not exceed
1%. In this connection it may be interesting to note that,
for example, the Flory exponent for the three-dimensional
self-repelling chain vF= —, seems to be incorrect just by

about 1%.'
We can now turn back to the self-consistent construction

of Ref. 4 and be more confident about the assumptions that
were made. In particular, we assumed that the occupation
density of the sites p(x) can be represented by a continu-
ous differentiable function. Following arguments of the
type of Ref. 4 we can now show that this function also satis-

where Xg is a prefactor which depends on the repulsion
parameter g. For the end-to-end probability distribution we
can write within scaling concepts'

~ '"(x) =—„f, (x/~ ), (6)

and the occupation density (that here we normalize to uni-

ty) is then given by

pN' (x) =—
~

dnP„' (x) = h(x/8 )—(g) 1 (g)

where

h(z)= —,z'' dyy ''f (y)

(7)

(8)

is a universal function independent of N and g. Equation
(7) therefore implies that

1 (g) z

,g&(o) ',g'(0)
1

~
z

/ (0) / (0), (9)

(x2) 1/2~ g g ~2/3

By analyzing the data of Fig. 1 we then obtain

(10)

= 1.8 + 0.1

=2.3+0.1 .

should be independent of N and g. This result is particular-
ly useful for analyzing numerical data. In Fig. 3 we report
Monte Carlo calculations of p~~'(x) for different values of
g. Each set of data corresponds to 10000 Monte Carlo runs
of N =1000 steps. The universality property expressed by
Eq. (9) is well confirmed by the numerical data. A further
check of the scaling and universality properties can be made
by considering that asympotically



BRIEF REPORTS

On the other hand, using Eq. (7) we can derive the relation

p~" '(0)
pgt~ (0)

(12)

which links A.~ to the central value of the occupation densi-
ty. Using Eq. (12), the data of Fig. 3 lead to

(13)

in good agreement with the values of Eq. (11) obtained
directly from Fig. 1.

In summary, we have presented Monte Carlo simulations
for thc TSAR ln onc dlIYlenslon. This dynamical process
with infinitely long mcIIlory manlfcsts a ncw type of critical
behavior with a universal exponent (independent on the
repulsion parameter g) equal to extremely close to the
predicted value v = —,. In view of the validity of the relation

v=2/(2+d) (derived in Ref. 4) both for d= 2 (v=
2 ) and

for d = 1 (v = —,) it is now of great interest to check the in-

tcrmcdlatc region 1 4 d K 2 foI' systems with fI'RctRl dlIYlcn-

sionality. Work in this direction is in progress.
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FIG. 3. Universal behavior of the occupation density of the lat-

tice sites. Each set of data for a given value of g corresponds to an
average over 10000 Monte Carlo runs, each consisting of %= 1000
steps. Kith occupation we denote here the total number of times a
given site has been vlslted.
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