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Velocity dependence of the superfluid density in liquid “He
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The roton liquid theory of Bedell, Pines, and Fomin has been used to calculate the variation of the su-
perfluid density with velocity and temperature. The results are in good quantitative agreement with recent
experiments. In addition, we find a small suppression of the superfluid transition temperature with in-

creasing velocity due to the quasiparticle interactions.

For a complete hydrodynamic description of a superfluid,
three independent variables are needed.! In addition to the
usual pressure and temperature, an appropriate third vari-
able is the square of the Galilean-invariant velocity w?
=(V,—V,)?, where V, and V, are the velocities of the
normal and superfluid components, respectively. All ther-
modynamic functions then become functions of these three
variables. In particular, we are interested in the variation of
the superfluid density p, with w2,

From an experimental point of view, the measurement of
the velocity dependence of p; is complicated due to the usu-
ally simultaneous generation of vortices®? in the superfluid.
This problem has apparently been eliminated in the experi-
ments of Hess,* whose data we have used for comparison
with theory.

To explain his data, Hess* used the expression derived by
Khalatnikov® for the velocity dependence of the normal
fluid density p,. In the temperature range where rotons
dominate (T > 1.4 K), this can be written to order w? as

2
Pow

T

1+-L

2y — 0
pa(T,w?)=p3(T) 10

] , 1

with po as the roton momentum and the Boltzmann con-
stant kg=1. This relation applies to the noninteracting ro-
tons for which the zero velocity normal density
p2(T)~ T-V2exp(—A¢/T) with A, being the zero-
temperature roton gap. For temperatures around 2.0 K, the
corrections arising from roton-roton interactions become
significant and Eq. (1) will break down. To correct for this,
Hess* simply replaced Ay by A(T) in pd(T). It was found
by Hess* that the A(T) needed to explain his data was dif-
ferent from the previous determinations from neutron
scattering experiments.5

In this paper, we derive an expression for p,(7T,w?) [or
equivalently p,(T,w?)] within the roton liquid theory of
Bedell, Pines, and Fomin.” The expression we obtain takes
into account the roton-roton interactions exactly to order
w2, To this order only the /=0,1, and 2 moments of the
quasiparticle interaction will enter. From this calculation,
several important features emerge. The first is that the sim-
ple replacement of Ag by A(T) in Eq. (1) does not correctly
describe the dependence of p,(7,w?) on the interactions.
The second point is that the experiments can be fitted, even
for temperatures above 2.1 K, with a A(7) which fitted
both the recent neutron scattering datad-10 and the specific
heat.” This A(T) is also different from the temperature-
dependent gap measured in Ref. 6. In Bedell, Pines, and
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Fomin (BPF) it was shown that the A(T) in Ref. 6 violates
a stability condition for T < T), where T, is the superfluid
transition temperature and thus is probably too small.
Within the roton liquid theory of BPF, we obtain a con-
sistent picture of the thermodynamic properties of ‘He for
1.4 K < T < T, and the velocity dependence of the super-
fluid fraction. The calculation is described in the following.
In the roton liquid theory of BPF, the roton-roton interac-
tions are treated in the spirit of the Landau theory of a nor-
mal Fermi liquid.!! This theory has been shown’ to accu-
rately describe the thermodynamics of superfluid “He for 1.4
K < T < T,. The roton-roton interaction f?‘p" is defined

as the second functional derivative of the energy with
respect to the distribution function 7,:
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The zero-temperature single-particle energy e€J is fitted to
neutron scattering data and here we use the simple fit intro-
duced by BPF. For temperatures small compared with Ag,
the roton gap, the quasiparticles with momenta close to py
make the dominant contribution to the thermodynamics. In
f 5 We then ignore the dependence on the magnitude of

the momenta and expand in a Legendre series in cosf
(=p-p",

fT,._p.,=2f,P,(cos()) . 4)
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The normal component of the density is defined through
the mass current in the suprefluid rest frame where

-
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In the superfluid rest frame, the single-particle energy is it-
self a function of the velocity W. If we expand the energy
to second order in W we have

W —P - W=¢,—a(F-W)+b(P-W)?, (6)
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where €, depends on w?=|W|%. To determine the velocity
dependence of p, we must first determine the coefficients a
and b.

The coefficients a and b are determined by evaluating Eq.
(3) in the superfluid rest frame, using Eq. (6) for the
single-particle energies, then

Gp{w}_Tj-W=e3—'ﬁ-w+§f-53./n(epf{v_"}—Tf"W) .
P
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If we expand the distribution function to order w? in Eq.
(7), only the moments fo, fi, and f, enter. If we now
equate the coefficients in Eq. (7), we find

a=I[1+F(T)/3]17! (8a)

and
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where Fi(T)=I[N,(T)/T1f; and N,(T) is the number of
rotons. Here we use the roton number as determined by
BPF. The additional velocity dependence of €, in Eq. (6)
comes from the fact that the (F-W)? term contains both
/=0 and /=2 Legendre polynomials. For |P|=p, then €5,

(8b)

=A(T,w?), where to order w? we have
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with Z = (powa/T). Here we note that the number of ro-
tons used in Egs. (8a), (8b), and (9) is given by
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where A(T) is evaluated at W=20, but it includes the in-
teractions.

The expression for the normal fluid density can now be
obtained by substituting Eq. (6) into Eq. (5). If we keep
terms only to order w? we find

pa(T,w?) 1. 22 1-5Fy(T)/3—F,(T)/15

(D) T 10 T+ Fo(T)/5 (10)
The normal fluid density p,(7T) is given by’
(0
_ pa (1)
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Again in Egs. (10), (11a), and (11b) the number of rotons
is evaluated at W =0.

The velocity dependence of the superfluid density
ps(T,w?)=p—p,(T,w?), where p is the mass density of
“He, has been measured by Hess.* To determine p,(T,w?),
Hess* measured the difference in resonant frequencies for
Ww=0 and finite W in a Helmholtz resonantor filled with
Hen. The relationship between p,(7T,w?) and the frequency
shift Af/f for a Helmholtz resonator depends on the
geometrical shape of the channel connecting the two regions
filled with Hen. Here we are not interested in solving the
detailed boundary value problem to find the geometrical
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shape factor, so we use the simple parametrization intro-
duced by Hess.* The frequency shift is then given by*

Af_3_ps(Tw)—p(T)
f 8 4 ps(T) ’
where y depends on the geometry of the connecting chan-

nel. Expanding Eq. (12) to order w? and inserting the
results from Eq. (10) we find
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where we use Egs. (11a), (11b), and the definitions follow-
ing Egs. (8b) and (9).

Equation (13) is the main result of our paper and it
should be compared with the similar expression for (A f/f)
in Eq. (2) of Ref. 4. This equation was obtained from Eq.
(12) using the Khalatnikov expression in Eq. (1) for
p,(T,w?) with A, replaced by A(T), as discussed earlier.
This clearly ignores the corrections coming from the terms
inside the large parentheses of Eq. (13), where the main
contribution originates from the —%Fo( T) term. At

T=2.1 K, ignoring this term gives a result which is 80%
smaller than the result which includes it. From the experi-
ment, it is clear that the interaction corrections are signifi-
cant and they should be included in a consistent manner
(see Fig. 1).

To make comparisons with experiment, the interaction
parameters fy, fi1, and f, and the geometry-dependent
parameter y must be determined. The interaction parame-
ters fp and f; were determined by BPF by a fit to the
specific heat and superfluid density, but f, could not be
determined from the thermodynamic quantities at w=0.
Here we can estimate its order of magnitude and sign from
the fits to (Af/w?f). The value we find is Nf,~ 10 K at
standard volume and pressure (SVP), where N is the ‘He
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FIG. 1. Frequency shift and superfluid velocity-dependent quanti-
ty (—10*Af/wif) vs temperature. The solid line is the calculation
from Eq. (12) including the interaction [Eq. (13)]. The dashed line
is also due to Eq. (12) but using the noninteracting density expres-
sion due to Khalatnikov [Eq. (1)]. The full circles and error bars
are experimental data from Ref. 4. Note the importance of interac-
tion as T approaches T).
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number density. This number is quite close to the value
predicted by Bedell, Pines, and Zawadowski,!? who calculat-
ed it microscopically from a model for the roton-roton pseu-
dopotential introduced to explain the roton-roton bound
states, the temperature dependence of the gap, and the ro-
ton viscosity. The model predicted a value of Nf,=9.5 K.

For the geometry-dependent factor, we chose the best fit
to the data, which yielded y=0.61. It turned out that in-
cidentally it fits the value of (Af/w2f) at T=1.838 K. In
Fig. 1, we have plotted (—10%Af/w?f) for y=0.61 and
Nf,=9.5 K. The values of Nfy=—9.7 K and Nf;=—1.3
K were taken from BPF. In Ref. 4, a value of y=1 was
chosen; however, this is probably incorrect. Firstly, the
data point at T=1.43 K in Fig. 3 of Ref. 4 is too high and
should not be used in comparing with theory.® Secondly,
the formula used for Af/f, as noted above, is not correct.
Taking these points into account gives y=0.61. We have
also plotted in Fig. 1 the noninteracting results for y =0.61.
In Fig. 2 we show the velocity dependence of Af/f for
several temperatures. Clearly, both the velocity and tem-
perature dependence are accurately described by Eq. (13).
Since Af/(wf) changes by an order of magnitude in the
temperature range 1.4 K < 7T < 2.1 K, the uncertainties in-
troduced by using Eq. (12), in lieu of an exact solution of
the boundary value problem, are not significant.

Within the framework of the roton liquid theory of BPF
we have derived an expression for p,(T,w?) which is exact
to order w2 This result ignores the possible energy depen-
dence of the parameters f;. From the fit to the specific-heat
data used by BPF and from the theoretical work of Bedell,
Pines, and Zawadowski,!? there appears to be only a very
weak (if any) energy dependence in fy at SVP. It certainly
can be ignored in comparison to the corrections we have in-
cluded here. To further pin down the parameters v and f5,
more accurate experiments are needed. A study of these ef-
fects with pressure would also be useful to further test the
roton liquid theory of BPF. Finally, an additional feature of
this calculation is that we can determine the amount by
which the superfluid phase transition is suppressed. For a
value of (pow/T)=0.41 we find that 8T =[T,— n,(w?)1/
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FIG. 2. Frequency shift (—10% Af/f) vs square of the superfluid

fluid velocity. The full circles and error bars denote the experimen-
tal results from Ref. 4.

T,=1%. This is a small effect and it may be hard to detect
given the difficulty of the experiment.
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