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Test of crossover scaling in the two-dimensional random-field Ising model
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The random-field-induced rounding of the specific-heat singularity observed in transfer-matrix calcula-

tions of two-dimensional Ising models by Morgenstern, Binder, and Hornreich is interpreted in terms of
the Fishman-Aharony scaling theory. Results qualitatively similar to recent experimental work on

Rb2Co0. 85Mgo. &5F4 are obtained.

A'= 2A/@ (3)

Ferreira et al. ' also provide beautiful experimental evidence
for Eqs. (2) and (3) in the case of the diluted quasi-two-
dimensional anisotropic antiferromagnet Rb2Co085MgoI5F4.
Strictly speaking, however, the situation in the experiment
is slightly more complicated: (i) the "random staggered
fields" which are induced by the uniform field in the dilut-
ed antiferromagnet" are correlated with the disorder in
spin-spin exchange interactions (due to a locally varying
coordination number); (ii) the critical behavior of the sys-
tem without the field is that of a sited-disordered Ising
model rather than that of a pure Ising model, " and hence,
asymptotically close to T„Eq. (2) does not apply. Of

There has been much current interest in the properties of
systems with quenched random fields, particularly because
of the prediction that the lower critical dimension d&, below
which a uniformly ordered state is not stable, is raised by
the random field. ' ' %hile there has been a controversy
whether di=2 (Refs. 2 and 6-10) or di=3 (Refs. 5-7) in
an Ising model, it is accepted that uniform long-range order
is destroyed by weak random fields (e.g. , +h with equal
probability of both signs) in two-dimensional Ising
models. " In this case the sharp phase transition which oc-
curs for h = 0 is rounded and the width of this region where
the rounding occurs is controlled by the strength of the ran-
dom field.

Fishman and Aharony' described the crossover from the
critical behavior of the pure system to the new behavior by
a scaling theory; e.g. , for the specific heat they obtained

C= ~t~ f(th 2t&)

where t is the reduced distance from the mean-field transi-
tion temperature, t = (T —T, —bh')/T„with b a constant
and T, the transition temperature of the pure system, n is
the specific-heat exponent for the pure system, and P is the
crossover exponent, for which Fishman and Aharony
showed Q = y, with y the susceptibility exponent of the pure
system. For the Ising system in two dimensions o. =0, and
thus the crossover behavior is slightly more complicated, ' '
namely, the singular part of the specific heat behaves as

C/kq = f(th 't~') —A'lnh, t 0, h 0,
~
t

~
h 'i@finite . (2)

Ferreira et al. ' showed that A' is related to the amplitude A

of the specific heat in the pure system (Ccc —A ln~ t
~ ) by

course, outside a crossover region from the critical behavior
of pure Ising systems to that of diluted ones Eq. (2) should
be approximately valid. Such crossover effects are probably
more important for three dimensions, where also some ex-
perimental evidence for them has been found. ' The corre-
lation effect (i) seems also to be very important at least for
the understanding of some of the three-dimensional data,
where often hysteresis effects are observed, ' and it has
been controversial which data are really thermal equilibrium
results. ' ' In any case, it is felt that it would be interesting
to study the crossover behavior predicted in Eqs. (2) and
(3) in the original random-field Ising model itself. It is the
purpose of the present Brief Report to provide some evi-
dence for the validity of Eqs. (2) and (3) in this model.

The first evidence that random fields destroy the phase
transition of two-dimensional Ising systems was provided in
a previous work by the author, "where transfer-matrix-type
calculations of L x L lattices, with L ~ 16, were performed.
For each configuration (h&= + h) of random fields one ob-
tains the free energy exactly. The results are averaged nu-
merically over a finite sample of M different random-field
configurations generated by Monte Carlo. Varying the
linear dimension L it was checked to what extent the results
were independent of lattice size. "

Typical results for the specific heat are shown in Fig. 1.
In the system without random fields, for L ~ the well-
known logarithmic singularity occurs at (Ref. 20)
AT,/J = 2.21. Figure I shows that in the presence of ran-
dom fields the specific-heat peak occurs at somewhat lower
temperatures and with increasing strength of the random
field it becomes progressively rounded. Unfortunately,
fields h/J & 0.50 could not be studied by this method since
then the finite-size rounding of the specific-heat peak '

starts to become more important than the random-field-
induced rounding. A qualitatively similar limitation occurs
also in the experiment' due to concentration gradients in
the sample.

Now a first test of Eqs. (2) and (3) is provided in Fig. 2,
noting that the specific-heat maxima should vary as
C,„/ke= const —A'lnh. The straight line through the data
points is of this form: C,Jk&=0.560 —0.5341n(h/J). On
the other hand, taking the exact result for the critical ampli-
tude A of the pure Ising system'o (A =0.494538), we find
that A'=0.564, which compares nicely with the numerical
result A'=0. 534: given the statistical errors of the data in
Fig. 1 and considering the fact that the asymptotic behavior
described by Eqs. (2) and (3) should hold only for h « zJ
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FIG. 1. Specific heat plotted vs temperature for the nearest-
neighbor Ising ferromagnet ~ith exchange constant J exposed to
random fields +h, for a 12&12 square lattice, averaged over 30
configurations of the random field. Different curves refer to dif-
ferent values of h/J as indicated in the figure (from Ref. 11).

in our model, where the coordination number z =4 for the
square lattice, any better agreement anyway would be fortui-
tous.

A more complete test of Eqs. (2) and (3) is provided by
notingt~ that the function C/kit= C/ks+A'Inh should no
longer depend on the variables t and h separately, but rather
on the scaled combination th @= th ~~~= th @ only. Fig-
ure 3 shows that this scaling works out reasonably well.
Only the data for /t/J = 1.5 seem to fall systematically above
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FIG. 2. Plot of lnh/J vs the maximum of the specific heat, C~»,
taken from Fig. 1.
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FIG. 3. Scaling function C/k&=C/ks+A lnh/J plotted vs the
scaling variable t(h/J) /, where t= ks(T T,—„)/J, T,„be—ing
the temperature of the specific-heat maximum. The full curve is
our estimate for the scaling function; broken curve (connecting
points for ti/J= 1.5) is a guide to the eye for illustrating deviations
due to corrections to scaling. For A the theoretical prediction
A = 0.564 was chosen.

the estimated scaling function, which is not at all surprising,
since these are the data farthest away from the scaling re-
gion; for all other data the systematic errors due to correc-
tions to scaling seem to be smaller than the statistical error.
Note that in Fig. 3 there are no adjustable parameters what-
soever, also not in the coordinate scales, and hence the suc-
cess of this scaling representation is nontrivial.

In conclusion, it has been shown that the crossover
analysis of Eqs. (2) and (3) describes the rounding of the
transition due to the random field over a wide range of
fields; the present results for the random-field nearest-
neighbor Ising square lattice are very similar to the corre-
sponding experimental results for the diluted quasi-two-
dimensional anisotropic antiferromagnet Rb2Copg5Mgp]5'
in a field. ' %hat is still lacking, however, is an explicit
theoretical prediction for the scaling function f(th 2~) it-
self, as well as analytic results for the structure of spin
correlations near this rounded transition from a disordered
state (for t & 0) to a "domain state" (for t ( 0, h A 0)."
In Ref. 11 it was speculated that this change of correlations
could still be associated with a subtle phase transition seen
only in correlations of the type [(s;sJ) ],„describing spin-
glass-type order. However, in the spherical limit where it
is possible to calculate these correlations analytically the
spin-glass order gradually changes and there is no longer a
phase transition of any kind for h & 0.
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