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Numerical computation of the density of states for disordered magnetic chains
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Using the negative eigenvalue theorem we compute the density of magnon states for a disordered mag-
netic chain of 5x 108 spins. Good agreement is obtained with the asymptotic expansion of the coherent po-
tential approximation for a half-Gaussian distribution of nearest-neighbor interactions.

Thc authors of scvcral recent papers have derived
Rnd/or computed the density of magnon states for a disor-
dered one-dimensional chain where the disorder is charac-
terized by random nearest-neighbor interactions, A general
model for such a system is the following set of equations:
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The- above equations can also be used to characterize the
diffusion and hopping conduction of classical particles,
tight-binding electronic states, lattice vibrations of a har-
monic chain, and an electrical network. 4 For the electrical
network problem, the w„„+I are line conductances, the c„
are capacitances, and the P„represent node potentials.

Huber and Ching2 have used a coherent potential approxi-
mation (CPA) to derive an asymptotic formula for the den-
sity of states, p(h. ), for Eq. (1) in a system where the w's

were distributed continuously with a probability density
which was finite at e = 0. They obtained the result
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where Po denotes the probability density at e =0. The
parameter X refers to the eigenvalues of (1) and is equal to
the square of the frequency in the magnon problem (see
below). Bernasconi, Schneider, and Wyss5 used an alterna-
tive method to arrive at the same expression, which has
been shown to bc in agreement with the exact result.

Recently, %. R. Schneidcr derived an analytic formula for
the density of states in a system ~here the interaction con-
stants mere distributed according to
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The first two terms of (6) are the same as in Eq. (4). In
the CPA they are present for all continuous distributions
which are finite at ~ =0. The third term depends on the
form of the distribution:

A = exp[ —(ln2 —y)/2] = 0.9437

where, y, 0.5772, is Euler's constant.
Equation (6) is difficult to test numerically due to the

slow logarithmic variation in the asymptotic region. Previ-
ous numerical calculations2 3 have not been able to compute
the density of states of systems large enough to have an
adequate statistical distribution of eigenvalues in the asymp-
totic regime. In this paper wc will cxtcnd thc calculations of
Rcf. 3 to systems which arc sufficiently large to allow 8
direct test of the asymptotic expansion obtained from the
CPA.

The model for our system of disordered spins is a set of
classical planar rotators characterized by the interaction en-
ergy

V= ——, /Juncos(9; —HJ)
j.

ij
(9)

This classical model has dynamical behavior equivalent to
that described by thc linearizcd equations of motion for the
anisotropic Heisenberg Hamiltonian

InA = —lim Pa '
Jl P(w)w 'dw+lnbp~ 0 b

For the distribution given by Eq. (3) one has A =Pa so that
in this case the CPA reproduces the first three terms of the
asymptotic expansion. Kith the half-Gaussian one obtains

1 ln( —Inn) 1»(2/Po)
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In this paper we are interested in the determination of the
asymptotic density of states for a half-Gaussian distribution

P(w)= e "~', w~0 .2 -2
42m

(10)

In the above equation S; is the spin operator at site r; on a
regular (periodic) chain, the constant I plays the role of the
moment of inertia in the rotator analog, and J& is the value
Of thC CXChangC integral bCtwCCn Sites I'; and Iz. ThC CX-

change intcgrals Rrc assumed to have 8 random Gaussian
distribution about zero with standard deviation I and arc
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nonzero only for nearest neighbors:

P (J) = exp( —J'/2)
J(2Ir )

The ground state of the classical planar rotators is ob-
tained by minimizing the total interaction energy. The state
of minimum total interaction energy is characterized by each
spin pointing in the direction of the local field due to its
nearest neighbors. The constraint equation for the ground
state of the chain is cos(8, —8&) =sgn(J&), where the an-
gles (8,0} are the equilibrium configuration spin angles.

The equations of motion for the spin angles @, which
characterize the deviation of the spins from their equilibri-
um orientations, take the form
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where the matrix elements A,& are given by
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from which it is evident that A &
has the same structure as

the dynamical matrix associated with Eq. (1) for c„=1. We
note that the exchange energies appear in the dynamical
equation only as absolute values. Therefore the "effective"
probability distribution for P(J) is a half-Gaussian, and the
limiting value of the probability distribution at J = 0 is
Po= (2/m)' '

We also derived the equations of motion for an XYmodel
Hamiltonian. The result is similar to Eq. (13) above, but
with the moment of inertia I replaced by 1/A;;. This case
was found to have a low-energy eigenvalue spectrum similar
to that associated with Eq. (12).8

The numerical computation of the density of states entails
calculating eigenvalues, or at least the distribution of the
eigenvalues, of the matrix A. Huber and Ching computed
the eigenvalue distribution for chains of 500 spins by direct-
ly diagonalizing the dynamical matrix. Their results are in

good agreement with the CPA result at moderately low en-
ergy. Grassl, Zhao, and Huber' used a negative eigenvalue
algorithm to compute the eigenvalue distribution for chains
of 106 spins and were able to compute the density of states
down to an energy as low as X=5&10 ".' At this energy,
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FIG. 2. Low-energy eigenvalue distribution for disordered linear
chain of 5&&10 spins. Solid line is a least-squares fit discussed in
the text.

the second and third terms in Eq. (6) still account for ap-
proximately 15% of the density of states. Neither of the
above studies was able to investigate systems large enough
to test the accuracy of Eq. (6) at the level of 1—2%.

Our most recent calculations have involved the eigenvalue
distribution for a chain of 5X10 spins. Using the negative
eigenvalue theorem we were able to extend the computation
of the density of states down to an energy of X = 10 '~, and
at this energy the second and third terms of Eq. (6) contri-
bute approximtely 7.4%, with the third term being only
1.4/o. The entire eigenvalue distribution is shown in Fig. 1,
and the low-energy distribution is displayed in Fig. 2. The
eigenvalue histogram in Fig. 2 was fit to an expression of
the form

1/2—Pp ink
(1 —(n/21nk) [ln( —in') +in(2/A) ]}8z

where A is given by Eq. (8), Po= (2/Ir)'~~, and a is a fitting
parameter. For X in the interval 10 ' ~ X. ~10 we
found n=0.970, in good agreement with the CPA value,
ex=1. The difference in the two numbers could reflect the
presence of higher-order terms in the asymptotic expansion.

ACKNOWLEDQMENTS

0 I I I I

0
I I I I

FIG. 1. Distribution of eigenvalues for disordered linear chain of
5 x 108 spins.
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